《常規(guī)改性對大豆蛋白化學(xué)結(jié)構(gòu)的影響》由會員分享,可在線閱讀,更多相關(guān)《常規(guī)改性對大豆蛋白化學(xué)結(jié)構(gòu)的影響(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、常規(guī)改性對大豆蛋白化學(xué)結(jié)構(gòu)的影響
常規(guī)改性對大豆蛋白化學(xué)結(jié)構(gòu)的影響
2014/08/05
《浙江林業(yè)科技雜志》2014年第二期
1試驗方法
分別以溫度、pH(酸和堿)、蛋白酶為單因素設(shè)計實驗,采用紅外光譜分析儀對改性前后大豆蛋白的化學(xué)結(jié)構(gòu)進行了分析。①將30g豆粕粉加入到裝有100g水的燒瓶中,在常溫下使用攪拌機攪拌30min,得到均勻的豆粕溶液(未處理);②將30g豆粕粉加入到裝有100g水的燒瓶中,在恒溫槽中加熱并保持溫度為75℃,使用攪拌機攪拌30min,得到大
2、豆蛋白的熱改性溶液(熱改性);③將30g豆粕粉加入到裝有100g水的燒瓶中,在恒溫槽中加熱并保持溫度為39℃,用硫酸調(diào)溶液的pH為2.0,加入5000U/g的胃蛋白酶,使用攪拌機攪拌30min,然后用氫氧化鈉調(diào)溶液的pH為5.6,得到大豆蛋白的酶改性溶液(酶改性);④將30g豆粕粉加入到裝有100g水的燒瓶中,用硫酸調(diào)溶液的pH為2.0,并使用攪拌機攪拌30min,得到大豆蛋白的酸改性溶液(酸改性);⑤將30g豆粕粉加入到裝有100g水的燒瓶中,用氫氧化鈉調(diào)溶液的pH為12.0,并使用攪拌機攪拌30min,得到大豆的堿改性溶液(堿改性)。將上述制備的各豆粕溶液先用粘度計測試各溶液(25℃)的粘
3、度,然后取少部分放入冰箱中,在-18℃下冷凍24h,隨后用真空冷凍干燥箱對樣品進行冷凍干燥,并使用紅外光譜儀對冷凍干燥后的樣品粉末進行分析。
2結(jié)果與分析
表1和圖1分別為改性前后豆粕溶液的粘度和紅外光譜圖。
2.1熱改性對大豆蛋白的影響由圖1可知,豆粕中主要含有-OH、-NH2、-COOH等活性基團,其中波數(shù)為3411.16cm-1處的寬的吸收峰是分子間氫鍵O-H伸縮振動和N-H伸縮振動吸收的特征峰;波數(shù)為2929.50cm-1處的峰是CH2的伸縮振動特征峰;波數(shù)為1654.22cm-1處的峰是C=O伸縮振動(酰胺Ⅰ譜帶);波數(shù)為1541.43cm-1處的峰是N-H面內(nèi)彎曲振動和C-N
4、伸縮振動的偶合峰(酰胺Ⅱ譜帶);波數(shù)為1241.75cm-1處的峰是C-N伸縮(酰胺Ⅲ譜帶);在波數(shù)為1399.92cm-1處的峰是COO-的特征峰,波數(shù)為1053.50cm-1處的峰是伯醇吸收帶。從圖1可以看到,與未改性豆粕的譜圖相比,熱改性豆粕的紅外光譜圖中各峰形和峰位都沒有變化。這說明熱改性沒有改變大豆蛋白的一級結(jié)構(gòu)(多肽鏈上氨基酸的排列順序),而由表1又可知,熱改性豆粕溶液的粘度要比未改性的明顯增大,這可能是大豆蛋白發(fā)生了熱變性。在加熱條件下,大豆蛋白質(zhì)分子由原來的卷曲緊密結(jié)構(gòu)舒展開來,使分子內(nèi)部的疏水基團暴露在外部,從而使分子外部的親水基團相對減少,致使溶解度降低,并且蛋白質(zhì)分子在受
5、熱后可能發(fā)生了締合作用[9],從而使得粘度增加。
2.2酶改性對大豆蛋白的影響由圖1可知,與未改性豆粕的譜圖相比,酶改性豆粕的紅外光譜圖中峰的變化主要是在波數(shù)為1241.75cm-1處的C-N伸縮(酰胺Ⅲ譜帶)和波數(shù)為1053.50cm-1處的伯醇吸收帶。C-N伸縮(酰胺Ⅲ譜帶)吸收強度的減弱說明在蛋白酶的作用下,部分肽鍵或酰胺鍵發(fā)生了水解;波數(shù)為1053.50cm-1處的伯醇吸收帶的消失以及出現(xiàn)波數(shù)為1111.38cm-1的特征峰,說明大豆蛋白肽鏈水解后的小分子中的伯醇基團在濃硫酸的催化作用下生成了醚鏈。與酸改性豆粕的譜圖相比,在波數(shù)為1541.43cm-1處的N-H面內(nèi)彎曲振動(酰胺Ⅱ譜
6、帶)吸收強度減弱,說明一部分的-NH2參與了交聯(lián)反應(yīng)。此外,由表1可知,經(jīng)蛋白酶改性后的豆粕溶液的粘度有所增大,這可能是部分?jǐn)嗔验_的多肽鏈的分子內(nèi)或分子間交聯(lián),致使分子量增大,從而使粘度升高。蛋白酶改性大豆蛋白的作用機理主要在于能夠改變大豆蛋白的一級結(jié)構(gòu),有限度地水解酰胺鍵使大豆蛋白部分降解,增加其分子內(nèi)或分子間交聯(lián)或連接其他特殊功能基團[1]。圖1改性前后豆粕溶液的紅外光譜圖波數(shù)/cm-14000350030002500200015001000500酸改性堿改性酶改性未改性熱改性
2.3酸改性對大豆蛋白的影響由圖1可知,與未改性豆粕的譜圖相比,酸改性豆粕的紅外光譜圖中峰的變化主要是在波數(shù)為
7、1241.75cm-1處的C-N伸縮(酰胺Ⅲ譜帶)和波數(shù)為1541.43cm-1處的N-H面內(nèi)彎曲振動(酰胺Ⅱ譜帶)。C-N伸縮(酰胺Ⅲ譜帶)吸收強度的減弱說明在強酸的作用下,部分肽鍵發(fā)生了水解;波數(shù)為1541.43cm-1處的N-H面內(nèi)彎曲振動(酰胺Ⅱ譜帶)吸收強度的增強說明在濃硫酸的作用下,大豆蛋白的空間球狀結(jié)構(gòu)發(fā)生了明顯的變化,球蛋白中的多肽鏈被解離開來,暴露出更多的-NH2,并且-NH2也沒有被反應(yīng)掉。由圖1還可知,酶和酸改性豆粕的譜圖與未改性豆粕的譜圖相比,各酰胺譜帶發(fā)生了不同程度的藍(lán)移,這可能是酸的誘導(dǎo)效應(yīng)。此外,由表1可知,濃硫酸改性過的豆粕溶液的粘度下降明顯,這可能是在酸的作用
8、下被解離的大豆蛋白的多肽鏈?zhǔn)嬲归_來,另外,對比圖1中酶改性豆粕的譜圖可知,雖然蛋白分子在酸的作用下發(fā)生了部分肽鍵或酰胺鍵的水解,但對整條肽鏈的影響不大,斷開的肽鍵部位也沒有出現(xiàn)分子內(nèi)或分子間交聯(lián)的跡象。
2.4堿改性對大豆蛋白的影響由圖1可知,與未改性豆粕的譜圖相比,堿改性豆粕的紅外光譜圖中峰的變化主要是在波數(shù)為1241.75cm-1處的C-N伸縮(酰胺Ⅲ譜帶)和波數(shù)為1541.43cm-1處的N-H面內(nèi)彎曲振動(酰胺Ⅱ譜帶)。但與酸改性和酶改性的譜圖相比可以發(fā)現(xiàn),堿水解肽鍵或酰胺鍵的能力要高于酸和酶,在波數(shù)為1241.75cm-1處的C-N伸縮(酰胺Ⅲ譜帶)幾乎完全消失了,堿水解肽鍵或酰胺
9、鍵的能力比胃蛋白酶強,這可能是胃蛋白酶對肽鏈中的肽鍵或酰胺鍵的水解具有專一性,并不能水解所有肽鏈中的肽鍵或酰胺鍵,而強堿對肽鍵或酰胺鍵的水解并沒有這方面的限制。此外,由波數(shù)為1541.43cm-1處的N-H面內(nèi)彎曲振動(酰胺Ⅱ譜帶)吸收強度的減弱可知,大部分的-NH2被反應(yīng)掉了。由圖1還可知,堿改性豆粕的譜圖與未改性豆粕的譜圖相比,各酰胺譜帶也發(fā)生了不同程度的藍(lán)移,這可能是具有兩性的蛋白質(zhì)在堿的作用下也發(fā)生了的誘導(dǎo)效應(yīng)。在實驗過程中隨著溶液pH值的上升,攪拌越來越困難,并且由表1可知,堿改性的豆粕溶液的粘度達(dá)到83417mPa/s,遠(yuǎn)遠(yuǎn)高于未改性和其他常規(guī)改性的豆粕溶液。堿改性豆粕的機理主要在
10、于大程度的水解肽鍵和酰胺鍵,并催化一些活性基團參與各分子內(nèi)或分子間的交聯(lián)反應(yīng)[10]。綜合以上的分析可知,熱改性,酶改性,酸、堿改性等常規(guī)改性方法均能導(dǎo)致大豆蛋白的化學(xué)結(jié)構(gòu)發(fā)生變化,這些變化也反應(yīng)出不同改性方法改性大豆蛋白的機理和程度也各有所異。單一的改性往往有著局限性,聯(lián)合使用兩種或多種方法對大豆蛋白進行改性才是今后研究的重點。
3結(jié)論
(1)熱改性不會對大豆蛋白的一級結(jié)構(gòu)造成影響,會使大豆蛋白的溶解度降低;大豆蛋白會在受熱時發(fā)生熱變性,并且可能發(fā)生了締合作用,使溶液的粘度升高。(2)酶改性會在一定程度上水解肽鏈中的肽鍵或酰胺鍵,增加肽鏈分子內(nèi)或分子間交聯(lián)或連接其他特殊功能基團,并且水解
11、后生成的部分小分子已經(jīng)發(fā)生了交聯(lián)。(3)酸改性會部分水解肽鍵,但這種改性對肽鏈的影響不大,并且水解出來的小分子沒有發(fā)現(xiàn)交聯(lián)的跡象,另外酸還會對大豆球蛋白進行解離,致使改性后的豆粕溶液的粘度大幅降低。(4)堿改性會大程度地水解肽鍵或酰胺鍵,使得多肽鏈上大量的極性基團暴露出來;水解出來的小分子會發(fā)生交聯(lián)反應(yīng),生成分子量更大的分子,使溶液的粘度急劇升高。
作者:朱勁單人為李琴李延軍袁少飛王洪艷單位:浙江農(nóng)林大學(xué)浙江省林業(yè)科學(xué)研究院浙江省竹類研究重點實驗室江西廣播電視大學(xué)
上一個文章: 油茶長林品種的性狀下一個文章: 相空間重構(gòu)的海防林害蟲預(yù)測