【溫馨提示】====【1】設(shè)計(jì)包含CAD圖紙 和 DOC文檔,均可以在線(xiàn)預(yù)覽,所見(jiàn)即所得,,dwg后綴的文件為CAD圖,超高清,可編輯,無(wú)任何水印,,充值下載得到【資源目錄】里展示的所有文件======【2】若題目上備注三維,則表示文件里包含三維源文件,由于三維組成零件數(shù)量較多,為保證預(yù)覽的簡(jiǎn)潔性,店家將三維文件夾進(jìn)行了打包。三維預(yù)覽圖,均為店主電腦打開(kāi)軟件進(jìn)行截圖的,保證能夠打開(kāi),下載后解壓即可。======【3】特價(jià)促銷(xiāo),,拼團(tuán)購(gòu)買(mǎi),,均有不同程度的打折優(yōu)惠,,詳情可咨詢(xún)QQ:1304139763 或者 414951605======【4】 題目最后的備注【JA系列】為店主整理分類(lèi)的代號(hào),與課題內(nèi)容無(wú)關(guān),請(qǐng)忽視
外文翻譯
專(zhuān) 業(yè) 機(jī)械設(shè)計(jì)制造及其自動(dòng)化
學(xué) 生 姓 名 陳 艷
班 級(jí) BD機(jī)制04 2
學(xué) 號(hào) 0420110213
指 導(dǎo) 教 師 劉 道 標(biāo)
外文資料名稱(chēng):Cooling behaviour of particle filled polypropylene during injection moulding process
(用外文寫(xiě))
外文資料出處: department of mechanical
Engineering , National Central University
附 件: 1.外文資料翻譯譯文
2.外文原文
指導(dǎo)教師評(píng)語(yǔ):
簽名:
年 月 日
注塑成型中顆粒填充物聚丙烯的冷卻情況
何敏嘉,費(fèi)爾布
陳艷譯
摘要:聚丙烯復(fù)合材料的冷卻情況被用于在同一注塑成型過(guò)程中,對(duì)影響散熱性能的各種填料(磁鐵礦,重晶石,銅,滑石,玻璃纖維和鍶鐵氧體)于不同比例下的調(diào)查。注塑成型期間,分別對(duì)室溫和高溫時(shí)熱電偶在型腔模具表面的測(cè)量記錄和對(duì)斜坡冷卻曲線(xiàn)的熱擴(kuò)散分析中發(fā)現(xiàn):該注射成型的工藝和該模具的填充材料使冷卻曲線(xiàn)顯示出不同的合并路段。所以說(shuō)熱擴(kuò)散系數(shù)是個(gè)暫時(shí)性的系數(shù)。熱擴(kuò)散表明,最高值為30%的滑石粉填充聚丙烯,在最短的冷卻時(shí)間可以發(fā)現(xiàn)35%銅填充聚丙烯。系統(tǒng)性變化的具有熱傳遞性能的復(fù)合材料,在不同的填充材料和填充比例中使注塑過(guò)程優(yōu)化,并以此來(lái)定制熱流性能。此外,滑石粉填充聚丙烯使設(shè)計(jì)的復(fù)合材料與預(yù)定的最高熱流相附,是熱傳遞的首選方向。
關(guān)鍵詞:聚丙烯 ;熱性能;注塑成型;微粒填料
1 .導(dǎo)言
常用的塑料,如聚丙烯和聚酰胺都有一個(gè)低導(dǎo)熱系數(shù)。不過(guò)在汽車(chē)行業(yè),如傳感器或執(zhí)行器,需要新的材料或具有高導(dǎo)熱性。通過(guò)增加合適的填料,比如塑料,其熱行為聚合物是可以改變的。系統(tǒng)的熱擴(kuò)散大于1.2/秒,從0.2/秒多為補(bǔ)聚丙烯。這種填充聚合物具有較高的熱導(dǎo)率,由于廣泛的應(yīng)用在電子封裝上而成為一個(gè)越來(lái)越重要的研究領(lǐng)域。較高的熱導(dǎo)率可以通過(guò)使用一個(gè)合適的填料達(dá)到,如鋁,碳纖維和石墨,鋁氮化物或磁鐵礦顆粒。此外,在注塑機(jī)上模具的冷卻反應(yīng),是受聚合物填料的熱性能影響。然而,填充材料比較能體現(xiàn)出熱導(dǎo)率的價(jià)值觀。大幅比較不同的材料,是很困難的,甚至可以說(shuō)是不可能的。 因此,聚丙烯樣品不同的填充劑(四氧化三鐵,硫酸鋇,銅,玻璃纖維, 滑石粉)的擠出和注射成型用各種體積分?jǐn)?shù)( 0-50 % )來(lái)表示 。
磁鐵礦重晶石一般是用來(lái)增加重量的聚丙烯,如:為一瓶措施,鍶鐵氧體是用聚合物粘結(jié)磁鐵,玻璃纖維是用于加固新材料,滑石粉是一種反阻斷劑。然而, 銅被選為額外灌裝機(jī),因?yàn)樗哂懈叨鹊臒釋?dǎo)率相對(duì)于其他材料。 熱性能,這些注射成型樣品和注塑成型行為人調(diào)查和相關(guān)的金額和種填充材料。
2 .理論思考
傅立葉法的熱量傳遞,在一維給出
與溫度T ,時(shí)間t ,位置x和熱擴(kuò)散在一個(gè)均質(zhì)體,熱擴(kuò)散率A和熱導(dǎo)率L是相互關(guān)聯(lián)的,由具體密度r 和具體的熱容量Cp根據(jù)
假設(shè)一名注射成型工藝與恒溫灌漿期為聚合物的溫度TP和相對(duì)恒定的溫度Tm及作為溫度獨(dú)立的熱擴(kuò)散,解析解決式( 1 )結(jié)果
在式( 3 ) ,S是指壁厚注射模壓部分和T的溫度zai 時(shí)間t后注射。忽略高階計(jì)算,式( 3 ) 可以減少為
式( 4 )給出的關(guān)系冷卻速度和熱擴(kuò)散率,在注射成型過(guò)程中,凡高熱擴(kuò)散導(dǎo)致更高的冷卻速度和短周期的過(guò)程。
3 .實(shí)驗(yàn)
3.1 材料
試驗(yàn)材料供應(yīng)合作編寫(xiě)RTP的有限公司(法國(guó))幾種聚丙烯( PP )化合物與各種填料(四氧化三鐵,硫酸鋇,銅,玻璃纖維,滑石粉)在擠出過(guò)程中講到的類(lèi)似在式 [ 2 ] 。填充物材料是常用材料在工業(yè)產(chǎn)品。填料粒子不具備表面涂層可以影響熱性能。一些選定的性能灌裝材料列在表1
圖1.模具注塑成型實(shí)驗(yàn)。
圖 2 .模具與腔準(zhǔn)備測(cè)試樣本,在一個(gè)注塑機(jī)。立場(chǎng)與熱電偶溫度測(cè)量標(biāo)志是一個(gè)箭頭。
3.2 熱擴(kuò)散率測(cè)量
熱擴(kuò)散的高分子材料,是衡量一個(gè)瞬態(tài)法,與雷射閃光實(shí)驗(yàn)有密切的關(guān)系。溫度信號(hào)由熱電偶轉(zhuǎn)移到上側(cè)的抽樣檢驗(yàn)和注冊(cè),被轉(zhuǎn)讓溫度信號(hào)啟動(dòng)一個(gè)熱平衡過(guò)程該標(biāo)本,記錄由熱電偶作為區(qū)別樣品的背面和恒定溫度,用來(lái)為評(píng)價(jià)的熱擴(kuò)散率。最小二乘算法是用來(lái)確定熱擴(kuò)散率,而變系統(tǒng)地?zé)釘U(kuò)散值在一個(gè)特別設(shè)計(jì)差分計(jì)劃。精確的測(cè)量多于總量的3 % 。 為熱擴(kuò)散率測(cè)量,小缸10毫米直徑5-6毫米的身高,剪下的注射成型棒(參見(jiàn)圖1 ) 。
3.3 注塑成型
與注塑機(jī)標(biāo)準(zhǔn)樣品測(cè)量拉伸性能連同一棒熱測(cè)量10毫米直徑和130毫米的長(zhǎng)度分別準(zhǔn)備在一模(參見(jiàn)圖1 ) 。在腔的拉伸試驗(yàn)棒鉻( K型)熱電偶中的應(yīng)用。 在注塑成型實(shí)驗(yàn)溫度記錄每0.5秒一個(gè)數(shù)字萬(wàn)用表和儲(chǔ)存在一臺(tái)個(gè)人電腦。熱電偶s大約0.2毫米成空腔。因此,一個(gè)良好的熱之間的接觸聚合物和熱電偶,甚至后縮的成型,是為了保證錄得更好的溫度時(shí)間。用過(guò)的注射液成型參數(shù)列于表2 。由此時(shí)代特征的注塑成型周期提交見(jiàn)表3 。
4 結(jié)果與討論
圖 3 比較冷卻曲線(xiàn)填補(bǔ)聚丙烯與聚丙烯復(fù)合材料的各種填料組分的四氧化三鐵。
在圖 3 中,聚丙烯的冷卻過(guò)程在一個(gè)時(shí)間在溫度測(cè)量所熱電偶達(dá)到最高值約。 隨著越來(lái)越多的時(shí)間觀測(cè)到溫度下降。 經(jīng)過(guò)在模具打開(kāi),冷卻行為記錄與熱電偶變化,因?yàn)樗菬o(wú)較長(zhǎng)的接觸與注射成型的材料。由于以大直徑的棒,這個(gè)時(shí)間() ,直到模具是打開(kāi)及注射成型零件跳傘選擇相對(duì)較高,以確保該部分肯定凝固。 可以看出,在圖 3斜率曲線(xiàn)變化顯著后,這對(duì)應(yīng)于時(shí)間那里后,壓力是拆除。此外,圖。三指出這種復(fù)合材料在腔降溫快隨著越來(lái)越多的磁鐵礦分。要達(dá)到的溫度條-溫度遠(yuǎn)遠(yuǎn)低于凝固的采樣聚丙烯需求,在描述實(shí)驗(yàn)的時(shí)候,,而冷卻時(shí)間聚丙烯的Fe3O4減至(參看表四) 。減少冷卻時(shí)間,是在好的協(xié)議所增加的熱擴(kuò)散的磁鐵礦填充復(fù)合材料由于高的熱擴(kuò)散粒子(參見(jiàn)附表一) ,其中的線(xiàn)索,就式( 4 ) ,以一個(gè)增加冷卻速度。溫度時(shí)間依賴(lài)性圖。 3條不遵循一個(gè)簡(jiǎn)單的線(xiàn)性行為預(yù)期溫度-時(shí)間曲線(xiàn)由式( 4 )在對(duì)數(shù)計(jì)。 只為填補(bǔ)聚丙烯實(shí)測(cè)值可安裝一個(gè)單一的直線(xiàn)之間大約15 和第54秒的這條路線(xiàn)通往一個(gè)擴(kuò)散(參見(jiàn)式( 4 ) ) 。其他測(cè)量冷卻曲線(xiàn)的聚丙烯復(fù)合材料的磁鐵礦裝有在每個(gè)個(gè)案,兩直線(xiàn),為高溫第和低溫的地區(qū)。熱擴(kuò)散估計(jì)從斜坡上的回歸直線(xiàn)
計(jì)算熱擴(kuò)散系數(shù)的的溫度較高部分的冷卻曲線(xiàn)有一點(diǎn)點(diǎn)低于擴(kuò)散系數(shù)測(cè)量暫態(tài)技術(shù),而計(jì)算熱擴(kuò)散酶的溫度越低,部分地區(qū)的冷卻曲線(xiàn)滿(mǎn)足實(shí)測(cè)值擴(kuò)散圖 3 比較冷卻曲線(xiàn)填補(bǔ)聚丙烯與聚丙烯復(fù)合材料的各種填料組分的四氧化三鐵。該符號(hào)字里行間都回歸直線(xiàn)(參見(jiàn)文) 。
圖 4顯示測(cè)得的熱擴(kuò)散率數(shù)據(jù)的調(diào)查樣本中可以看出, 該熱擴(kuò)散的磁鐵礦-聚丙烯復(fù)合材料是由為填補(bǔ)聚丙烯截至 增加磁鐵礦負(fù)荷。因此,冷卻時(shí)間變短為高磁鐵礦填料餾分(圖三) 。 原因之一,為改變?cè)谶吰碌睦鋮s曲線(xiàn)顯示圖3是改變熱擴(kuò)散率隨溫度的,其中就表現(xiàn)在是圖 5 磁鐵礦和重晶石聚丙烯復(fù)合材料隨著溫度的升高熱擴(kuò)散率降低。因此,價(jià)值觀來(lái)自模實(shí)驗(yàn)應(yīng)小于測(cè)值的復(fù)合材料在室溫。 熱擴(kuò)散的PP基體中,主要是所造成的聲子,是關(guān)系到等于無(wú)害速度v和平均自由程長(zhǎng)度L聲據(jù)上述凝固溫度的影響PP基體(約條,測(cè)量的DSC ) ,熱擴(kuò)散的基質(zhì)減少,以致降低了體積彈性模量k ,因而減少了聲子速度 ,并降低平均自由程的長(zhǎng)短 。此外,上述凝固溫度日Ts無(wú)晶在聚丙烯矩陣是在低于Ts結(jié)晶下在聚丙烯基體中出現(xiàn)的。存在或缺乏微晶影響體積彈性模量K和聲子自由的道路。其原因是不同實(shí)驗(yàn)都是非等壓條件在注塑成型過(guò)程和非等溫條件樣品的厚度的冷靜過(guò)程,磁鐵礦,重晶石,玻璃纖維, 滑石,永磁鐵氧體和銅填料比較空聚丙烯圖 6 冷卻的過(guò)程與銅填充聚丙烯存在差異。
圖 4 在室溫下熱擴(kuò)散價(jià)值觀注射成型聚丙烯樣品中不同填料和各種填料的比重來(lái)衡量暫態(tài)技術(shù)(參見(jiàn)文)
圖 5 溫度依賴(lài)性的熱擴(kuò)散的磁鐵礦和重晶石填充聚丙烯的填料含量
圖 6聚丙烯復(fù)合材料的填料在30vol%后
銅填充復(fù)合降溫速度遠(yuǎn)遠(yuǎn)超過(guò)其他調(diào)查材料。該溫度的影響剩余聚丙烯是,在整個(gè)注射液成型工藝高于氣溫其他調(diào)查材料。冷靜的過(guò)程與其他復(fù)合材料沒(méi)有顯示有較大的差別。該氣溫的磁鐵礦裝聚丙烯是一種比溫度低一點(diǎn)的重晶石填充聚丙烯。氣溫的鍶鐵氧體聚丙烯復(fù)合材料,再次是低于那些該磁鐵礦填充聚合物。 而測(cè)得的熱擴(kuò)散率的滑石粉填充聚丙烯是遠(yuǎn)高于熱擴(kuò)散其他調(diào)查材料,甚至遠(yuǎn)高于這對(duì)銅填充聚丙烯,冷卻行為滑石粉是較小較其他調(diào)查材料。魏登費(fèi)勒等人研究出該滑石粉沿著自己的方向填充復(fù)合一個(gè)對(duì)齊的滑石粉。測(cè)量的熱擴(kuò)散率是平行于這個(gè)主軸的最高熱導(dǎo)率,而溫度測(cè)量在注塑成型過(guò)程中揭示擴(kuò)散垂直流方向發(fā)展。這意味著,該滑石粉填充聚丙烯樣品中有強(qiáng)烈各向異性最高并在流動(dòng)方向低垂直于水流。盡管出現(xiàn)了高導(dǎo)熱的銅(參看表1 )相對(duì)于其他用于填充材料, 冷靜是相對(duì)的測(cè)氣溫的。結(jié)果表明:這是一個(gè)相對(duì)的措施,一個(gè)最理想的互聯(lián)網(wǎng)絡(luò)的高導(dǎo)電粒子在聚丙烯基體,低于1 % 和極差相比,互聯(lián)磁鐵礦55 %或互聯(lián)的重晶石46 %。 作者還討論了影響顆粒大小和形狀的聚丙烯矩陣[ 2,3 ] 。
圖 7 各種聚丙烯復(fù)合材料的冷卻時(shí)間(從200下降到60度)
冷卻時(shí)間是線(xiàn)性依賴(lài)于填料量分?jǐn)?shù)在聚丙烯基體中,數(shù)據(jù)計(jì)算回歸系列于表6 。它可以清楚看出,銅填充聚丙烯降溫下降速度,遠(yuǎn)遠(yuǎn)超過(guò)其他調(diào)查材料。冷卻的情況,聚丙烯重晶石, 鍶氧體和磁鐵礦是相似的,而磁鐵礦降溫一點(diǎn)點(diǎn)速度比所有其他材料。
5 結(jié)論
冷靜的過(guò)程中聚丙烯在注塑成型工藝可以減少所使用的磁鐵礦重晶石,鍶鐵氧體,玻璃纖維,滑石粉和銅填料。 冷卻過(guò)程中,由于的依賴(lài)了傳熱和潛熱凝固溫度,所以不能完全解釋由簡(jiǎn)單指數(shù)律來(lái)自傅立葉的法熱傳導(dǎo)。此外,在注射成型周期,的注射液成型周期和熱擴(kuò)散的聚丙烯矩陣周期,冷卻曲線(xiàn)顯示不同的合并路段。 此外,各向異性的熱傳導(dǎo)性,例如: 為滑石粉填充物,或低互聯(lián)的粒子影響冷卻行為,如銅。 為使用的材料和在調(diào)查范圍填料冷卻時(shí)間冷卻下來(lái)注射成型復(fù)合材料,從溫度200 降至60是線(xiàn)性依賴(lài)于填料。銅在聚丙烯基體中的冷卻時(shí)間可縮短從50.5 至20,9秒。在這個(gè)過(guò)程循環(huán)中,具有較高熱傳遞性能的一些復(fù)合材料,可以用來(lái)優(yōu)化模具進(jìn)程提高冷卻速度。
文獻(xiàn):
[1] Ba¨ck E. Magnetite gives new recyclable dense polymers for the automotive industry Plastics Reborn in 21st Century Vehicles, Conference Proceedings. Rapra Technical Ltd; May 1999.
[2] Weidenfeller B, Ho¨fer M, Schilling F. Thermal and electrical properties of magnetite filled polymers. Composites: Part A 2002;33:1041–53.
[3] Weidenfeller B, Ho¨fer M, Schilling F. Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene. Composites: Part A 2004;35:423–9.
[4] Wong CP, Bollampally RS. Thermally conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J Appl Polym Sci 1999;74:3396–403.
[5] Lu X, Xu GJ. Thermally conductive polymer composites for electronic packaging. J Appl Polym Sci 1997;65:2733–8.
[6] Xu Y, Chung DDL, Mroz C. Thermally conducting aluminium nitride polymer-matrix composites. Composites: Part A 2001;32:1749–57.
[7] King JA, Tucker KW, Vogt BD, Weber EH, Quan C. Electrically and thermally conductive nylon 6.6. Polym Compos 1999;20(5):643–54.
[8] Yu S, Hing P, Hu X. Thermal conductivity of polystyrene-aluminum nitride composite. Composites: Part A 2002;33:289–92.
[9] Carslaw HS, Jaeger JC. Conduction of heat in solids. Oxford: Oxford University Press; 1986.
[10] Duifhuis P, Weidenfeller B, Ziegmann G. Funct Compd, Plast Eur 2001;11:42–4.
[11] Parker WJ, Jenkins RJ, Butler CP, Abbott GL. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys 1961;32:1679–83.
[12] Schilling FR. A transient technique to measure thermal diffusivity at elevated temperatures. Eur J Miner 1999;11:1115–24.
[13] Clauser C, Huenges E. Thermal conductivity of rocks and minerals. In: Ahrens TJ, editor. Rock physics and phase relations, a handbook of physical constants. American Geophysical Union Reference; 1995.
[14] Landolt-Bo¨rnstein. In: Madelung O, White GK, editors. Numerical data and functional relationships in science and technology, new series, group III: crystal and solid state physics, vol. 15. Metals: electronic transport phenomena, subvolume c: thermal conductivity of pure metals and alloys. Berlin: Springer; 1991.
[15] Gardon R. Thermal conductivity at low and moderated temperatures. In: Blazek A, editor. Review of thermal conductivity data in glass. International Commission on Glass; 1983.
[16] Weidenfeller B, Riehemann W, Lei Q. Mechanical spectroscopy of polymer-magnetite composites. Mater Sci Eng A 2004;370:
12