喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,所見(jiàn)即所得,CAD圖紙均為高清圖可自行編輯,文檔WORD都可以自己編輯的哦,有疑問(wèn)咨詢(xún)QQ:1064457796,,,課題后的【XX系列】為整理分類(lèi)用,與內(nèi)容無(wú)關(guān),請(qǐng)忽視
目 錄
摘 要 III
Abstract IV
1 緒論 1
1.1 懸架的功能 1
1.2 懸架的組成 1
1.3 懸架設(shè)計(jì)的基本要求 3
2 懸架結(jié)構(gòu)分析 4
2.1 懸架的分類(lèi) 4
2.2 懸架結(jié)構(gòu)形式的分析 4
2.3 獨(dú)立懸架的分類(lèi)與比較 5
2.4 懸架結(jié)構(gòu)的選擇 8
3 麥弗遜式獨(dú)立懸架 9
3.1 麥弗遜式獨(dú)立懸架的組成 9
3.2 麥弗遜式獨(dú)立懸架的優(yōu)缺點(diǎn) 9
3.3 麥弗遜式獨(dú)立懸架的應(yīng)用 10
4 懸架主要參數(shù)的確定 11
4.1 懸架靜撓度 11
4.2 懸架動(dòng)撓度 12
4.3 懸架的工作行程 12
4.4 懸架的彈性特性 12
5 懸架主要零件的設(shè)計(jì) 14
5.1 螺旋彈簧的設(shè)計(jì)計(jì)算 14
5.2 減振裝置的設(shè)計(jì)計(jì)算 17
5.3 導(dǎo)向機(jī)構(gòu)的設(shè)計(jì)計(jì)算 21
5.4 橫向穩(wěn)定桿的設(shè)計(jì)計(jì)算 26
6 麥弗遜式獨(dú)立懸架設(shè)計(jì)圖紙的繪制 28
6.1 麥弗遜式獨(dú)立懸架零件圖的繪制 28
6.2 麥弗遜式獨(dú)立懸架裝配圖的繪制 29
7 麥弗遜式獨(dú)立懸架零件的三維建模 30
8 麥弗遜式獨(dú)立懸架三維零件的有限元分析 36
8.1 有限元分析過(guò)程 36
8.2 結(jié)論 45
9 設(shè)計(jì)總結(jié) 46
參考文獻(xiàn) 47
致謝 48
I
轎車(chē)麥弗遜式前獨(dú)立懸架設(shè)計(jì)及有限元分析
摘 要
本文是針對(duì)捷達(dá)轎車(chē)前獨(dú)立懸架的設(shè)計(jì)。首先,通過(guò)對(duì)不同獨(dú)立懸架的結(jié)構(gòu)進(jìn)行比較分析,由此確定前懸架結(jié)構(gòu)為麥弗遜式獨(dú)立懸架。然后,對(duì)懸架的主要零件進(jìn)行整體的設(shè)計(jì)計(jì)算,重點(diǎn)介紹了彈性元件的設(shè)計(jì)校核、減振器的選型計(jì)算、導(dǎo)向機(jī)構(gòu)和橫向穩(wěn)定桿的計(jì)算等設(shè)計(jì)過(guò)程。根據(jù)設(shè)計(jì)結(jié)果,對(duì)麥弗遜式獨(dú)立懸架的零件圖和裝配圖進(jìn)行了二維圖紙的繪制。同時(shí),針對(duì)彈性元件螺旋彈簧進(jìn)行了三維建模及有限元分析。
關(guān)鍵詞:麥弗遜式獨(dú)立懸架;螺旋彈簧;有限元分析
II
The design of McPherson front independent suspension and finite element analysis on a car
Abstract
This article is in view of designing the front independent suspension of the Jetta car. First of all, through the analysis of the structure of different independent suspensions, I determined the front suspension is McPherson independent suspension. Then, I designed the main parts of it. In this processs, I focused on the introduction of the design and check of the elastic element, the selection and calculation of the shock absorber, and the calculation of the guiding mechanism and horizontal stabilizer rod. According to the results, I drew the two-dimension drawings of the part and assembly of McPherson independent suspension. At the same time, I carried out the three dimensional modeling and finite element analysis which focused on the helical spring.
Keywords: McPherson independent suspension; Helical spring; Finite element analysis
III
1 緒論
1.1 懸架的功能
懸架是汽車(chē)車(chē)架(或車(chē)身)與車(chē)軸(或車(chē)輪)之間一切傳力連接裝置的總稱(chēng),通常懸架在汽車(chē)上的布置如圖1.1所示。
圖1.1 懸架在汽車(chē)上的布置
懸架的功能主要有:
1)連接車(chē)架和車(chē)軸,并在車(chē)架和車(chē)軸之間傳遞一切作用力及力矩(包括反作用力和反力矩),保證汽車(chē)在道路上的正常行駛。
2)衰減并緩和不平路面對(duì)車(chē)身的振動(dòng)及沖擊,保證汽車(chē)道路行駛的平順性,從而提高汽車(chē)的乘坐舒適性。
3)對(duì)車(chē)輪相對(duì)車(chē)身的跳動(dòng)起導(dǎo)向作用,保證汽車(chē)獲得良好的操縱穩(wěn)定性。
懸架系統(tǒng)是現(xiàn)代汽車(chē)底盤(pán)上的重要總成之一,它在汽車(chē)上所起的主要功能是緊密相連的。為了迅速衰減緩和路面對(duì)車(chē)身的振動(dòng)及沖擊力,必須使懸架的剛度降低,但這樣做又會(huì)降低整車(chē)的操縱穩(wěn)定性。所以,必須找到二者之間的平衡點(diǎn),既能保證優(yōu)良的操縱穩(wěn)定性,又使其具備良好的行駛平順性。因此,懸架結(jié)構(gòu)形式和性能參數(shù)的選擇,將直接影響到汽車(chē)的行駛平順性、操縱穩(wěn)定性和乘坐舒適性。
1.2 懸架的組成
汽車(chē)懸架主要由彈性元件、減振裝置、導(dǎo)向機(jī)構(gòu)和橫向穩(wěn)定器等組成(如圖1.2所示)。
1.2.3 導(dǎo)向機(jī)構(gòu)
導(dǎo)向機(jī)構(gòu)由導(dǎo)向桿系組成,用來(lái)決定車(chē)輪相對(duì)于車(chē)架(或車(chē)身)的運(yùn)動(dòng)特性,并傳遞除彈性元件傳遞的垂直力以外的各種力和力矩。車(chē)輪相對(duì)于車(chē)架和車(chē)身跳動(dòng)時(shí),車(chē)輪(特別是轉(zhuǎn)向輪)的運(yùn)動(dòng)軌跡應(yīng)符合一定的要求。因此,懸架中某些傳力構(gòu)件同時(shí)還承擔(dān)著使車(chē)輪按一定軌跡相對(duì)于車(chē)架和車(chē)身跳動(dòng)的任務(wù),因而這些傳力構(gòu)件還起導(dǎo)向作用,故稱(chēng)導(dǎo)向機(jī)構(gòu)。
1.2.4 橫向穩(wěn)定器
在多數(shù)轎車(chē)和客車(chē)上,為防止車(chē)身在轉(zhuǎn)向行駛等情況下發(fā)生過(guò)大的橫向傾斜,在懸架中還會(huì)設(shè)有輔助彈性元件——橫向穩(wěn)定器。
橫向穩(wěn)定器實(shí)際是一根近似U型的桿件,兩端與車(chē)輪剛性連接,用來(lái)防止車(chē)身產(chǎn)生過(guò)大側(cè)傾。其原理是當(dāng)一側(cè)車(chē)輪的車(chē)身位移比另外一側(cè)大時(shí),穩(wěn)定桿開(kāi)始承受扭矩,因其自身剛性會(huì)限制這種傾斜,可有效防止因一側(cè)車(chē)輪遇障礙物時(shí)產(chǎn)生的跳動(dòng)。
1.3 懸架設(shè)計(jì)的基本要求
51
2 懸架結(jié)構(gòu)分析
2.1 懸架的分類(lèi)
根據(jù)懸架導(dǎo)向機(jī)構(gòu)形式的不同,懸架可分為兩大類(lèi):非獨(dú)立懸架和獨(dú)立懸架(如圖2.1所示)。
2.1.1 非獨(dú)立懸架
非獨(dú)立懸架的結(jié)構(gòu)特點(diǎn)是:兩側(cè)車(chē)輪由一根整體軸相連,再經(jīng)過(guò)懸架連接在車(chē)架或車(chē)身下方。這種結(jié)構(gòu)形式的懸架多用于大型客車(chē)、貨車(chē)等,使用范圍很廣。
圖2.1 懸架結(jié)構(gòu)分類(lèi)簡(jiǎn)圖
a) 非獨(dú)立懸架 b) 獨(dú)立懸架
2.1.2 獨(dú)立懸架
獨(dú)立懸架的結(jié)構(gòu)特點(diǎn)是:兩側(cè)車(chē)輪各自通過(guò)懸架連接在車(chē)架或車(chē)身下方,每個(gè)車(chē)輪都能獨(dú)立上、下運(yùn)動(dòng)。獨(dú)立懸架多用于轎車(chē)前、后懸架、輕型車(chē)及客車(chē)前懸架。
2.2 懸架結(jié)構(gòu)形式的分析
2.2.1 非獨(dú)立懸架優(yōu)缺點(diǎn)分析
非獨(dú)立懸架的優(yōu)點(diǎn):
1)結(jié)構(gòu)簡(jiǎn)單,容易制造且成本較低,具有可靠的工作性能,保養(yǎng)維修方便。
2)左、右車(chē)輪跳動(dòng)時(shí)相互牽連,輪胎的定位變化量小,輪胎磨損小。
非獨(dú)立懸架的缺點(diǎn):
1)非簧載質(zhì)量大,降低了平順性。同時(shí),車(chē)輪接地性變差,影響高速時(shí)的操縱穩(wěn)定性。
2)彈簧難以設(shè)計(jì)得較“軟”。
3)用于前輪時(shí),受車(chē)軸跳動(dòng)和車(chē)輪陀螺效應(yīng)影響,車(chē)頭易出現(xiàn)“跳擺”現(xiàn)象。
2.2.2 獨(dú)立懸架優(yōu)缺點(diǎn)分析
獨(dú)立懸架的優(yōu)點(diǎn):
1)非簧載質(zhì)量小,有利于行駛平順性。同時(shí),車(chē)輪接地性較好,有利于操縱穩(wěn)定性。
2)可用較軟的彈簧,改善汽車(chē)平順性。
3)當(dāng)用于轉(zhuǎn)向輪時(shí),由于左、右輪不連在一根軸上,可減小轉(zhuǎn)向桿系的運(yùn)動(dòng)干涉,使“跳擺”現(xiàn)象不易發(fā)生。
4)由于有效彈簧距等于輪距,有利于提高橫向角鋼度,減少側(cè)傾。
5)在不平路面上行駛時(shí),容易獲得較大的動(dòng)行程,減少懸架“擊穿”的機(jī)率。
獨(dú)立懸架的缺點(diǎn):
1)結(jié)構(gòu)更為復(fù)雜,制造的成本高。
2)左、右車(chē)輪跳動(dòng)時(shí),因?yàn)檐?chē)輪外傾角和輪距變化較大,輪胎磨損較大。
2.2.3 懸架結(jié)構(gòu)方案的選擇
現(xiàn)代汽車(chē)針對(duì)懸架結(jié)構(gòu)形式的不同,主要采用的設(shè)計(jì)方案有如下幾種:
1) 前、后輪均采用獨(dú)立懸架;
2) 前輪采用獨(dú)立懸架,后輪采用非獨(dú)立懸架;
3) 前、后輪均采用非獨(dú)立懸架。
由于本設(shè)計(jì)主要針對(duì)轎車(chē)前懸架展開(kāi)設(shè)計(jì),故選擇采用獨(dú)立懸架作為設(shè)計(jì)對(duì)象。
2.3 獨(dú)立懸架的分類(lèi)與比較
獨(dú)立懸架根據(jù)結(jié)構(gòu)形式的不同,又可以分為雙橫臂式、單橫臂式、雙縱臂式、單縱臂式、單斜臂式、麥弗遜式和扭轉(zhuǎn)梁隨動(dòng)臂式等幾種類(lèi)型。
不同的獨(dú)立懸架具有不同的結(jié)構(gòu)特點(diǎn),并且在基本特性上也存在各自的優(yōu)劣。通常對(duì)于獨(dú)立懸架的評(píng)價(jià),主要從側(cè)傾中心高度、車(chē)輪定位參數(shù)的變化、懸架側(cè)傾角剛度、橫向剛度、懸架占用的空間尺寸大小等評(píng)價(jià)指標(biāo)出發(fā),進(jìn)行分析比較。
2.4 懸架結(jié)構(gòu)的選擇
麥弗遜式獨(dú)立懸架與其他傳統(tǒng)的獨(dú)立懸架相比,具有結(jié)構(gòu)簡(jiǎn)單,占用空間小,使用性能高,成本低廉,質(zhì)量輕等優(yōu)點(diǎn)。目前,由于發(fā)動(dòng)機(jī)前置前驅(qū)轎車(chē)的空間布置要求較高,需要懸架系統(tǒng)滿(mǎn)足占用空間小的特點(diǎn),故此類(lèi)轎車(chē)幾乎全部采用了麥弗遜式獨(dú)立懸架作為汽車(chē)前懸架。
本設(shè)計(jì)針對(duì)的車(chē)型是發(fā)動(dòng)機(jī)前置前驅(qū)的轎車(chē),因此,選擇麥弗遜式獨(dú)立懸架作為設(shè)計(jì)對(duì)象。
3 麥弗遜式獨(dú)立懸架
在眾多獨(dú)立懸架系統(tǒng)中,麥弗遜式獨(dú)立懸架的應(yīng)用最為廣泛,它主要以結(jié)構(gòu)緊湊、制造成本低、舒適度高等優(yōu)點(diǎn)獲得汽車(chē)行業(yè)的認(rèn)可。作為一款常見(jiàn)的獨(dú)立懸架形式,麥弗遜式獨(dú)立懸架大多被應(yīng)用在汽車(chē)前輪。
3.1 麥弗遜式獨(dú)立懸架的組成
麥弗遜式獨(dú)立懸架主要由減振器、螺旋彈簧、橫擺臂組成,絕大部分車(chē)型還會(huì)加上橫向穩(wěn)定桿(如圖3.1所示)。
圖3.1 麥弗遜式獨(dú)立懸架結(jié)構(gòu)圖
1-螺旋彈簧;2-減振器;3-橫擺臂;4-橫向穩(wěn)定桿
麥弗遜式獨(dú)立懸架的物理結(jié)構(gòu)為支柱式減振器兼作主銷(xiāo),承受來(lái)自于車(chē)身抖動(dòng)和地面沖擊的上下預(yù)應(yīng)力,轉(zhuǎn)向節(jié)則沿著主銷(xiāo)轉(zhuǎn)動(dòng);此外,其主銷(xiāo)可擺動(dòng),特點(diǎn)是主銷(xiāo)位置和前輪定位角隨車(chē)輪的上下跳動(dòng)而變化,且前輪定位變化小,擁有良好的行駛穩(wěn)定性。在麥弗遜式獨(dú)立懸架中,支柱式減振器除具備減振效果外,還要擔(dān)負(fù)起支撐車(chē)身的作用,所以它的結(jié)構(gòu)必須緊湊且剛度足夠,并且套上螺旋彈簧后還要能減振,而螺旋彈簧彈簧與減振器一起,構(gòu)成了一個(gè)可以上下運(yùn)動(dòng)的滑動(dòng)立柱。橫擺臂的作用是為車(chē)輪提供橫向支撐力,并能承受來(lái)自前后方向的預(yù)應(yīng)力。車(chē)輛在運(yùn)動(dòng)過(guò)程中,車(chē)輪所承受的所有方向的沖擊力量就要靠支柱減振器和橫擺臂這兩個(gè)部件承擔(dān)。
3.2 麥弗遜式獨(dú)立懸架的優(yōu)缺點(diǎn)
麥弗遜式獨(dú)立懸架有如下優(yōu)點(diǎn):結(jié)構(gòu)簡(jiǎn)單緊湊,占用空間小,成本低廉,質(zhì)量輕,擁有良好的行駛平順性和操控穩(wěn)定性。
其缺點(diǎn)主要有:汽車(chē)轉(zhuǎn)向時(shí),會(huì)出現(xiàn)較為明顯的側(cè)傾;汽車(chē)制動(dòng)時(shí),會(huì)出現(xiàn)較為明顯的點(diǎn)頭現(xiàn)象;耐用性不高,減振器易漏油需定期更換。
3.3 麥弗遜式獨(dú)立懸架的應(yīng)用
自發(fā)明之日起,麥弗遜式獨(dú)立懸架系統(tǒng)就憑借其結(jié)構(gòu)簡(jiǎn)單、制造成本低、質(zhì)量輕便、舒適度高等突出優(yōu)點(diǎn),在汽車(chē)市場(chǎng)迅速占領(lǐng)了一席之地。許多名系車(chē),比如保時(shí)捷、寶馬等,都選擇采用麥弗遜式獨(dú)立懸架系統(tǒng)作為汽車(chē)的前懸架。甚至某些曾使用其他獨(dú)立懸架的車(chē)型,比如馬自達(dá)、第九代雅閣等,在更新?lián)Q代時(shí)都改用麥弗遜式獨(dú)立懸架,這都突出了麥弗遜式獨(dú)立懸架的優(yōu)越性和出眾性。
在國(guó)內(nèi)市場(chǎng),麥弗遜式獨(dú)立懸架作為眾多車(chē)型的首選懸架,多應(yīng)于中小型轎車(chē),如夏利、富康、桑塔納、國(guó)產(chǎn)奧迪等轎車(chē)。其中以麥弗遜式獨(dú)立懸架作為汽車(chē)前懸架的新車(chē)型主要有現(xiàn)代IX35、比亞迪F0、高爾夫6、別克新君威、新君越等車(chē)型。
麥弗遜式懸架因其性能優(yōu)越的緣故,被業(yè)內(nèi)譽(yù)為經(jīng)典設(shè)計(jì)。無(wú)論是小型車(chē)、中型車(chē),還是跑車(chē)、SUV,都可以看到它的身影,這足以表明麥弗遜式獨(dú)立懸架應(yīng)用范圍之廣。
4 懸架主要參數(shù)的確定
本設(shè)計(jì)是針對(duì)捷達(dá)轎車(chē)前獨(dú)立懸架的設(shè)計(jì)。捷達(dá)轎車(chē)整車(chē)性能參數(shù)如表4.1所示。
表4.1捷達(dá)轎車(chē)整車(chē)性能參數(shù)
驅(qū)動(dòng)形式
42前輪
軸距(mm)
2471
前輪距(mm)
1429
后輪距(mm)
1422
整備質(zhì)量(kg)
1060
空載前軸軸載質(zhì)量(kg)
636
空載后軸軸載質(zhì)量(kg)
424
滿(mǎn)載質(zhì)量(kg)
1435
滿(mǎn)載前軸軸載質(zhì)量(kg)
775
滿(mǎn)載后軸軸載質(zhì)量(kg)
660
最高車(chē)速
180km/h
最大爬坡度
35%
制動(dòng)距離(初速30km/h)
5.6m
最小轉(zhuǎn)向直徑
11m
最大功率/轉(zhuǎn)速
74/5800kW/rpm
最大轉(zhuǎn)矩/轉(zhuǎn)速
150/4000N·m/rpm
輪胎型號(hào)
185/60R14T
變速器
手動(dòng)5檔
4.1 懸架靜撓度
懸架靜撓度指的是汽車(chē)在滿(mǎn)載靜止?fàn)顟B(tài)下,懸架所受的載荷與懸架自身剛度之比,即。
影響汽車(chē)行駛平順性的主要參數(shù)之一是懸架的固有頻率(亦稱(chēng)偏頻),偏頻主要由懸架剛度與其簧上質(zhì)量組成,可用下式表示:
式中,為前懸架剛度;為前懸架簧上質(zhì)量;為前懸架偏頻。
當(dāng)懸架的彈性特性為線性特性時(shí),懸架的靜撓度可用下式表示:
由兩式可得:
對(duì)發(fā)動(dòng)機(jī)排量在1.6L以下的乘用車(chē),前懸架滿(mǎn)載偏頻要求在,本課題針對(duì)的是發(fā)動(dòng)機(jī)排量為1.4L的乘用轎車(chē),故取前懸架偏頻。
由式可算得前懸架的靜撓度為
4.2 懸架動(dòng)撓度
懸架動(dòng)撓度指的是汽車(chē)從滿(mǎn)載靜止?fàn)顟B(tài)開(kāi)始,懸架結(jié)構(gòu)被壓縮至允許的最大變形時(shí),車(chē)輪中心相對(duì)于車(chē)架在垂直方向上的位移。
對(duì)于乘用轎車(chē),??;對(duì)于客車(chē),取;對(duì)于貨車(chē),取。
此課題針對(duì)的是乘用轎車(chē),故取懸架動(dòng)撓度
4.3 懸架的工作行程
懸架靜撓度與動(dòng)撓度之和稱(chēng)為懸架的工作行程。對(duì)于常見(jiàn)的乘用轎車(chē)來(lái)說(shuō),懸架的工作行程應(yīng)當(dāng)不小于。
由計(jì)算可知,故本設(shè)計(jì)的懸架工作行程在合理的范圍內(nèi),滿(mǎn)足設(shè)計(jì)要求
4.4 懸架的彈性特性
懸架的彈性特性是指懸架的變形與懸架受到的垂直外力之間的關(guān)系曲線。其切線的斜率表示懸架的剛度。
懸架的彈性特性主要分為以下兩種:線性彈性特性和非線性彈性特性。
當(dāng)懸架變形與受到的垂直外力之間成固定比例變化時(shí),懸架的彈性特性曲線為一條直線,稱(chēng)為線性彈性特性,此時(shí),懸架剛度為常數(shù)。
5 懸架主要零件的設(shè)計(jì)
5.1 螺旋彈簧的設(shè)計(jì)計(jì)算
5.1.1 彈簧材料的選擇
螺旋彈簧作為彈性元件中較為常見(jiàn)的一種,具有結(jié)構(gòu)緊湊、質(zhì)量輕巧、制造方便及單位體積貯存的彈性變形能(比能容量)大的特點(diǎn),在轎車(chē)和廂式客車(chē)上運(yùn)用普遍。
常用的螺旋彈簧材料主要有、及等。為提高彈簧在交變載荷下的疲勞壽命,本設(shè)計(jì)選擇60Si2MnA作為彈簧材料。
5.1.2 彈簧參數(shù)的計(jì)算
由于目前大部分汽車(chē)的質(zhì)量分配系數(shù)在數(shù)值上近似等于,表明汽車(chē)前、后車(chē)軸上的車(chē)身集中質(zhì)量的垂直振動(dòng)各自獨(dú)立,并以偏頻表示自由振動(dòng)頻率。若偏頻越小,表示汽車(chē)行駛平順性越好。對(duì)于采用鋼制彈簧作為懸架彈性元件的轎車(chē),前懸架的偏頻一般在,這與人體步行時(shí)的自然頻率非常接近。
設(shè)計(jì)時(shí)取前懸架的偏頻,根據(jù)下面的公式可計(jì)算出前懸架的剛度:
式中,為前懸架剛度;為前懸架簧上質(zhì)量;為前懸架偏頻。
由已知的前懸架滿(mǎn)載時(shí)軸載質(zhì)量為,可估算得到前懸架簧下質(zhì)量為,則單側(cè)簧上質(zhì)量為:
,代入計(jì)算得
1) 彈簧絲直徑
按滿(mǎn)載計(jì)算彈簧絲直徑,由下式可以算得:
(5-2)
式中,——前懸架剛度
——彈簧中徑,取
——彈簧有效圈數(shù),暫取
——剪切彈性模數(shù),取
代入計(jì)算得
2) 彈簧指數(shù)(旋繞比)
彈簧指數(shù)與彈簧的加工工藝緊密相聯(lián)。通常來(lái)說(shuō),當(dāng)彈簧指數(shù)越小,造成的彈簧曲率會(huì)越大,使得彈簧的卷制越困難。根據(jù)經(jīng)驗(yàn),彈簧指數(shù)和彈簧中徑、彈簧絲直徑的關(guān)系如式(5-3)所示:
(5-3)
值一般在范圍內(nèi),由已知可算得,滿(mǎn)足區(qū)間范圍。
3) 彈簧端部結(jié)構(gòu)
一般來(lái)講,當(dāng)彈簧指數(shù)落在范圍之間時(shí),彈簧端部最好磨平;在10~15之間時(shí),端部可磨平,也可不磨平;大于時(shí)可不磨平。本設(shè)計(jì)彈簧端部結(jié)構(gòu)選擇兩端圈并緊,端圈不磨平。
4) 彈簧圈數(shù)
(5-4)
彈簧有效圈數(shù)根據(jù)表5.1推薦數(shù)位選取,選擇
表5.1 彈簧的有效圈數(shù)系列
2
2.25
2.5
2.75
3
3.25
3.5
3.75
4
4.25
4.5
4.75
5
5.5
6
6.5
7
7.5
8
8.5
9
9.5
10
10.5
11
11.5
12.5
13.5
14.5
15
16
18
20
22
25
28
30
支承圈數(shù)取決于端圈結(jié)構(gòu)形式(見(jiàn)表5.2)。兩端均選支承圈數(shù)
表5.2 支承圈圈數(shù)
端面結(jié)構(gòu)
兩端圈并緊
兩端圈不并緊
端圈磨平
端圈不磨平
端面磨3/4圈
端圈不磨平
支承圈數(shù)
或
或
彈簧總?cè)?shù)
5) 彈簧節(jié)距和螺旋角
螺旋彈簧節(jié)距的范圍一般在,本設(shè)計(jì)取
對(duì)應(yīng)的螺旋角范圍在,本設(shè)計(jì)取
6) 彈簧高度
5.1.4 確定彈簧參數(shù)
根據(jù)以上計(jì)算結(jié)果,確定彈簧尺寸參數(shù)如表5.3所示。
表5.3 螺旋彈簧尺寸參數(shù)
彈簧絲直徑
10
彈簧中徑
110
彈簧內(nèi)徑
100
彈簧外徑
120
有效圈數(shù)
8
支承圈數(shù)
1.5
總?cè)?shù)
9.5
自由高度
290
節(jié)距
33
螺旋角
7
5.2 減振裝置的設(shè)計(jì)計(jì)算
5.2.1 減振器的分類(lèi)
根據(jù)作用形式的不同,減振器大體上可以分成兩大類(lèi):摩擦式減振器和液力式減振器。
摩擦式減振器通過(guò)利用兩個(gè)緊壓在一起的摩擦盤(pán)片之間相對(duì)運(yùn)動(dòng)時(shí)的摩擦力來(lái)提供阻尼。但是,由于庫(kù)侖摩擦力會(huì)隨相對(duì)運(yùn)動(dòng)速度的提高而減小,并且很容易受到油、水等外界條件的影響,無(wú)法充分滿(mǎn)足平順性的要求。因此,雖然摩擦式減振器具有質(zhì)量小、造價(jià)低、易調(diào)整等優(yōu)點(diǎn),但是現(xiàn)代汽車(chē)上已淘汰使用此類(lèi)減振器。
減振器工作過(guò)程中產(chǎn)生的熱量主要靠貯油缸筒3散發(fā)。減振器的工作溫度通常高達(dá)120攝氏度,有時(shí)甚至可達(dá)200攝氏度。為方便提供溫度升高后油液膨脹的空間,減振器的油液不能加得太滿(mǎn),一般在補(bǔ)償腔中油液高度應(yīng)達(dá)到缸筒長(zhǎng)度的一半,以防止低溫或減振器傾斜的情況下,在極限伸張位置時(shí)空氣經(jīng)油封7進(jìn)入補(bǔ)償腔C甚至經(jīng)閥Ⅲ吸入工作腔A,造成油液乳化,影響減振器的工作性能。
5.2.3 減振器參數(shù)的計(jì)算
1) 相對(duì)阻尼系數(shù)
汽車(chē)懸架有阻尼以后,簧上質(zhì)量的振動(dòng)是周期衰減振動(dòng),用相對(duì)阻尼系數(shù)的大小來(lái)評(píng)定振動(dòng)衰減的快慢程度。的表達(dá)式為
(5-7)
式中,為懸架系統(tǒng)的垂直剛度;為簧上質(zhì)量。
式(5-7)表明,相對(duì)阻尼系數(shù)的物理意義是:減振器的阻尼作用在與不同剛度和不同簧上質(zhì)量的懸架系統(tǒng)匹配時(shí),會(huì)產(chǎn)生不同的阻尼效果。值大,振動(dòng)能迅速衰減,同時(shí)又能將較大的路面沖擊力傳到車(chē)身;值小則反之。壓縮行程的相對(duì)阻尼系數(shù)和伸張行程的相對(duì)阻尼系數(shù),兩者之間保持有的關(guān)系。
設(shè)計(jì)時(shí),先選取與的平均值。對(duì)無(wú)內(nèi)摩擦的彈性元件懸架,??;對(duì)有內(nèi)摩擦的彈性元件懸架,值取小些。為避免懸架碰撞車(chē)架,取。
先取,則
計(jì)算得,
2) 減振器阻尼系數(shù)的確定
減振器阻尼系數(shù)。因懸架系統(tǒng)固有頻率,所以理論上。實(shí)際上,應(yīng)根據(jù)減振器的布置特點(diǎn)確定減振器的阻尼系數(shù)。
圖5.2 減振器安裝位置
本設(shè)計(jì)選擇如圖5.2所示的安裝形式,其阻尼系數(shù)為
(5-8)
式中,為雙橫臂懸架的下臂長(zhǎng);為減振器在下橫臂上的連接點(diǎn)到下橫臂在車(chē)身上的鉸接點(diǎn)之間的距離;為減振器軸線與鉛垂線之間的夾角。
根據(jù)公式,可得出:
按滿(mǎn)載時(shí)計(jì)算的前懸剛度
按滿(mǎn)載時(shí)計(jì)算的簧上質(zhì)量,代入數(shù)據(jù)得,取,
代入數(shù)據(jù)得減振器的阻尼系數(shù)為:
3) 最大卸荷力的確定
為減小傳到車(chē)身上的沖擊力,當(dāng)減振器活塞振動(dòng)速度達(dá)到一定值時(shí),減振器打開(kāi)卸荷閥,此時(shí)的活塞速度稱(chēng)為卸荷速度。當(dāng)減振器按圖5.2所示安裝時(shí)有
(5-9)
式中,為卸荷速度,一般為;為車(chē)身振幅,??;為懸架振動(dòng)固有頻率。
代入數(shù)據(jù)計(jì)算得卸荷速度為:
符合在之間的范圍要求
伸張行程最大卸荷力公式: (5-10)
式中,是沖擊載荷系數(shù),取。代入數(shù)據(jù)可得最大卸荷力為:
4) 減振器工作缸直徑D的確定
根據(jù)伸張行程的最大卸荷力計(jì)算工作缸直徑為:
(5-11)
式中,——工作缸最大允許壓力,在之間,取
——連桿直徑與缸筒直徑之比,,取
代入數(shù)據(jù)計(jì)算得:
常用的減振器工作缸直徑的選型有如下幾種尺寸:、、、、、等。設(shè)計(jì)時(shí)選取值按標(biāo)準(zhǔn)選用,具體尺寸數(shù)值見(jiàn)表5.4
表5.4 減振器工作缸尺寸數(shù)值
工作缸直徑
基長(zhǎng)
貯油直徑
吊環(huán)直徑
吊環(huán)直徑寬度
活塞行程
30
110 (120)
44(47)
29
24
230、240、250、260、270、280
40
140(150)
54
39
32
120、130、140、150、270、280
50
170(180)
70(75)
47
40
120、130、140、150、160、170、180
65
210
210
62
50
120、130、140、150、160、170、180、190
根據(jù)推薦數(shù)值,選取工作缸直徑為的減振器,對(duì)照上表選擇其他尺寸:活塞行程,基長(zhǎng),則:
(壓縮到底的長(zhǎng)度)
(拉伸最長(zhǎng)的長(zhǎng)度)
選取貯油缸直徑,壁厚取,材料選20鋼。
5.3 導(dǎo)向機(jī)構(gòu)的設(shè)計(jì)計(jì)算
5.3.1 導(dǎo)向機(jī)構(gòu)的設(shè)計(jì)要求
針對(duì)汽車(chē)獨(dú)立懸架系統(tǒng)導(dǎo)向機(jī)構(gòu)的設(shè)計(jì),對(duì)汽車(chē)前輪導(dǎo)向機(jī)構(gòu)提出如下幾點(diǎn)設(shè)計(jì)要求:
1)保證當(dāng)汽車(chē)轉(zhuǎn)彎行駛時(shí),車(chē)身的側(cè)傾角度小,并使車(chē)輪與車(chē)身的傾斜同向,以增強(qiáng)不足的轉(zhuǎn)向效應(yīng)。
2)保證前輪的定位參數(shù)隨著作用在懸架上的載荷值變化時(shí),仍保持合理的變化特性,從而避免車(chē)輪產(chǎn)生縱向加速度影響行駛穩(wěn)定性。
3)保證輪距的變化量隨著加載在懸架上的載荷值變化時(shí),不超過(guò),從而避免因輪距變化過(guò)大引起的輪胎早期磨損。
4)保證車(chē)身在制動(dòng)時(shí)獲得抗前傾作用,加速時(shí)獲得抗后仰作用。
另外,導(dǎo)向機(jī)構(gòu)的設(shè)計(jì)還應(yīng)滿(mǎn)足足夠的強(qiáng)度條件,以便能可靠傳遞除垂直力以外的其他力和力矩。
5.3.2 麥弗遜式獨(dú)立懸架導(dǎo)向機(jī)構(gòu)的參數(shù)布置
1) 側(cè)傾中心
側(cè)傾中心的定位方法如下:由懸架與車(chē)身的固定連接點(diǎn)作減振器活塞桿運(yùn)動(dòng)方向的垂線,同時(shí)將下擺臂線延長(zhǎng),兩線交點(diǎn)即為極點(diǎn)。將極點(diǎn)與車(chē)輪接地點(diǎn)的兩點(diǎn)連線交于車(chē)軸線上,該交點(diǎn)即為側(cè)傾中心,如圖5.3所示。
圖5.3懸架側(cè)傾中心確定示意圖
由圖5.3可以看出,當(dāng)懸架下擺臂的布置位置越接近水平,減振器軸線的布置位置越接近垂直時(shí),相應(yīng)的側(cè)傾中心就會(huì)越接近地面,這會(huì)造成當(dāng)車(chē)輪向上跳動(dòng)時(shí),車(chē)輪外傾角的變化不理想。
麥弗遜式獨(dú)立懸架的側(cè)傾中心高度為
(5-12)
式中,(5-13)
本設(shè)計(jì)中的輪胎規(guī)格如表5.5所示。
表5.5 輪胎規(guī)格
輪胎型號(hào)
名義斷面寬度
名義斷面高度
輪胎外徑
輪胎內(nèi)徑
最高行駛速度
185/60R14T
185
111
582
360
190
按滿(mǎn)載狀態(tài)設(shè)計(jì):
取,,,通過(guò)計(jì)算求得彈簧自由高度,減振器拉伸至最長(zhǎng)長(zhǎng)度,故取
代入式(5-13),計(jì)算可得
已知車(chē)身寬度,斷面寬度,可求得
滿(mǎn)足在獨(dú)立懸架中前懸架的側(cè)傾中心高度范圍。
2) 側(cè)傾軸線
側(cè)傾軸線指的是汽車(chē)前懸架與后懸架的側(cè)傾中心連線。對(duì)側(cè)傾軸線的布置要求主要是:應(yīng)設(shè)置成與地面大致平行,且盡可能高于地面。前者是為了保證汽車(chē)在曲線行駛時(shí),前、后軸上的軸荷變化量接近相等,進(jìn)而保證轉(zhuǎn)向特性;后者是為了使車(chē)身的側(cè)傾限值制在允許范圍內(nèi)。對(duì)于獨(dú)立懸架的側(cè)傾中心高度,一般設(shè)定為:前懸架;后懸架。
3) 縱傾中心
由懸架與車(chē)身的固定連接點(diǎn)作減振器運(yùn)動(dòng)方向的垂線,該垂直線與橫臂軸延長(zhǎng)線的交點(diǎn)即為縱傾中心,如圖5.4所示。
圖5.4 懸架縱傾中心確定示意圖
4) 抗制動(dòng)縱傾性
當(dāng)汽車(chē)制動(dòng)時(shí),抗制動(dòng)縱傾性的功用是減小車(chē)頭下沉量及車(chē)尾抬高量。這一性能的實(shí)現(xiàn)需保證汽車(chē)前、后懸架的縱傾中心位于兩車(chē)軸之間。
5) 抗驅(qū)動(dòng)縱傾性
當(dāng)汽車(chē)單橋驅(qū)動(dòng)時(shí),抗驅(qū)動(dòng)縱傾性的功用是可減小后驅(qū)車(chē)車(chē)的下沉量或前驅(qū)車(chē)車(chē)頭抬高量。對(duì)于獨(dú)立懸架,這一性能的實(shí)現(xiàn)需保證汽車(chē)縱傾中心高于驅(qū)動(dòng)橋車(chē)輪中心。
6) 橫擺臂定位角
橫擺臂的空間定位角主要有:水平斜置角,初始斜置角,懸架抗前傾角。
本設(shè)計(jì)的橫擺臂長(zhǎng)度參數(shù)如圖5.8所示。
圖5.8 橫擺臂設(shè)計(jì)示意圖
5.4 橫向穩(wěn)定桿的設(shè)計(jì)計(jì)算
5.4.1 橫向穩(wěn)定桿的工作原理
橫向穩(wěn)定桿是汽車(chē)懸架中的一種輔助彈性元件。它是用彈簧鋼制成的扭桿彈簧,形狀呈“U”形,與左右懸架的下托臂或減振器滑柱相連,一般橫置在汽車(chē)懸架的前端,如圖5.9所示。
橫向穩(wěn)定桿的作用是防止車(chē)身在轉(zhuǎn)彎時(shí)發(fā)生過(guò)大的橫向側(cè)傾,使車(chē)身盡量保持平衡,即減少汽車(chē)橫向側(cè)傾程度和改善平順性。當(dāng)車(chē)身只作垂直運(yùn)動(dòng)時(shí),兩側(cè)懸架變形相同,橫向穩(wěn)定桿不發(fā)生扭轉(zhuǎn),不起作用;當(dāng)車(chē)輛轉(zhuǎn)彎時(shí),車(chē)身側(cè)傾,兩側(cè)懸架跳動(dòng)不一致,此時(shí)外側(cè)懸架會(huì)壓向穩(wěn)定桿,穩(wěn)定桿發(fā)生扭曲,桿身的彈力會(huì)阻止車(chē)輪抬起,從而使車(chē)身盡量保持平衡,起到橫向穩(wěn)定的作用。
圖5.9 麥弗遜式獨(dú)立懸架中的橫向穩(wěn)定桿
5.4.2 橫向穩(wěn)定桿的應(yīng)用
在汽車(chē)懸架系統(tǒng)中采用橫向穩(wěn)定桿結(jié)構(gòu),可提高懸架側(cè)傾角剛度,減少車(chē)身傾角,以提高汽車(chē)的行駛穩(wěn)定性。
根據(jù)實(shí)際需要可以在前、后懸架上單獨(dú)或同時(shí)安裝橫向穩(wěn)定桿。設(shè)計(jì)橫向穩(wěn)定桿時(shí),除了要考慮整車(chē)總的側(cè)傾角剛度外,還應(yīng)考慮前后懸架的側(cè)傾角剛度之比。通常,為使汽車(chē)有不足的轉(zhuǎn)向特性,應(yīng)使前懸架的側(cè)傾角剛度比后懸架稍大些。因此,大多數(shù)車(chē)型都是在前懸架安裝橫向穩(wěn)定桿,如圖5.10所示。
圖5.10 獨(dú)立懸架中橫向穩(wěn)定桿的安裝形式
一般是根據(jù)橫向穩(wěn)定桿的設(shè)計(jì)應(yīng)力選擇材料,目前國(guó)內(nèi)使用比較多的是60Si2MnA材料。通常為提高橫向穩(wěn)定桿的使用壽命,應(yīng)進(jìn)行噴丸處理。
5.4.2 橫向穩(wěn)定桿的參數(shù)選擇
根據(jù)橫向穩(wěn)定桿設(shè)計(jì)的參考數(shù)據(jù)和設(shè)計(jì)要求,確定橫向穩(wěn)定桿的尺寸參數(shù)如下:桿的直徑,桿長(zhǎng),,,,,圓角半徑。(如圖5.11所示)
圖5.11 橫向穩(wěn)定桿設(shè)計(jì)示意圖
6 麥弗遜式獨(dú)立懸架設(shè)計(jì)圖紙的繪制
6.1 麥弗遜式獨(dú)立懸架零件圖的繪制
1) 螺旋彈簧零件圖(如圖6.1所示)
圖6.1 螺旋彈簧零件圖
2) 減振器零件圖(如圖6.2所示)
圖6.2 雙筒式液力減振器零件圖
(零件圖具體繪制情況詳見(jiàn)附件)
6.2 麥弗遜式獨(dú)立懸架裝配圖的繪制
1) 麥弗遜式獨(dú)立懸架二維裝配圖(如圖6.3所示)
圖6.3 麥弗遜式獨(dú)立懸架二維裝配示意圖
2) 麥弗遜式獨(dú)立懸架三維裝配圖(如圖6.4所示)
圖6.4 麥弗遜式獨(dú)立懸架三維裝配示意圖
(裝配圖具體繪制情況詳見(jiàn)附件)
7 麥弗遜式獨(dú)立懸架零件的三維建模
本設(shè)計(jì)主要針對(duì)麥弗遜式獨(dú)立懸架的彈性元件——螺旋彈簧,進(jìn)行Pro/E的三維建模。
步驟1:新建零件文件
1) 單擊“新建”按鈕,彈出“新建”對(duì)話(huà)框。默認(rèn)“類(lèi)型”選項(xiàng)為“零件”、“子實(shí)體”選項(xiàng)為“實(shí)體”;在“名稱(chēng)”文本框中輸入“”;清除“使用缺省模板”復(fù)選框;單擊確定。(如圖7.1所示)
2) 彈出“新文件選項(xiàng)”對(duì)話(huà)框,在“模板”選項(xiàng)組中,選擇選項(xiàng),單擊確定。(如圖7.2所示)
圖7.1 新建實(shí)體零件文件 圖7.2 選擇模板
步驟2: 創(chuàng)建彈簧主體
1) 在菜單欄中選擇“插入—螺旋掃描—伸出項(xiàng)”命令,打開(kāi)“伸出項(xiàng):螺旋掃描”對(duì)話(huà)框和菜單管理器。(如圖7.3所示)
圖7.3 選擇螺旋掃描命令 圖7.4 定義彈簧屬性
2) 在菜單管理器的“屬性菜單中”選擇“可變的—穿過(guò)軸—右手定則—完成”選項(xiàng)。(如圖7.4所示)
3) 選擇基TOP準(zhǔn)平面,繪制彈簧輪廓線草圖,實(shí)線由3段線段組成(如圖7.5所示),單擊按鈕(繼續(xù)當(dāng)前部分)。
圖7.5 繪制彈簧輪廓線草圖
4) 在尺寸框中輸入起始點(diǎn)的節(jié)距值為15,單擊 (接受)按鈕;
在尺寸框中輸入軌跡末端的節(jié)距值為15,單擊 (接受)按鈕;
5) 在軌跡上單擊第2點(diǎn),在尺寸框中輸入第2點(diǎn)的節(jié)距值為33,單擊 (接受)按鈕;在軌跡上單擊第3點(diǎn),在尺寸框中輸入第3點(diǎn)的節(jié)距值為33,單擊 (接受)按鈕;此時(shí),控制曲線窗口如圖(如圖7.6所示)。
圖7.6 控制曲線窗口
6) 在菜單管理器的“定義控制曲線”菜單中,選擇“完成/返回”選項(xiàng),接著再“控制曲線”菜單中選擇“完成”選項(xiàng)。
7) 繪制彈簧絲剖面,如圖7.7所示,單擊按鈕(繼續(xù)當(dāng)前部分)。
圖7.7 繪制彈簧絲剖面
8) 在“伸出項(xiàng):螺旋掃描”對(duì)話(huà)框中,單擊“確定”按鈕,創(chuàng)建的螺旋彈簧主體如圖7.8所示。
圖7.8 創(chuàng)建的螺旋彈簧主體
步驟3: 對(duì)彈簧長(zhǎng)度尺寸設(shè)置關(guān)系式
1) 在菜單欄中選擇“工具—關(guān)系”命令,打開(kāi)“關(guān)系”窗口,選擇“零件”選項(xiàng)。
2) 在模型窗口中單擊螺旋掃描特征,出現(xiàn)菜單管理器,選擇“輪廓”復(fù)選框,接著選擇“完成”選項(xiàng)。此時(shí),在彈簧模型中顯示出螺旋掃描的輪廓尺寸。
3) 在“關(guān)系”窗口的文本框中輸入關(guān)系式,如圖7.9所示,單擊“確定”按鈕。
圖7.9 顯示輪廓尺寸輸入關(guān)系式
步驟4: 切平彈簧
1) 單擊(拉伸工具)按鈕,在拉伸工具操控板上指定創(chuàng)建模型特征為“實(shí)體”,單擊“去除材料”按鈕。
2) 單擊“草繪”按鈕,繪制如圖7.10所示的草圖
圖7.10 繪制草圖
3) 在菜單欄中選擇“工具—關(guān)系”命令,打開(kāi)“關(guān)系”窗口在“關(guān)系”,在窗口的文本框中輸入關(guān)系式,如圖7.11所示,單擊“確定”按鈕。
圖7.11 設(shè)置尺寸關(guān)系式
4) 打開(kāi)拉伸工具操控板,將深度選項(xiàng)設(shè)置為“穿透”,將材料的拉伸方向更改為“草繪的另一側(cè)”,單擊 (接受)按鈕,切平兩端的螺旋彈簧如圖7.12所示。
圖7.12 切平效果
步驟5: 添加彈簧底座
1) 單擊(拉伸工具)按鈕,在拉伸工具操控板上指定創(chuàng)建模型特征為“實(shí)體”,單擊“草繪”按鈕,繪制如圖7.13所示的草圖。
圖7.13 繪制彈簧底座草圖
2) 設(shè)置拉伸深度為10,單擊接受按鈕,完成彈簧一端添加彈簧底座。(如圖7.14所示)
圖7.14 彈簧一端添加底座
3) 重復(fù)這一操作,完成彈簧兩端都添加彈簧底座。(如圖7.15所示)
圖7.15 彈簧兩端都添加底座
8 麥弗遜式獨(dú)立懸架三維零件的有限元分析
在汽車(chē)行駛的過(guò)程中,懸架的彈性元件——螺旋彈簧,起著緩和沖擊、衰減振動(dòng)的作用,為此需要承受高頻率的往復(fù)壓縮運(yùn)動(dòng),它對(duì)車(chē)輛的行駛平穩(wěn)性和操控安全性起著至關(guān)重要的作用。依靠有限元法可以準(zhǔn)確分析出應(yīng)力-應(yīng)變對(duì)彈簧疲勞壽命和永久變形的影響,同時(shí)也能反映出材料因素和二者之間的關(guān)系。本章主要通過(guò)有限元分析軟件ANSYS對(duì)彈性元件螺旋彈簧進(jìn)行有限元分析,方便為后續(xù)的優(yōu)化設(shè)計(jì)提供有效的參考依據(jù)。
8.1 有限元分析過(guò)程
步驟1:導(dǎo)入螺旋彈簧實(shí)體模型
1) 單擊Utility Menu(實(shí)用菜單)—File(文件)—Import(導(dǎo)入)—Pro/E,找到繪制好的螺旋彈簧prt格式文件,單擊OK(確定)按鈕完成導(dǎo)入,如圖8.1所示。
8.1 導(dǎo)入螺旋彈簧實(shí)體模型
步驟2:定義單元類(lèi)型
1) 單擊(主菜單)—(前處理器)— Element Type(單元類(lèi)型)— Add/Edit/Delete(增加/編輯/刪除)。單擊Add(增加)按鈕,彈出Library of Element Types(單元類(lèi)型庫(kù))。在左側(cè)單元庫(kù)中,選擇Solid(體單元);右側(cè)單元庫(kù)中,選擇10node 92單元;默認(rèn)其單元參考號(hào)為1,如圖8.2所示。
圖8.2 定義單元類(lèi)型
2) 單擊OK(確定)按鈕,回到Element Type(單元類(lèi)型)對(duì)話(huà)框;單擊Close(關(guān)閉)按鈕,完成單元定義。
步驟3:定義材料屬性
1) 單擊(主菜單)—(前處理器)—(材料屬性)—Material Models(材料屬性),在右側(cè)材料庫(kù)列表中單擊Structural(結(jié)構(gòu)材料)—Linear(線性)—Elastic(彈性)—Isotropic(各向同性),輸入EX(彈性模量)為,PRXY(泊松比)為0.3,如圖8.3所示。
2) 在右側(cè)材料庫(kù)列表中單擊Structural(結(jié)構(gòu)材料)—Density(密度),輸入DENS(密度)為,如圖8.4所示。
圖8.3 定義材料屬性的彈性模量和泊松比 圖8.4 定義材料屬性的密度
3) 單擊OK(確定)按鈕,定義的材料屬性就顯示在Define Material Model Behavior(定義材料模型)對(duì)話(huà)框左側(cè);關(guān)閉對(duì)話(huà)框,完成材料屬性的定義。
步驟4:劃分網(wǎng)格
1) 單擊Main Menu(主菜單)—Preprocessor(前處理器)—Meshing(網(wǎng)格)—MeshTool(網(wǎng)格劃分工具),在彈出的對(duì)話(huà)框中設(shè)置網(wǎng)格劃分屬性。單擊Size Control(單元尺寸設(shè)置)的Global選項(xiàng)旁的Set按鈕,設(shè)置Element edge length(單元邊長(zhǎng))為7,如圖8.5所示。
圖8.5 設(shè)置網(wǎng)格劃分屬性
2) 單擊Mesh(網(wǎng)格劃分)按鈕,在彈出的拾取對(duì)話(huà)框中單擊Pick All(選擇所有),網(wǎng)格劃分開(kāi)始,生成的有限元模型如圖8.6所示.
圖8.6 網(wǎng)格劃分后生成的有限元模型
步驟5:施加約束
1) 單擊Main Menu(主菜單)—(求解)—(定義載荷)—(加載)—(結(jié)構(gòu))—(位移)—(在面上),彈出對(duì)象拾取對(duì)話(huà)框,利用鼠標(biāo)拾取彈簧座底部平面,如圖8.8所示。
圖8.8 選擇彈簧座底面
2) 單擊(確定)按鈕,彈出(在面上施加位移和旋轉(zhuǎn)自由度約束)對(duì)話(huà)框,在VALUE(數(shù)值)一欄中填寫(xiě)數(shù)值0,如圖8.9所示。
圖8.9 指定位移自由度約束
3) 單擊OK(確定)按鈕,完成施加約束。
步驟6:施加載荷
1) 單擊Main Menu(主菜單)—(求解)—(定義載荷)—(加載)—(結(jié)構(gòu))—(壓力)— (在面上),彈出對(duì)象拾取對(duì)話(huà)框,利用鼠標(biāo)拾取彈簧頂部平面,如圖8.10所示。
圖8.10 選擇彈簧座頂面
2) 單擊(確定)按鈕,彈出(在面上施加壓力面載荷)對(duì)話(huà)框,在Load PRES value(施加載荷數(shù)值)一欄中填寫(xiě)數(shù)值3600(N),如圖8.11所示。
圖8.11 施加壓力面載荷
3) 單擊OK(確定)按鈕,完成載荷的施加。
步驟7:求解
1) 單擊(主菜單)—(求解)—(求解當(dāng)前載荷步),彈出(求解當(dāng)前載荷步)對(duì)話(huà)框,單擊(確定)按鈕,進(jìn)行求解,如圖8.12所示。
圖8.12 求解當(dāng)前載荷步
2) 彈出Note(標(biāo)記)對(duì)話(huà)框,顯示“Solution is done”字樣,表示求解成功,如圖8.13所示。
圖8.13 求解成功
步驟8:查看求解結(jié)果
1) 單擊(主菜單)—(通用后處理器)— (繪制結(jié)果)—(繪制等值圖)—(節(jié)點(diǎn)解),在彈出的(繪制節(jié)點(diǎn)解等值圖)對(duì)話(huà)框中,選擇(節(jié)點(diǎn)解)—(位移解)—Displacement vector sum(位移矢量和),以繪制位移矢量和等勢(shì)圖。單擊OK(確定)按鈕,繪制結(jié)果如圖8.14所示。
2) 重新選擇Nodal Solution(節(jié)點(diǎn)解)—Stress(應(yīng)力)—Z-Component of stress(應(yīng)力的Z分量),以繪制應(yīng)力的Z分量等勢(shì)圖。單擊OK(確定)按鈕,繪制結(jié)果如圖8.15所示。
3) 重新選擇Nodal Solution(節(jié)點(diǎn)解)—Stress(應(yīng)力)—XY Shear stress(XY方向剪應(yīng)力),以繪制XY方向剪應(yīng)力。單擊OK(確定)按鈕,繪制結(jié)果如圖8.16所示。
圖8.14 彈簧位移矢量和圖(3600N)
圖8.15 應(yīng)力的Z分量等勢(shì)圖 (3600N)
圖8.16 XY方向剪應(yīng)力云圖 (3600N)
步驟9:變值求解
1) 將步驟6中的施加載荷值分別變?yōu)?200(N)、7300(N)、10000(N),重復(fù)上述操作,得出不同載荷下彈簧的位移矢量和云圖。
2) 將四種載荷值下的彈簧的位移矢量和云圖進(jìn)行分析比較,如圖8.17所示。
(a) 彈簧位移矢量和圖1(2200N) (b) 彈簧位移矢量和圖2(3600N)
(c) 彈簧位移矢量和圖3(7300N) (d) 彈簧位移矢量和圖4(10000N)
圖8.17 螺旋彈簧位移矢量和云圖
3) 將步驟6中的施加載荷值分別變?yōu)?200(N)、7300(N)、10000(N),重復(fù)上述操作,得出不同載荷下彈簧的XY方向剪應(yīng)力云圖。
4) 將四種載荷值下的彈簧的剪應(yīng)力云圖進(jìn)行分析比較,如圖8.18所示。
(a) 彈簧剪應(yīng)力云圖1(2200N) (b) 彈簧剪應(yīng)力云圖2(3600N)
(c) 彈簧剪應(yīng)力云圖3(7300N) (d) 彈簧剪應(yīng)力云圖4(10000N)
圖8.18 螺旋彈簧剪應(yīng)力云圖
步驟10:結(jié)果分析
1) 固定載荷下的結(jié)果分析
分析圖8.14彈簧位移矢量和圖可知,當(dāng)懸架螺旋彈簧底部支座被約束,頂部支座受法向力作用時(shí),其形變程度由上而下逐漸減小,最大形變發(fā)生在載荷施加處。
分析圖8.15彈簧軸向應(yīng)力云圖可知,當(dāng)按設(shè)計(jì)計(jì)算時(shí)的單側(cè)簧上質(zhì)量施加的載荷時(shí),螺旋彈簧的軸向應(yīng)力小于額定應(yīng)力,滿(mǎn)足強(qiáng)度要求。
分析圖8.16彈簧剪應(yīng)力云圖可知,螺旋彈簧受軸向載荷作用時(shí),剪應(yīng)力云圖顏色從左往右逐漸加深,表明剪應(yīng)力值逐漸增大,說(shuō)明彈簧內(nèi)側(cè)剪應(yīng)力大于外側(cè)剪應(yīng)力。且在螺旋彈簧上端1.5圈附近的彈簧內(nèi)側(cè)部分的剪應(yīng)力值最大,說(shuō)明在此載荷作用下,彈簧此處容易發(fā)生疲勞破壞失效。
2) 變值載荷下的結(jié)果分析
分析圖8.17不同載荷下的螺旋彈簧變形云圖可知,當(dāng)施加的載荷值逐漸增大時(shí),彈簧的形變也隨之增大,且當(dāng)載荷值達(dá)到彈簧極限載荷時(shí),彈簧會(huì)因無(wú)法承受載荷而發(fā)生失效形變。
分析圖8.18螺旋彈簧剪應(yīng)力云圖可知,當(dāng)彈簧受到的法向力由增加到時(shí),螺旋彈簧上端1.5 圈附近內(nèi)側(cè)部分出現(xiàn)最大剪應(yīng)力值;隨著施加的載荷值繼續(xù)增大到以后,最大剪應(yīng)力值產(chǎn)生的位置由彈簧上端轉(zhuǎn)移至螺旋彈簧下端起始約1.5 圈附近內(nèi)側(cè)部分;當(dāng)施加的載荷繼續(xù)增大,達(dá)到螺旋彈簧的極限載荷 時(shí),最大剪應(yīng)力產(chǎn)生的位置繼續(xù)轉(zhuǎn)移至螺旋彈簧下端起始約2.5 圈附近。需要注意的是,這些最大剪應(yīng)力產(chǎn)生的位置都可能是螺旋彈簧發(fā)生疲勞失效時(shí)的敏感位置。
8.2 結(jié)論
通過(guò)采用有限元分析軟件ANSYS,對(duì)汽車(chē)懸架的螺旋彈簧進(jìn)行了力學(xué)分析,對(duì)比不同載荷下彈簧的應(yīng)力表現(xiàn),得出如下結(jié)論:
(1)該螺旋彈簧的設(shè)計(jì)計(jì)算結(jié)果滿(mǎn)足對(duì)其強(qiáng)度的要求;
(2)汽車(chē)懸架系統(tǒng)螺旋彈簧的最大剪應(yīng)力值出現(xiàn)的位置是在彈簧內(nèi)側(cè)部分。這一結(jié)論和經(jīng)典理論對(duì)汽車(chē)懸架螺旋彈簧的受力分析結(jié)果相符合。
(3)隨著施加在螺旋彈簧上的載荷值發(fā)生變化,彈簧最大剪應(yīng)力值產(chǎn)生的位置也會(huì)發(fā)生變化,且產(chǎn)生的位置均位于彈簧底圈開(kāi)始圈倍數(shù)的附近。該結(jié)論與非線性螺旋彈簧在工作圈起始部位附近容易發(fā)生折斷失效的統(tǒng)計(jì)結(jié)果相符合。
(4)ANSYS有限元法的分析可以直觀地反映出汽車(chē)懸架螺旋彈簧的剪應(yīng)力分布情況、最大剪應(yīng)力值及其出現(xiàn)的位置,方便為后續(xù)汽車(chē)懸架螺旋彈簧的優(yōu)化設(shè)計(jì),提供可靠有效的參考依據(jù)。
通過(guò)采用有限元法分析和相關(guān)設(shè)計(jì)計(jì)算相結(jié)合的辦法,可以實(shí)現(xiàn)對(duì)汽車(chē)懸架螺旋彈簧的優(yōu)化,使彈簧最大剪應(yīng)力值產(chǎn)生的位置發(fā)生轉(zhuǎn)移,從而降低汽車(chē)懸架螺旋彈簧因?yàn)槠诎l(fā)生失效的問(wèn)題。
9 設(shè)計(jì)總結(jié)
本次畢業(yè)設(shè)計(jì)時(shí)長(zhǎng)整整四個(gè)月,工作量充分,強(qiáng)度合適。通過(guò)對(duì)捷達(dá)轎車(chē)麥弗遜式前獨(dú)立懸架的設(shè)計(jì)計(jì)算,完成了懸架部分零件圖及其裝配圖二維CAD圖紙的繪制,并對(duì)主要彈性元件螺旋彈簧,進(jìn)行了Pro/E三維建模和有限元分析,分析了其在不同強(qiáng)度下的應(yīng)力表現(xiàn)。
這次的畢業(yè)設(shè)計(jì),考察了我在大學(xué)期間學(xué)習(xí)的汽車(chē)專(zhuān)業(yè)知識(shí),加深我的理解,重點(diǎn)加深了我對(duì)汽車(chē)懸架系統(tǒng)的認(rèn)識(shí)。在論文綜述部分,我認(rèn)識(shí)了麥弗遜式獨(dú)立懸架的構(gòu)造組成,了解了它的優(yōu)缺點(diǎn),知道了它目前在汽車(chē)領(lǐng)域的應(yīng)用情況。在設(shè)計(jì)主體部分,我也發(fā)現(xiàn)了應(yīng)該注意的地方。我覺(jué)得麥弗遜式獨(dú)立懸架設(shè)計(jì)的首要任務(wù)就是螺旋彈簧的設(shè)計(jì)計(jì)算,在計(jì)算過(guò)程中非常重要的是選定彈簧的中徑、有效工作圈數(shù)和彈簧的自由高度,并對(duì)彈簧進(jìn)行必要的強(qiáng)度、剛度校核。然后就是減振器的選型及設(shè)計(jì)計(jì)算,還有導(dǎo)向機(jī)構(gòu)及橫向穩(wěn)定桿的設(shè)計(jì)。同時(shí)在設(shè)計(jì)過(guò)程中需要進(jìn)行前后參數(shù)的對(duì)照修改,保證尺寸的配合等等。
在整體設(shè)計(jì)過(guò)程中,通過(guò)查閱諸多和汽車(chē)相關(guān)的文獻(xiàn)資料,使我成功解決了設(shè)計(jì)道路上遇到的難題。如經(jīng)過(guò)翻閱吉林大學(xué)王望予教授編著的《汽車(chē)設(shè)計(jì)》一書(shū),根據(jù)該書(shū)對(duì)麥弗遜式獨(dú)立懸架的設(shè)計(jì)方案,我梳理、明確了整體的設(shè)計(jì)思路,并依照自己的思路展開(kāi)了詳細(xì)的計(jì)算和校核,最終由計(jì)算結(jié)果繪制出麥弗遜懸架系統(tǒng)的部分零件圖極其裝配圖。在繪圖過(guò)程中,我再次熟悉并掌握了CAD制圖的標(biāo)準(zhǔn)和技巧,學(xué)習(xí)了如何根據(jù)公差等級(jí)標(biāo)注相關(guān)尺寸等知識(shí);通過(guò)對(duì)有限元分析軟件ANSYS的應(yīng)用,讓我認(rèn)識(shí)到采用有限元法分析和相關(guān)設(shè)計(jì)計(jì)算相結(jié)合的辦法,可以實(shí)現(xiàn)對(duì)汽車(chē)零部件結(jié)構(gòu)的優(yōu)化,使設(shè)計(jì)結(jié)果滿(mǎn)足轎車(chē)生產(chǎn)的要求,從而令設(shè)計(jì)工作變得更為合理高效,最終達(dá)到轎車(chē)輕量化設(shè)計(jì)的目的。
經(jīng)過(guò)這次畢業(yè)設(shè)計(jì),我可以說(shuō)是收獲頗豐。從親自查找資料到獨(dú)立分析計(jì)算,我鍛煉并提高了自己的設(shè)計(jì)能力;從發(fā)現(xiàn)設(shè)計(jì)難題到最終解決困難,我克服了對(duì)失敗的恐懼并體驗(yàn)了攻克難關(guān)的喜悅;通過(guò)計(jì)算結(jié)果親手繪制了麥弗遜式懸架的設(shè)計(jì)零件圖和裝配圖,我發(fā)掘了設(shè)計(jì)的樂(lè)趣,體會(huì)了設(shè)計(jì)成功的滿(mǎn)足……但是,在設(shè)計(jì)過(guò)程中,我也發(fā)現(xiàn)了自己身上存在的不足,例如對(duì)專(zhuān)業(yè)知識(shí)的認(rèn)識(shí)不夠充分、對(duì)設(shè)計(jì)流程的把握存在欠缺,對(duì)CAD軟件的操作不夠熟悉等等。對(duì)于自己的不足之處,我會(huì)盡快加以彌補(bǔ)完善。
這次的畢業(yè)設(shè)計(jì),可以說(shuō)是對(duì)我大學(xué)四年專(zhuān)業(yè)學(xué)習(xí)的一次大總結(jié),它考查了我對(duì)汽車(chē)專(zhuān)業(yè)知識(shí)的把握,檢驗(yàn)了我對(duì)汽車(chē)設(shè)計(jì)的能力。在今后的學(xué)習(xí)、工作生活中,我會(huì)積累經(jīng)驗(yàn)教訓(xùn),努力拓展知識(shí)面,彌補(bǔ)身上的不足,努力做到全面發(fā)展,爭(zhēng)取在未來(lái)的日子里獲得更優(yōu)異的成績(jī)!
參考文獻(xiàn)
[1] 王望予.汽車(chē)設(shè)計(jì)[M].北京:機(jī)械工業(yè)出版社,2004.
[2] 王國(guó)權(quán),龔國(guó)慶.汽車(chē)設(shè)計(jì)課程設(shè)計(jì)指導(dǎo)書(shū)[M].北京:機(jī)械工業(yè)出版社,2009.
[3] 余志生.汽車(chē)?yán)碚揫M].北京:機(jī)械工業(yè)出版社,2009.
[4] 許兆棠,黃銀娣.汽車(chē)構(gòu)造[M].北京:國(guó)防工業(yè)出版社,2012.
[5] 黃向東.汽車(chē)懸架系統(tǒng)的有限元分析及其應(yīng)用[J].中國(guó)機(jī)械工程,1994,5(l).
[6] 艾維全,高世杰,王承,廖芳.麥弗遜式前懸架的設(shè)計(jì)改進(jìn)及分析[J].上海汽車(chē), 2004,8.
[7] 柳江,喻凡,樓樂(lè)明.麥弗遜式獨(dú)立懸架側(cè)載螺旋彈簧優(yōu)化設(shè)計(jì)[J].汽車(chē)工程,2006,8.
[8] 楊陽(yáng).雙橫擺臂懸架有限元建模與分析[J].汽車(chē)工程,2006,28(11).
[9] 楊峰.基于ANSYS 的汽車(chē)懸架螺旋彈簧有限元分析[J].設(shè)計(jì)與研究,2011,7.
[10] 何小靜,上官文斌.汽車(chē)懸架下控制臂的有限元分析[