基于AWC機(jī)架現(xiàn)場擴(kuò)孔機(jī)設(shè)計(jì)(全套設(shè)計(jì)圖紙+說明書)
基于AWC機(jī)架現(xiàn)場擴(kuò)孔機(jī)設(shè)計(jì)(全套設(shè)計(jì)圖紙+說明書),基于,awc,機(jī)架,現(xiàn)場,擴(kuò)孔,設(shè)計(jì),全套,圖紙,說明書,仿單
英文翻譯原文:
(一)BORING AND BORING MACHINES
As carried out on a lathe, boring produces circular internal profiles in hollow work-pieces or on a hole made by drilling or another process, Boring is done with cutting tools that are similar to those used in turning. Because the boring bar has to reach the full length of the bore, tool deflection and, therefore, maintainance of dimensional accuracy can be a significant problem.
The boring bar must be sufficiently stiff—that is, made of a material with high elastic modulus, such as tungsten carbide –to minimize deflection and avoid vibration and chatter. Boring bars have been designed with capabilities for damping vibration.
Although boring operations on relatively small work-pieces. Can be carried out on a lathe, boring mills are used for large work-pieces. These machines are either vertical or horizontal, and are capable of performing operations such as turning, facing, grooving, and chamfering. A vertical boring machine is similar to a lathe but has a vertical axis of work-piece rotation.
The cutting tool (usually a single point made of M-2 and M-3 high-speed steel and C-7 and C-8 carbide) is mounted on the tool head, which is capable of vertical movement (for boring and turning) and radial movement (for facing), guided by the cross-rail. The head can be swiveled to produce conical (tapered) surfaces.
In horizontal boring machine, the work-piece is mounted on a table that can move horizontally in both the axial and radial directions. The cutting tool is mounted on a spindle that rotates in the headstock, which is capable of both vertical and longitudinal movements. Drills, reamer, taps, and milling cutters can also be mounted on the machine spindle.
Boring machine are available with a variety of features. Although work-piece diameters are generally 1 m-4 m(3ft-12ft),work-piece as large as 20 m(60ft) can be machined in some vertical boring machines. Machine capacities range up to 150 kw (200hp).these machines are also available with computer numerical controls, which allow all movements to be programmed. With such controls, little operaror involvement is required and consistency and productivity are improved. Cutting speeds and feeds for boring are similar to those for turning.(For capabilities of boring operations)
Jig borers are vertical boring machines with high –precision bearings. Although they are available in various sizes and used in tool rooms for making jigs and fixtures, they are now being replaced by more versatile numerical control machines.
Design considerations for boring. Guidelines for efficient and economical boring operations are similar to those for turning. Additionally, the following factors should be considered:
a. Whenever possible, through holes rather than blind holes should be specified.(The term blind hole refers to a hole that does not go though the thickness of the work-piece )
b. The greater the length –to –bore-diameter ratio, the more difficult it is to hold dimensions because of the deflections of the boring bar due to cutting forces.
c. Interrupted internal surfaces should be avoided.
(2)Fundamentals of Machine Tools
In many cases products form the primary forming processes must undergo further refinements in size and surface finish to meet their design specifications. To meet such precise tolerances the removal of small amounts of material is needed. Usually machine tools are used for such operation.
In the United States material removal is a big business-in excess of $ per year, including material, labor, overhead, and machine-tool shipments, is spent. Since 60 percent of the mechanical and industrial engineering and technology graduates have something connection with the machining industry either through sale, design, or operation of machine shops, or working in related industry, it is wise for an engineering student to devote some time in his curriculum to studying material removal and machine tools.
A machine tool provides the means for cutting tools to shape a workpiece to required dimensions; the machine supports the tool and the workpiece in a controlled relationship through the functioning of its basic members, which are as follow:
(a) Bed, Structure or Frame. This is the main member which provides a basis for, and a connection between, the spindles and slides; the distortion and vibration under load must be kept to a minimum.
(b) Slides and Sideways. The translation of a machine element (e.g. the slide) is normally achieved by straight-line motion under the constraint of accurate guiding surfaces (the slideway).
(c) Spindles and Bearings. Angular displacements take place about an axis of rotation; the position of this axis must be constant within extremely fine limits in machine tools, and is ensured by the provision of precision spindles and bearings.
(d) Power Unit. The electric motor is the universally adopted power unit for machine tools. By suitably positioning individual motors, belt and gear transmissions are reduced to a minimum.
(e) Transmission Linkage. Linkage is the general term used to denote the mechanical, hydraulic, pneumatic or electric mechanisms which connect angular and linear displacements in defined relationship.
There are two broad divisions of machining operations:
(a) Roughing, for which the metal removal rate, and consequently the cutting force, is high ,but the required dimensional accuracy relatively low .
(b) Finishing, for which the metal removal rate, and consequently the cutting force, is low, but the required dimensional accuracy and surface finish relatively high .
It follows that static loads and dynamic loads, such as result form an unbalanced grindingwheel, are more significant in finishing operations than in roughing operations, The degree of precision achieved in any machining process will usually be influenced by the magnitude of the deflections, which occur as a result of the force acting.
Machine tool frames are generally made in cast iron, although some may be steel casting or mild-steel fabrications. Cast iron is chosen because of its cheapness, rigidity, compressive strength and capacity for damping the vibrations set-up in machine operations, To avoid massive sections in castings, carefully designed systems of ribbing are used to offer the maximum resistance to bending and torsional stresses. Two basic types of ribbing are box and diagonal. The box formation is convenient to produce, apertures in walls permitting the positioning and extraction of cores. Diagonal ribbing provides greater torsional stiffness and yet permits swarf to fall between the sections; it is frequently used for lathe beds.
The slides and slideways of a machine tool locate and guide members which move relative to each other, usually changing the position of the tool relative to workpiece .The movement generally takes the form of translation in a straight line, but is sometimes angular rotation, e.g. tilting the wheel-head of a universal thread-grinding machine to an angle corresponding which the helix angle of the workpiece thread. The basic geometric elements of slides are flat, vee, dovetail and cylinder. These elements may be used separately or combined in various ways according to the applications . Features of slideways are as follows :
(a) Accuracy of Movement. Where a slide is to be displaced in a straight line, this line must lie in two mutually perpendicular planes and there must be no slide rotation. The general tolerance for straightness of machine tool slideways is 0~0.02mm per 1000mm; on horizontal surfaces this tolerance may be disposed so that a convex surface results, thus countering the effect of "sag" of the slideway.
(b) Means of Adjustment. To facilitate assembly, maintain accuracy and eliminate "play" between sliding members after wear has taken place, a strip is sometimes inserted in slides. This is called a gibstrip. Usually, the gib is retained by socket-head screws passing through elongated slots;and is adjusted by grub-screws secured by lock nuts.
(c) Lubrication. Slideways may be lubricated by either of the following systems:1)Intermittently through grease or oil nipples, a method suitable where movements are infrequent and speed low.
2) Continuously e.g. by pumping through a metering valve and pipe-work to the point of application; the film of oil introduced between surfaces by these means must be extremely thin to avoid the slide “floating”.If sliding surfaces were optically flat oil would be squeezed out,resulting in the surfaces sticking. Hence in practice slide Sill"faces are either grourld using the edge of a cup wheel,or scraped. Both processes produee minulte surface depressions,which retain‘‘pocket” of oil, and complete separation of the parts may not occur at all points.
(d) Protection.To maintain slideways in good order, the following conditions must be met:
1) Ingress of foreign matter,e.g.swarf,must be prevented. Where this is no possible,it is desirable to have a form of slideway,which does not retain swarf,e.g. the inverted vee.
2) Lubricating oil must be retained.The adhesive property of oil for use on vertical or inclined slide surface is important; oils are available which have been specially developed for this purpose. The adhesiveness of oil also preverts it being washed away by cutting fluids.
3) Accidental damage must be prevented by protective guards.
譯文:
(一)鏜削加工和鏜床
像車床加工零件一樣,鏜床能在中空的工件或由鉆削加工或其它工藝所加工的孔上進(jìn)行內(nèi)輪廓圓的加工。鏜削是由那些類似車削的刀具完成的。因?yàn)殓M頭必須達(dá)到鏜桿的全長,刀具將發(fā)生彎曲,因此,尺寸精度的保持性成為了一個(gè)重大問題。
鏜桿必須有足夠的剛度——刀桿是由較高彈性模量的材料制造的,比如碳化鎢(硬質(zhì)合金)——去減小彎曲和避免搖動和振動。鏜桿被設(shè)計(jì)有減振的能力。
鏜床既能加工在車床上加工的較小工件,鏜銑床又能加工巨大的工件。這類機(jī)械既有立式的又有臥式的并且能夠完成如:車削、車端面、切槽、和倒角。一臺立式的鏜床類似一臺車床,但它有一根垂直的工件旋轉(zhuǎn)軸。
刀具(通常用于切削的單獨(dú)切削點(diǎn)是由M-2和M-3高速鋼和C-8硬質(zhì)合金制造的)被安裝于能垂直運(yùn)動(用于鏜削和車削)和徑向運(yùn)動(用于車端面)并由十字導(dǎo)軌導(dǎo)向的刀頭上。刀頭能夠旋轉(zhuǎn)去加工圓錐形表面。
在臥式鏜床上工件被裝夾在能在水平面內(nèi)兩個(gè)軸向和徑向上移動的工作臺上,刀具被安裝于能做垂直和縱向兩方向上運(yùn)動的主軸箱上。鉆頭、鉸刀、螺紋刀和銑刀都能安裝于機(jī)床主軸上。
鏜床具有許多優(yōu)良的性能,它所加工工件的直徑是1m-4m(3ft-12ft),工件尺寸達(dá)到20m(60ft)的可在專用的立式鏜床上加工。機(jī)床功率范圍可達(dá)到150kw(200hp)。這些可用于所有運(yùn)動都能編程的數(shù)字控制加工。利用這些控制,只需要很少的相關(guān)操作,并且穩(wěn)定性和生產(chǎn)率大大提高了。鏜床的切削速度和進(jìn)給速度和車床比較相似。
坐標(biāo)鏜床是屬于具有較高精度支撐的立式鏜床。盡管它們可用于各類尺寸的工件加工和擁有夾緊合安裝的刀具空間。它們正被多功能的數(shù)控機(jī)床取代。
鏜床的設(shè)計(jì)要求:導(dǎo)軌的效率,類似于車削的經(jīng)濟(jì)型操作,另外,應(yīng)該考慮以下因素:
a.無論何時(shí),應(yīng)盡可能注意是加工通孔而并盲孔。(盲孔系列是指那些沒有穿國工件厚度的孔)
b.應(yīng)該控制徑向進(jìn)給速率,很難去支撐徑向,因?yàn)榍邢髁σ痃M桿的彎曲變形。
c.應(yīng)該避免交叉的內(nèi)表面加工。
(2)機(jī)床基礎(chǔ)
為了滿足規(guī)定的設(shè)計(jì)規(guī)格,大多數(shù)情況下初步加工的產(chǎn)品都必須再經(jīng)過進(jìn)一步的尺寸和表面的精加工。要達(dá)到這樣的精確規(guī)定公差的要求,少量材料需要被切除掉,而機(jī)床通常就是用于此種操作。
在美國,材料切除是一項(xiàng)大業(yè)務(wù)——每年這方面的支出超過36×109美元,包括材料、勞力和機(jī)床運(yùn)輸。60%的機(jī)械工程和工業(yè)工程畢業(yè)生都通過貿(mào)易、設(shè)計(jì)、機(jī)械修理工廠,或通過在相關(guān)行業(yè)工作而與機(jī)械工業(yè)密不可分,因而如果他們花費(fèi)一定的時(shí)間精力來學(xué)習(xí)這個(gè)領(lǐng)域中的材料切除和機(jī)床技術(shù)的話會是很明智的選擇。
機(jī)床提供切割工具的方式,以使工件成型,達(dá)到規(guī)定的尺寸;此種機(jī)器依靠其基礎(chǔ)部件的運(yùn)作來掌握工具和工件之間的聯(lián)系。其基礎(chǔ)部件的運(yùn)作如下:
①. 床身、構(gòu)造和框架。這三種主要的部件為錠子和滑移的基礎(chǔ),并將它們聯(lián)系起來;操作中的變形和震動必須盡量避免。
②. 滑移與滑軌。機(jī)械部件(如滑移)的轉(zhuǎn)換通常是通過在精密的指導(dǎo)表面(滑軌)的控制下做直線運(yùn)動而完成的。
③. 錠子與軸承。角位移是圍繞一個(gè)旋轉(zhuǎn)軸線發(fā)生的;這個(gè)轉(zhuǎn)軸的位置必須一直處于嚴(yán)格精確的限制之中,并由精密錠子和軸承提供保障。
④. 動力儀器。電動機(jī)是被廣泛應(yīng)用于機(jī)床的動力儀器。通過將各電動機(jī)放置于合適的位置,傳輸帶和齒輪運(yùn)輸會被降低到最低限度。
⑤. 傳輸聯(lián)接。聯(lián)接是一個(gè)通常用來指機(jī)械驅(qū)動的、水壓驅(qū)動的、氣壓驅(qū)動的和電力驅(qū)動的機(jī)械裝置,將有角移置和直線移置聯(lián)系起來,使其符合規(guī)定。
加工操作大體上分為兩類:
① . 粗加工。其金屬切除率高且由此導(dǎo)致的切除力較大,但規(guī)定的尺寸精度相對較低。
② . 精加工。其金屬切除率低且由此導(dǎo)致的切除力較小,但規(guī)定的尺寸精度相對較高。
靜載荷及動載荷,如處于非平衡狀態(tài)的砂輪所導(dǎo)致的結(jié)果,自然在精加工方面比在粗加工操作方面更為重要。任何加工過程所達(dá)到的精確度通常會受到偏差大小的影響,這種影響是是操作動力的結(jié)果。
機(jī)床框架通常由鑄鐵制造,雖然有些機(jī)床可能為鋼鑄件或低碳鋼結(jié)構(gòu)。選擇鑄鐵是因?yàn)槠鋬r(jià)格、硬度、耐壓強(qiáng)度及減少加工操作中的震動的能力。為了避免鑄件出現(xiàn)輕重不均的部分,精心設(shè)計(jì)的肋材構(gòu)架系統(tǒng)被采用,最大可能地抵抗造成彎曲和變形的壓力。
兩種肋材構(gòu)架分別為箱形和對角線形。箱形結(jié)構(gòu)便于生產(chǎn),因?yàn)楸谏系目讖皆试S核心的定位和抽取。對角線楞條配置則提供更大的抗紐剛度并允許金屬屑從部件當(dāng)中的孔隙落出,因此經(jīng)常被用于機(jī)床。
車床的滑移和滑軌指引并且為相互影響運(yùn)動的部件定位,通常根據(jù)工件更改車床的位置。運(yùn)動一般采取直線運(yùn)動的形式,但有時(shí)是旋轉(zhuǎn),例如,對應(yīng)于工件的螺紋螺旋角方向而轉(zhuǎn)動萬能螺紋磨床上的砂輪頭的一個(gè)角度?;镜膶ΨQ滑移部件為扁平、V形、燕尾槽形及汽缸形。這些部件既可單獨(dú)使用又可根據(jù)用途以不同方式組合使用?;壍奶卣魅缦拢?
1 如果滑移要在一條直線上移動位置,這條直線必須位于兩個(gè)相互垂直的平面之間且必須沒有滑動旋轉(zhuǎn)。
2 機(jī)床滑軌的直線性規(guī)定公差一般介于0~0.02mm/100mm之間;在水平表面此公差可以被處理以得到凸形表面這樣就可以抵消滑軌下沉的作用。
3 潤滑油?;壙赡鼙灰韵聝煞N系統(tǒng)中的任何一種潤滑:
1. 間歇通過油脂或油嘴潤滑。這種方法適合運(yùn)作不頻繁和速度不高的情況。
2. 持續(xù)潤滑,如通過計(jì)量閥和管道根據(jù)需要抽取;通過這些方法操作的表面之間的潤滑油薄膜必須非常薄,以避免滑移漂浮。如果滑移表面是鏡平面,油就會被擠出,使表面粘接。因此實(shí)際操作中滑移表面不是被杯狀輪邊緣壓平,就是被刮去。兩種操作過程都會產(chǎn)生微小的表面凹痕,這種凹痕會導(dǎo)致少量潤油存留,而且零件的完全分離可能不會總是發(fā)生;因此,滑移的正確定位得到保留。
4 保護(hù)。為了維護(hù)滑軌,使其正常工作,必須滿足如下條件:
1. 必須避免外來物質(zhì)如鐵屑的進(jìn)入。如果這種條件不可能滿足,則應(yīng)該采用不會滯留鐵屑的,如倒V形的滑移。
2. 潤滑油必須保留。潤滑油在垂直的或傾斜滑移表面上的粘性特質(zhì)非常重要;特制的潤滑油市場有售。潤滑油的粘性同時(shí)能防止其被切削液沖走。
3. 必須防止由保護(hù)裝置導(dǎo)致的意外損壞。
攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文)
AWC機(jī)架現(xiàn)場擴(kuò)孔機(jī)設(shè)計(jì)
學(xué)生姓名: 鄭 厚 羿
學(xué)生學(xué)號: 200310621041
院 (系): 機(jī)電工程學(xué)院
年級專業(yè): 機(jī)械設(shè)計(jì)制造及其自動化
指導(dǎo)教師: 袁曉東 副教授
助理指導(dǎo)教師:
二〇〇七年六月
攀枝花學(xué)院
Panzhihua University
本科畢業(yè)設(shè)計(jì)(論文)
外文翻譯
院 (系): 機(jī)電工程學(xué)院
專 業(yè): 機(jī)械設(shè)計(jì)制造及其自動化
班 級: 03級機(jī)制一班
學(xué)生姓名:鄭厚羿 學(xué)號:200310621041
二00七 五月二十日
攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 摘要 I 摘 要 解決攀鋼熱軋板廠三期技改工程(立輥軋機(jī)寬度自動控制系統(tǒng)(AWC) ) 改造后,需對現(xiàn)有的立輥軋機(jī)機(jī)架進(jìn)行擴(kuò)孔,以便安裝長行程伺服油缸。立輥 軋機(jī)機(jī)架擴(kuò)孔如果送入設(shè)備制造廠進(jìn)行加工,質(zhì)量保證可靠,但機(jī)架還原難于 保證安裝質(zhì)量、精度。為了降低技改工程費(fèi)用,決定在立輥軋機(jī)現(xiàn)場對機(jī)架進(jìn) 行擴(kuò)孔加工。經(jīng)過潛心研究,結(jié)合現(xiàn)場實(shí)際情況設(shè)計(jì)專用擴(kuò)孔設(shè)備專用鏜 床。再結(jié)合專用設(shè)備的擴(kuò)孔工藝,提出了切實(shí)可行的解決方案,該方案具有經(jīng) 濟(jì)、實(shí)用、可行等特點(diǎn)。 設(shè)計(jì)的特色:解決了現(xiàn)場安裝及鏜桿的剛度問題;滿足了擴(kuò)較大孔的要求; 此專用設(shè)備鏜刀系統(tǒng)采用臥式鏜床的平旋盤結(jié)構(gòu),可方便調(diào)整刀具切削深度; 導(dǎo)軌采用組合式導(dǎo)軌,使運(yùn)動平穩(wěn),安裝便捷;支撐采用組合機(jī)床型式支撐, 便于拆卸安裝,可大大提高生產(chǎn)率。 關(guān)鍵詞 專用設(shè)備,專用鏜床,加工效率,工藝實(shí)驗(yàn) 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文) Abstract II Abstract This is useful for Pan gang resolve Hot MILL three technical transformation projects (up roller mill width Control System (AWC)). After the transformation,It needs to bore the existing legislation for roller mill housing bore for the installation of a long journey servo tank. If Legislative roll mill housing bore sent to factories to bore, the quality is assurance and reliable, but it fixed back ,it cant assure installation quality and accuracy. To reduce the technological transformation project costs, the legislature decided to roll mill site for reaming rack processing. After painstaking research, combining with the actual prombles work out special equipment bore -- special boring machine. In the light of the special equipment reaming technology, a practical solution. The program is economic, practical, possible features. Characteristic of this design: Has solved the prombles such as installment and the boringrod rigidity; Satisfied expanded compares the pocket therequest; This special purpose equipment boring cutter system uses the horizontal boring machine the Pingxuan plate structure, may facilitate the adjustment cutting tool depth of cut; The guide rail uses the combined type guide rail, causes the movement steadily, the installment is convenient; The strut uses the aggregate machine-tool pattern strut, is advantageous for the disassemblage installment, may greatly enhance the productivity. Key words Special Equipment, Special boring machine, Processing efficiency, Technology Experiment 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 目錄 III 目 錄 摘 要 I ABSTRACTII 1 緒 論 1 1.1 設(shè)計(jì)目的和意義 1 1.2 擴(kuò)孔技術(shù)要求 1 1.3 應(yīng)解決的問題 1 1.4 設(shè)計(jì)項(xiàng)目的發(fā)展情況 2 1.5 設(shè)計(jì)原理 2 2 總體設(shè)計(jì) 3 2.1 總體設(shè)計(jì)原則 3 2.2 工藝分析 3 2.3 總體方案的比較 3 2.3.1 刀桿的安裝形式 3 2.3.2 進(jìn)給方式 4 2.3.3 升降運(yùn)動形式 4 2.3.4 機(jī)床運(yùn)動的分配 4 2.3.5 選擇傳動形式和支撐形式 4 3 力能參數(shù)計(jì)算 6 3.1 鏜削用量的選擇及轉(zhuǎn)矩、功率的確定原則 6 3.2 最佳切削用量的選擇 6 3.2.1 現(xiàn)有鏜孔工藝參數(shù) 6 3.2.2 鏜削切削速度、扭矩和切削功率公式 7 3.2.3 主要鏜削參數(shù)的計(jì)算 7 3.3 選擇電機(jī) 9 4 擴(kuò)孔機(jī)傳動系統(tǒng)設(shè)計(jì) 10 4.1 確定總傳動比 10 4.2 分配傳動裝置的傳動比 10 4.3 計(jì)算總的機(jī)械效率 11 4.4 計(jì)算傳動裝置各軸的運(yùn)動和動力參數(shù) 11 4.5 帶傳動設(shè)計(jì) 12 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 目錄 IV 4.6 傳動斜齒輪的設(shè)計(jì)計(jì)算 14 4.6.1 選定齒輪類型、精度等級、材料及齒數(shù) 14 4.6.2 按齒面接觸強(qiáng)度設(shè)計(jì) 14 4.6.4 幾何尺寸計(jì)算 17 4.6.5 計(jì)算軸間圓柱斜齒輪 18 4.6.6 齒輪的結(jié)構(gòu)設(shè)計(jì) 18 4.7 軸的結(jié)構(gòu)設(shè)計(jì) 18 4.7.1 軸設(shè)計(jì)的主要內(nèi)容 18 4.7.2 軸的材料 19 4.7.3 軸的設(shè)計(jì)計(jì)算 19 4.7.4 按扭轉(zhuǎn)強(qiáng)度初步估算軸徑 19 4.7.5 軸的機(jī)構(gòu)設(shè)計(jì) 20 4.7.6 求軸上的載荷 21 4.7.7 按彎扭合成應(yīng)力校核的軸的強(qiáng)度 22 4.7.8 精確校核軸的疲勞強(qiáng)度 23 4.7.9 對軸進(jìn)行設(shè)計(jì) 25 4.8 對所有選用鍵進(jìn)行強(qiáng)度校核 30 4.9 對承受較大載荷的圓錐滾子軸承進(jìn)行校核 31 4.10 鏜刀系統(tǒng)設(shè)計(jì) 33 4.10.1 鏜刀頭 33 4.10.2 鏜桿選擇 33 4.11 箱體的結(jié)構(gòu)設(shè)計(jì) 34 5 導(dǎo)軌設(shè)計(jì) 36 6 鏜刀強(qiáng)度及鏜桿的穩(wěn)定性驗(yàn)算 38 7 工藝試驗(yàn) 42 結(jié) 論 43 參 考 文 獻(xiàn) 44 附錄 A: E1 立輥軋機(jī)機(jī)架加工工序圖 45 附錄 B: E2 立輥軋機(jī)機(jī)架加工工序圖 46 致 謝 47 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 1 緒論 1 1 緒 論 1.1 設(shè)計(jì)目的和意義 攀枝花新鋼釩股份有限公司為了適應(yīng)鋼鐵市場需求,實(shí)現(xiàn)了全連鑄,熱軋 系統(tǒng)進(jìn)行了大規(guī)模的改造,以提高熱軋產(chǎn)品質(zhì)量、成材率和作業(yè)效率,以及為 冷軋?zhí)峁└哔|(zhì)量的原料,同時(shí)提高熱軋產(chǎn)品的市場占有率。為了提高熱軋板的 外觀增強(qiáng)帶鋼的市場競爭力,決定在熱軋板廠三期技改工程中,對現(xiàn)有的 E1、E2 立輥軋機(jī)進(jìn)行改造增添寬度自動控制系統(tǒng)(AWC) ,使熱軋帶鋼產(chǎn)品質(zhì) 量達(dá)到國內(nèi)先進(jìn)水平。 立輥軋機(jī)寬度自動控制系統(tǒng)(AWC)改造用長行程伺服液壓缸替代原電動 機(jī)械側(cè)壓系統(tǒng),為保證缸的行程滿足原側(cè)壓軋輥位置變化要求,在安裝伺服油 缸位置,需對現(xiàn)有的立輥軋機(jī)機(jī)架孔進(jìn)行擴(kuò)孔,以便安裝長行程伺服油缸。 立輥軋機(jī)機(jī)架擴(kuò)孔實(shí)施方案比較突出,如果拆除,送入設(shè)備制造廠進(jìn)行加 工,質(zhì)量保證可靠,但機(jī)架還原難于保證安裝質(zhì)量。為了降低技改工程建設(shè)費(fèi) 用,決定在立輥軋機(jī)現(xiàn)場對機(jī)架進(jìn)行擴(kuò)孔加工。 為了采用經(jīng)濟(jì)實(shí)用的方案解決機(jī)架現(xiàn)場擴(kuò)孔,結(jié)合現(xiàn)場實(shí)際情況設(shè)計(jì)專用 擴(kuò)孔設(shè)備,再結(jié)合專用設(shè)備編制詳細(xì)的擴(kuò)孔工藝,提出了切實(shí)的解決方案,該 方案具有經(jīng)濟(jì)、實(shí)用、可行等特點(diǎn)。 1.2 擴(kuò)孔技術(shù)要求 E1 立輥軋機(jī)機(jī)架:所加工孔從 300mm 擴(kuò)孔至 520mm,孔實(shí)際長度 292mm,上下孔中心距 1500mm,孔與油缸間隙單邊 5mm。 E1 立輥軋機(jī)機(jī)架下孔相對地面標(biāo)高為+200mm,上孔標(biāo)高為+1700mm,安 裝面標(biāo)高為-1600mm。 E2 立輥軋機(jī)機(jī)架:所加工孔從 260mm 擴(kuò)大到 420mm,孔的實(shí)際長度 108mm,上下孔中心距 1240mm,孔與油缸間隙單邊 5mm。 E2 立輥軋機(jī)機(jī)架下孔相對地面標(biāo)高為+320mm,上孔標(biāo)高為+1560mm,安 裝面標(biāo)高為-1600mm。 1.3 應(yīng)解決的問題 如何對較大孔進(jìn)行擴(kuò)孔,刀桿系統(tǒng)的穩(wěn)定性;現(xiàn)場條件的限制問題;由于 機(jī)架未拆卸下來只能在機(jī)器上加工擴(kuò)孔,必須考慮現(xiàn)場空間大小問題,以及專用 鏜床的生產(chǎn)成本問題。 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 1 緒論 2 1.4 設(shè)計(jì)項(xiàng)目的發(fā)展情況 專用鏜床主要用于特殊孔的加工,結(jié)構(gòu)簡單,應(yīng)用范圍較廣。國內(nèi)外專用 鏜床主要向標(biāo)準(zhǔn)化、高精度、高生產(chǎn)率方向發(fā)展,以適應(yīng)復(fù)雜多變的生產(chǎn)環(huán)境。 1.5 設(shè)計(jì)原理 該專用鏜床主要由刀具系統(tǒng)、變速裝置、動力裝置構(gòu)成。 鏜刀可分為鏜刀頭和鏜刀塊。 鏜桿按支撐形式分為懸臂式和雙支撐式鏜桿。 變速裝置可由齒輪變速或電機(jī)無極變速裝置構(gòu)成,本課題考慮到機(jī)械結(jié)構(gòu) 及成本因素,選用齒輪組變速。 動力裝置主要由各類電機(jī)供給。 本設(shè)計(jì)根據(jù)現(xiàn)有坐標(biāo)鏜床及相關(guān)組合機(jī)床綜合設(shè)計(jì)利用刀具在導(dǎo)軌上做進(jìn) 給運(yùn)動,導(dǎo)軌類似 CA6140 導(dǎo)軌。利用組合支架提供不同高度的孔加工。 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 2 總體設(shè)計(jì) 3 2 總體設(shè)計(jì) 2.1 總體設(shè)計(jì)原則 采用成熟的經(jīng)驗(yàn)或經(jīng)分析實(shí)驗(yàn)驗(yàn)證了的方案;結(jié)構(gòu)簡單,零部件數(shù)量 少;多用標(biāo)準(zhǔn)化、通用化零部件;重視維修性,便于檢修、調(diào)整、拆換; 重視關(guān)鍵零件的可靠性和材料選擇;充分運(yùn)用故障分析成果,及時(shí)反饋,盡 早改進(jìn)。 2.2 工藝分析 設(shè)計(jì)主要參數(shù) E1 立輥軋機(jī)機(jī)架:所加工孔從 300mm 擴(kuò)孔至 520mm,孔實(shí)際長度 292mm,上下孔中心距 1500mm,孔與油缸間隙單邊 5mm。 E2 立輥軋機(jī)機(jī)架:所加工孔從 260mm 擴(kuò)大到 420mm,孔的實(shí)際長度 108mm,上下孔中心距 1240mm,孔與油缸間隙單邊 5mm。 由于加工孔和加工余量較大,并且只能在現(xiàn)場機(jī)器上進(jìn)行擴(kuò)孔,普通擴(kuò)孔 鉆及通用性鏜床無法滿足加工要求,需要利用專用鏜床進(jìn)行擴(kuò)孔,可利用多次 進(jìn)刀完成大余量的切削。 2.3 總體方案的比較 2.3.1 刀桿的安裝形式 刀桿的形式及臥式鏜 床的工藝范圍如圖: 刀桿的安形式: 刀桿直接裝于主軸之 上。 刀桿安裝在平旋盤上。 比較以上方案的優(yōu)缺點(diǎn): 此方案對主軸的旋轉(zhuǎn) 精度、剛度、承載能力要求較高,刀具的最 大伸長量需達(dá)到 292mm,具有較大不穩(wěn)定性,且刀桿較粗,且重力作用較大, 將產(chǎn)生較大撓度,影響加工精度。 此方案因刀桿與主軸不同軸,則產(chǎn)生一定的離心力,不能達(dá)到動平衡, 但可利用加配重的方法,解決這一問題;又因平旋盤的質(zhì)量較大一些,具有惰 圖 2.1 臥式鏜床的工藝范圍 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 2 總體設(shè)計(jì) 4 輪的作用,儲備一定的動能,不易在加工條件發(fā)生變化時(shí)停轉(zhuǎn),刀具能方便裝 夾,容易調(diào)整長度,能實(shí)現(xiàn)一把刀具加工,并使刀具的徑向伸出長度縮短,對 主軸的性能要求降低,主軸只須傳遞一定的轉(zhuǎn)矩即可,刀桿具有較強(qiáng)的剛度。 2.3.2 進(jìn)給方式 進(jìn)給方式可分為:機(jī)械傳動進(jìn)給,手動進(jìn)給。 由于此專用擴(kuò)孔機(jī),為現(xiàn)場改造設(shè)備時(shí)使用,不直接用于工廠生產(chǎn),為節(jié) 約成本,簡化變速機(jī)構(gòu),采用手輪進(jìn)給方式,通過對鐵屑顏色的判別,調(diào)試每 刀進(jìn)給的最佳進(jìn)給量。 按鐵屑顏色、形狀酌情調(diào)整速度;當(dāng)采用高速鋼鏜刀正常切削鋼材時(shí),切 屑應(yīng)成白色,切屑呈藍(lán)色時(shí)說明切削速度選高了;使用硬質(zhì)合金鏜刀切削時(shí), 正常的切屑應(yīng)呈藍(lán)色,當(dāng)出現(xiàn)火花時(shí)說明切削速度選高了,出現(xiàn)黑色切屑則是 切削速度未選足。 2.3.3 升降運(yùn)動形式 升降運(yùn)動選擇:可利用滑座在立柱導(dǎo)軌上進(jìn)行上下升降運(yùn)動,由于為垂 直運(yùn)動且重力較大,人工較為吃力,需采用電機(jī)驅(qū)動,這樣將增加擴(kuò)孔機(jī)的復(fù) 雜性,自身重量及生產(chǎn)成本。由于四個(gè)孔具有固定高度位置,可利用工廠中 經(jīng)常使用的支架設(shè)備,變換不同的高度位置;使主軸箱水平放置于道軌上,可 使安裝更加容易,導(dǎo)軌剛度更高,由于部分孔的高度較高,需增加輔助支撐, 提高支撐剛度;這樣設(shè)計(jì)將大大簡化設(shè)備、降低重量。但生產(chǎn)時(shí)間因安裝支架 而有所增加。 2.3.4 機(jī)床運(yùn)動的分配 由于現(xiàn)場機(jī)架固定不動,因此在鏜孔時(shí),進(jìn)給和升降運(yùn)動必須由刀具運(yùn)動 完成,這樣將影響加工精度,一般情況為刀具只做切削運(yùn)動,而工件進(jìn)給實(shí)現(xiàn) 金屬切削,但本設(shè)計(jì)中屬于特殊情況,需增加機(jī)床剛度,提高加工質(zhì)量。 2.3.5 選擇傳動形式和支撐形式 為了簡化機(jī)床結(jié)構(gòu)、降低生產(chǎn)成本,采用交流異步電機(jī)驅(qū)動機(jī)械裝置傳動, 它具有傳遞功率大,變速范圍較廣,傳動比準(zhǔn)確、工作可靠等優(yōu)點(diǎn)。電機(jī)與主 軸箱之間利用帶輪連接,具有過載保護(hù)、減小振動等優(yōu)點(diǎn);電機(jī)安裝于主軸箱 外部,可減少熱源傳遞熱量到主軸箱影響加工精度。 機(jī)床形式采用臥式結(jié)構(gòu),其結(jié)構(gòu)類似于 CA6140 尾座,可便于安裝,其結(jié) 構(gòu)具有較高的剛度。 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 2 總體設(shè)計(jì) 5 綜上,主軸箱的 大致結(jié)構(gòu)類似與普通鏜銑頭 結(jié)構(gòu),如圖 2.2所示。 擴(kuò)孔機(jī)布置情況 如圖 2.3 所示,此方案結(jié)構(gòu) 簡單緊湊,能滿足現(xiàn)場的加工要求,當(dāng)加工下孔時(shí),移去支撐中箱,加工上孔 時(shí)加上中箱;當(dāng)加工另外兩個(gè)孔時(shí)可在底座的下面加鋼板以滿足孔的位置要求, 不用更換刀具,能快速實(shí)現(xiàn)徑向進(jìn)給。 補(bǔ)充說明,由于皮帶暴露于主軸箱外部,為保證操作人員安全,需加防護(hù) 罩。 圖 2.2 鏜銑削頭 圖 2.3 擴(kuò)孔機(jī)原理圖 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 3 力能參數(shù)計(jì)算 6 3 力能參數(shù)計(jì)算 3.1 鏜削用量的選擇及轉(zhuǎn)矩、功率的確定原則 鏜削用量的選擇原則 鏜削用量直接影響被加工孔的鏜削質(zhì)量和生產(chǎn)效率,對鏜削用量的選擇應(yīng) 盡量的選擇合理、先進(jìn)。鏜用量與工件材料及幾何形狀、工序精度要求、機(jī)床、 刀具工件系統(tǒng)剛度和冷卻情況等許多因數(shù)有關(guān)。 吃刀深度 決定于加工余量。走刀次數(shù)的多少直接影響加工時(shí)間,因此粗pa 鏜時(shí),吃刀深度應(yīng)盡可能取大。本設(shè)計(jì)中選 =5mm。pa 進(jìn)給量 的選擇同吃刀深度類似,粗加工時(shí)主要考慮切削效率。f 切削速度可以憑經(jīng)驗(yàn),根據(jù)孔徑大小、材質(zhì)情況來選擇,亦可以按工件材 料的硬度值,選定的吃刀深度、進(jìn)給量和選取的刀具壽命計(jì)算出來。 3.2 最佳切削用量的選擇 3.2.1 現(xiàn)有鏜孔工藝參數(shù) 根據(jù)現(xiàn)有的鏜孔工藝參數(shù),T612 普通鏜床偏心盤加工孔可以加工到 550mm,主軸電機(jī)功率為 7.5KW;T615-K 普通鏜床偏心盤加工孔可以加工到 950mm,用鏜桿加刀罐可以加工到 700mm。 參考表 ,鏜削用量105-6 表 3.1 工件材料 工序 /minv(/)fr()pam 低碳結(jié)構(gòu)鋼 粗鏜 3070 0.30.6 26 高碳結(jié)構(gòu)鋼 粗鏜 3070 0.30.6 24 查表 鏜削用量12.4- 表 3.2 刀具材料 工件材料 工序 /minv(/)fr()pam 硬質(zhì)合金 鋼、鑄鋼 粗鏜 4060 0.31 58 查表 ,硬質(zhì)合金車外圓縱車切削用量及功率12.4-9 表 3.3 刀具材料 工件材料 (/)fr/inv()mPkw YT15 碳素結(jié)構(gòu)鋼 1.0 1.27 13.1 YT15 碳素結(jié)構(gòu)鋼 1.5 1.05 15.3 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 3 力能參數(shù)計(jì)算 7 綜上,選取 =5mm, ,當(dāng) 選取最佳切削速度pa0.5/fmr260Dm 。40/min.67/cvs 3.2.2 鏜削切削速度、扭矩和切削功率公式 查表 ,鉆孔、擴(kuò)孔和鉸孔切削速度計(jì)算公式12.-8 表 3.4 工件材料 刀具材料 切削速度(m/s) 碳素結(jié)構(gòu)鋼、合金結(jié)構(gòu)鋼 0.637()bGPaYT15 0.60.75.2.3vpdvkTaf 查表 ,鉆孔、擴(kuò)孔和鉸孔的軸向力、扭矩和切削功率計(jì)算公式124-9 表 3.5 工件材料 刀具材料 扭矩( ).Nm切削功率 (kw) 碳素結(jié)構(gòu)鋼、合金 結(jié)構(gòu)鋼 0.637()bGPa 硬質(zhì)合金 YT15 0.75.80959.814pmMdafk02MvPd 3.2.3 主要鏜削參數(shù)的計(jì)算 當(dāng) 時(shí),轉(zhuǎn)力矩2Dm0.75.80959.814pmdafk 查表 ,使用條件變換時(shí)的軸向力和扭轉(zhuǎn)修正系數(shù)1.4-7 查得 , , , 。05fk.3ovkxmk.wf74.089movxmwf (參見式 ).70.8959.8pMda 13. 即 0.75.809524pmfk ..0.956 14N 切削力 (參見式 )0 .612zFD 13.2 由于此切削為恒功率切削,可根據(jù)以下公式初步確定所需的切削功率。 (見式 )0289.4067.32mMvPkwd 13. (式 3.4)169/minnrD 當(dāng) 時(shí)5 由于利用手動調(diào)整進(jìn)給速度達(dá)到恒功率切削,且轉(zhuǎn)速相同可求出切削速度。 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 3 力能參數(shù)計(jì)算 8 (式 3.5)1152017.34/06Dnv ms 由于為恒功率切削 12mMP14.6352089.4Nv 根據(jù) 得.7.509.8pmdafk (見式 ) 0.5.75.81.4pfD 13.6 0.950.758928..9.2/mr 切削力 01.43.zMFN 計(jì)算軸向力和徑向力 查表 ,24- 車鏜時(shí)的切削力及切削功率的計(jì)算公式 切削力 (見式 )zF9.81(60)FzFzzxynpCafvk 23.7 背向力 (見式 )y.()FFyyxnpf 2.8 進(jìn)給力 (見式 )xF9.81(60)FFxxynpCafvk 23.9 表 3.6 切削力 系數(shù)z.zFx.75zFy0.15zFn270zFC 背向力 系數(shù)y09y 6y 3y 9y 進(jìn)給力 系數(shù)x1.x .x .4x 4x 由于機(jī)架材料的性能如下: ZG200-4, , si=0.5, Mn=0.8,02c ,, , ??筛鶕?jù)以下條件選擇系數(shù)。20s40b25 查表 ,鋼和鑄鐵的強(qiáng)度和硬度改變時(shí)切削力的修正系數(shù) 。2-3 mFK 加工材料為結(jié)構(gòu)鋼和鑄鋼時(shí) ()0.67FnbmFK 刀具為硬質(zhì)合金, 時(shí)0.5bGPa 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 3 力能參數(shù)計(jì)算 9 , 。1.0 xFn.35yF 查表 ,加工鑄鐵及鋼時(shí)刀具幾何參數(shù)改變時(shí)切削力的修正系數(shù)。24- 刀具為硬質(zhì)合金時(shí) ,.89ykrFK1.7xkrF 綜上,可求得 ()0.5.63FyynbFmkrF 1.42687().0.FnbFxmkrFxK1.073463 當(dāng) 時(shí),26D0.9. 0.39.815(6)28.94y N1..5.4471706xF 當(dāng) 時(shí),m0.90.60.3.2(1.).2y 1..5.498 984x 3.3 選擇電機(jī) 由于機(jī)床內(nèi)部結(jié)構(gòu)未定,可按下式粗略估算主電機(jī)功率。 (式 )P切主 總 3.10 為機(jī)床總的機(jī)械效率,主運(yùn)動為旋轉(zhuǎn)運(yùn)動的機(jī)床, 0.70.85,機(jī)總 總 構(gòu)較簡單和主軸轉(zhuǎn)速較低時(shí) 取大值。根據(jù)本設(shè)計(jì)的特點(diǎn)選擇 0.85。總 總4.635.708Pkw切主 總 根據(jù)上述計(jì)算選擇初選電機(jī)。 選擇型號為 Y132-M2-6 電機(jī),額定功率為 5.5KW,滿載轉(zhuǎn)速為 960r/min, 同步轉(zhuǎn)速為 1000 r/min,轉(zhuǎn)動慣量為 0.0449 ,凈重為 85kg。2kgm 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 4 擴(kuò)孔機(jī)傳動系統(tǒng)設(shè)計(jì) 10 4 擴(kuò)孔機(jī)傳動系統(tǒng)設(shè)計(jì) 根據(jù)設(shè)計(jì)要求傳動原理圖,如圖 4.1: 4.1 確定總傳動比 由電機(jī)滿載轉(zhuǎn)速為 960r/min 及恒定切削轉(zhuǎn)速 49r/min 得: 總傳動比 。9601.524i 主軸箱采用二級齒輪傳動,在設(shè)計(jì)機(jī)床傳動時(shí),為防止傳動比過小造成從 動輪太大,增加變速箱的尺寸,一般限制最小傳動比為 ,螺旋圓柱齒min1/4 輪 ,綜合選擇圓柱斜齒輪傳動,選擇傳動比 。max2.5i 2.5 4.2 分配傳動裝置的傳動比 在主軸箱內(nèi),從電機(jī)到主軸通過帶輪傳動,可使機(jī)床結(jié)構(gòu)更加緊湊,傳動 更加平穩(wěn),利用平均分配傳動比及盡量減小主軸箱尺寸、降低加工難度,選擇 兩對圓柱斜齒輪傳動,一普通 V 帶傳動,并選擇 V 帶傳動比為: 。3.2vi 查表 ,常見機(jī)械傳動的主要性能41 表 4.1 類型 傳遞功率(kw) 速度(m/s) 效率 傳動比 普通帶輪傳動 500 2530 0.940.97 24 二級減速器 50 540 0.940.96 840 圖 4.1 擴(kuò)孔機(jī)傳動原理圖 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 4 擴(kuò)孔機(jī)傳動系統(tǒng)設(shè)計(jì) 11 4.3 計(jì)算總的機(jī)械效率 滾動軸承(每對)傳動效率 0.980.995 圓柱齒輪(每對)傳動效率 0.960.99(閉式) 0.940.97(開式) 普通 V 帶傳動 0.940.97 計(jì)算從電機(jī)軸到主軸的傳動效率分別為: 01.962783.4 (式 )420.960.9.8總 4.1 4.4 計(jì)算傳動裝置各軸的運(yùn)動和動力參數(shù) (1) 各軸轉(zhuǎn)速(以下三軸為主軸箱內(nèi)傳動軸) 軸 0963/min.2mnri 軸 15. 軸 248/in.nri 根據(jù)以上計(jì)算,更改第 3 節(jié)力能參數(shù)所確定的轉(zhuǎn)速 為49/minr 。48/minr (2) 各軸輸入功率 軸 015.96.43dPkw 軸 27085.1 軸 3..9 鏜桿 4 .624k鏜 桿 (3) 各軸輸入轉(zhuǎn)矩 電動機(jī)軸輸出轉(zhuǎn)矩 (式 )5.950.71960ddmPTNmn24. 軸 014.32.68.di 軸 1268.5097.39.4Ti N 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 4 擴(kuò)孔機(jī)傳動系統(tǒng)設(shè)計(jì) 12 軸 2349.250.978.09783.1Ti Nm 4.5 帶傳動設(shè)計(jì) 設(shè)計(jì)要點(diǎn) a) 設(shè)計(jì)所需的原始數(shù)據(jù)主要是:工件條件及對外輪廓尺寸、傳動位置的要 求;原動機(jī)種類和所需的傳動功率;主動輪和從動輪的轉(zhuǎn)速等。 b) 設(shè)計(jì)計(jì)算需確定的主要內(nèi)容是:V 帶傳動的型號、長度和根數(shù);中心距、 安裝要求對軸的作用力;帶輪直徑、材料、結(jié)構(gòu)尺寸和加工要求等。 c) 設(shè)計(jì)時(shí)應(yīng)注意檢查帶輪尺寸和傳動裝置外輪廓尺寸的相互關(guān)系。 d) 帶輪結(jié)構(gòu)形式主要由帶輪直徑大小而定。 e) 應(yīng)計(jì)算出初拉力以便安裝時(shí)檢查張緊要求及考慮張緊方式。 帶傳動設(shè)計(jì)計(jì)算 查表 (以下帶傳動設(shè)計(jì)所查圖表均來自14) ,普通 V 帶和基準(zhǔn)寬148-2 度制窄 V 帶設(shè)計(jì)計(jì)算(摘自 GB/T 1375.1-1992) 。 1) 設(shè)計(jì)功率 根據(jù)工作情況由表 8-1-26 查得工況系數(shù) 1AK (式 4.3)15.dApKPkw 2) 選擇帶型 根據(jù) 和 ,由圖 8-1-3 選擇 A 型皮帶。.dk096/minnr 3) 確定傳動比 根據(jù)機(jī)械系統(tǒng)傳動比分配 。3.2i 4) 小帶輪的基準(zhǔn)直徑 1d 由表 8-1-15 和表 8-1-17 取小帶輪基準(zhǔn)直徑 =100mm。1d 5)大帶輪基準(zhǔn)直徑 213.02dim 6)帶速 v1965.03/dDns 7)初定軸間距 0a1212.()()dd0330 ,取 =350mm。0948 8) 所需 V 帶基準(zhǔn)長度 0dL120120()2()4ddLaa (見式 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 4 擴(kuò)孔機(jī)傳動系統(tǒng)設(shè)計(jì) 13 )14. 20235041394.5m 查表 8-1-8 選取 。dL 9) 實(shí)際軸間距 a (見式 )001439.3552.82d14.5 min..801Lm ax 4.d 10)小帶輪包角 1 (見式 )2118057.3d 14.6 3. 4.2 11) 單根 V 帶的基本額定功率 1P 根據(jù) =100mm 和 ,由表 8-1-33 查得 V 帶 。1d960/minnr10.97P 12) 額定功率的增量 1 根據(jù) 和 ,由表 8-1-33(c)查得 A 型 V 帶的1960/inr3.2 。1.5Pkw 13) V 帶的根數(shù) Z 根數(shù)計(jì)算公式如下: (見式 )1()dlzk 14.7 根據(jù) 查表 8-1-27 得 。4.27 0.91k 根據(jù) 查表 8-1-29 得 。0dLm6l5..7(.9)91.6z 取 根。6 14) 單根 V 帶的預(yù)緊力 0F 查表 8-1-28 查得 A 型帶單位長度質(zhì)量為 0.1/mkg (見式 )202.5(1)dPFmvk 14.82..0.15948.N 15) 壓軸力 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 4 擴(kuò)孔機(jī)傳動系統(tǒng)設(shè)計(jì) 14 (式 4.9)102sinQFZ4.348.6259N 16) 帶輪寬度 (式 4.10)(1)Bzef6293m 4.6 傳動斜齒輪的設(shè)計(jì)計(jì)算 由于軸間所受載荷較大,先選擇設(shè)計(jì)此二軸間的圓柱斜齒輪,主軸 箱內(nèi)的兩對斜齒輪傳遞均相對較小,因此采用軟齒面齒輪傳動。 4.6.1 選定齒輪類型、精度等級、材料及齒數(shù) 按傳動方案,選用圓柱斜齒齒輪傳動。擴(kuò)孔機(jī)是一般專用機(jī)器,速度不高, 故選用 7 級精度(GB10095-88) 。選擇小齒輪材料為 45Cr(調(diào)質(zhì)) ,硬度為 280HBS,大齒輪的材料選用 45 鋼(調(diào)質(zhì))硬度為 240HBS,其材料硬度相差 40HBS。取小齒輪齒數(shù) =24,大齒輪齒數(shù) ,取1z2.52476.8zi =77。并初選螺旋角 。 (以下齒輪設(shè)計(jì)圖表及設(shè)計(jì)過程均參見6)2z4 4.6.2 按齒面接觸強(qiáng)度設(shè)計(jì) 由設(shè)計(jì)公式進(jìn)行計(jì)算,即 (見式 ) 3212.t EtdHKTZud 14. 1) 確定公式內(nèi)的各計(jì)算參數(shù) (1)試選用載荷系數(shù) =1.6。t (2)計(jì)算小齒輪傳遞的轉(zhuǎn)矩 1T=39.4NM (3)查表 10-7 選取齒寬系數(shù) =1。d (4)由表 10-6 查得材料的彈性系數(shù) 。1289.EaZMP (5)由圖 10-21d 按齒面硬度查得小齒輪的接觸疲勞強(qiáng)度極限 ,lim160HaMP 大齒輪的接觸疲勞強(qiáng)度極限 。lim250Ha (6)根據(jù)應(yīng)力循環(huán)次數(shù) (式 4.12)710610(831).4560hNnjL 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 4 擴(kuò)孔機(jī)傳動系統(tǒng)設(shè)計(jì) 15 7723.45610.8N (7)由圖 10-19 查得接觸疲勞壽命系數(shù): , 。1.HK2.4HN (8)計(jì)算接觸疲勞許用應(yīng)力 計(jì)算過程及說明 取失效概率為 1,安全系數(shù) S=1,得 (式 4.13)lim1.36078HNMPaS2li452K (9)又圖 1030 選取區(qū)域系數(shù) 。HZ.3 (10)又圖 1026 查得 , ,則 。10.782712.65 (11)許用接觸應(yīng)力 1265.HMPa 2) 計(jì)算 (1)試計(jì)算小齒輪的分度圓 ,代入 中較小的值1tdH (見式 ) 3213 232.69.410..43189.526580t EtdHKTZum14. (2)計(jì)算圓周速度 v1802.5/60tdnvms (3)計(jì)算齒寬及模數(shù) 由表 107 取 =1.2d180dtb 計(jì)算齒寬和齒高之比 b/h 模數(shù): (式 4.15)11 cos8cos4/23.nttmzm 齒高: 2.5.37.hb/807=9 (4)計(jì)算縱向重合度 (式 4.16)1.3tan0.8124tan1.903dZ (5)計(jì)算載荷系數(shù) K 根據(jù) v=0.5 m/s,齒輪 7 級精度,由圖 10-8 查得動載系數(shù) Kv=1.02 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 4 擴(kuò)孔機(jī)傳動系統(tǒng)設(shè)計(jì) 16 斜齒輪,假設(shè) 。由圖 103 查得/10/AtKFbNm 1.HaFK 表 10-2 查得兩段的齒輪的使用系數(shù) .251A 由表 10-4,7 級精度、小齒輪相對支承對稱布置時(shí) (式 4.17)23.8().0Hdb 將數(shù)據(jù)代入后得 31.0.618.426K 由 , =1.426,查圖 10-13 得 =1.35b/h72=9 HK FK 故載荷系數(shù) (式 4.18).502.3.5AVH (6)按實(shí)際的載荷系數(shù)校正所算得的分度圓直徑,由式(1010a)可得 (見式 ) 331.89.16tdmK 14.9 (7)計(jì)算模數(shù) (見式 )cos93.5cs4.782mz1 14.20 4.6.3 按齒根彎曲強(qiáng)度設(shè)計(jì) 設(shè)計(jì)計(jì)算公式 (式 4.21) 32FaSdYKTz 1)確定計(jì)算公式內(nèi)的各計(jì)算參數(shù) (1)計(jì)算載荷系數(shù) K (式 4.23)1.50.41352.AVHF (2)根據(jù)縱向重合度 ,查得螺旋角影響系數(shù) 。9 0.8Y (3)計(jì)算當(dāng)量齒數(shù) (式 4.24)133246.7cos1vZ 28.9v (4)查取齒形系數(shù) 由表 10-5 查得 , ;1.59FaY2.1FaY (5)查取應(yīng)力校正系數(shù) 由表 10-5 可查得 , ;1.6Sa2.74Sa (6)計(jì)算彎曲疲勞許用應(yīng)力 取彎曲疲勞安全系數(shù) S=1.4 由圖 10-20c 查得小齒輪的彎曲疲勞強(qiáng)度極限 ;大齒輪的彎150FEMPa 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 4 擴(kuò)孔機(jī)傳動系統(tǒng)設(shè)計(jì) 17 曲疲勞強(qiáng)度極限 。2380FEMPa 由圖 10-18 查得彎曲疲勞壽命系數(shù) , ;10.9FNK.95N 由下式得 (式 4.25)10.324FEaS2851.NF MP (7)計(jì)算大、小齒輪的 并加以比較FaSY (式 4.26)1.59.60.253FaSY2.1.74.128F 由上式可得大齒輪的數(shù)值較大。 2)設(shè)計(jì)計(jì)算 3123 22.490.8(cos14)0.7652.1FaSdYKTmz 對比計(jì)算結(jié)果,由齒面接觸疲勞強(qiáng)度計(jì)算得法面模數(shù) 大可選擇齒根彎曲nm 疲勞強(qiáng)度計(jì)算得法面模數(shù),取 ,已可滿足彎曲強(qiáng)度。但為了同時(shí)滿足3nm 接觸疲勞強(qiáng)度,需按接觸疲勞強(qiáng)度算得的分度圓直徑 來計(jì)算應(yīng)有的齒180d 數(shù)。 1cos80cs1425.863dZ2.63i 4.6.4 幾何尺寸計(jì)算 1)計(jì)算分度圓直徑 280cos14nzmdm3572 2)計(jì)算中心距 (式 4.27)802168.9da1 3) 按圓整后的中心距修正螺旋角 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 4 擴(kuò)孔機(jī)傳動系統(tǒng)設(shè)計(jì) 18 (式 4.28)121093()4.65nZmarcarc 4)計(jì)算齒輪寬度 18db 圓整后取 。2170,B 5)驗(yàn)算 (式 4.29)139.48tTFNd ,合適。.7025/10/AtKmb 4.6.5 計(jì)算軸間圓柱斜齒輪 同理,計(jì)算軸間的一對圓柱斜齒輪得標(biāo)準(zhǔn)模數(shù) 2.5nm 小齒輪齒數(shù) =24,大齒輪齒數(shù) ,取 =771z2.54768ziz 螺旋角 。42.56cosnmdm171984z2 中心距 (式 4.30)1230da 齒寬選擇 15,6B 4.6.6 齒輪的結(jié)構(gòu)設(shè)計(jì) 因兩個(gè)小齒輪分度圓直徑均小于 160mm,可做成實(shí)心齒輪,而兩個(gè)大齒輪均 大于 160mm,可做成空心結(jié)構(gòu)齒輪以減小轉(zhuǎn)動慣量,降低電機(jī)驅(qū)動功率。齒輪 的具體結(jié)構(gòu)參見附錄零件圖。 4.7 軸的結(jié)構(gòu)設(shè)計(jì) 由于第軸承受的載荷較大,先對第進(jìn)行設(shè)計(jì)。 4.7.1 軸設(shè)計(jì)的主要內(nèi)容 軸結(jié)構(gòu)設(shè)計(jì)的一般原則 (1) 軸上零件的布置應(yīng)使受力合理; (2) 軸上零件的定位可靠,裝拆方便; (3) 采用各種減小應(yīng)力集中和提高疲勞強(qiáng)度的措施; (4) 有良好的結(jié)構(gòu)工藝性,便于加工制造和保證精度; (5) 對于要求剛性大的軸,還應(yīng)從結(jié)構(gòu)上考慮減小軸的變形。 軸的結(jié)構(gòu)設(shè)計(jì)是根據(jù)軸上零件的安裝、定位以及軸的制造工藝等方面的要 求,合理的確定軸的結(jié)構(gòu)形式和尺寸。軸的結(jié)構(gòu)設(shè)計(jì)不合理,會影響軸的工作 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 4 擴(kuò)孔機(jī)傳動系統(tǒng)設(shè)計(jì) 19 能力和軸上零件的工作可靠性,還會增加軸的制造成本和軸上零件裝配的難度 等。因此軸的結(jié)構(gòu)設(shè)計(jì)是軸設(shè)計(jì)中的重要內(nèi)容。 軸的工作能力所指的是軸的強(qiáng)度、剛度、振動、穩(wěn)定性等方面的計(jì)算。多 數(shù)情況下,軸的工作能力主要取決于軸的強(qiáng)度。 4.7.2 軸的材料 材料主要是碳鋼和合金鋼。鋼軸的毛坯多數(shù)用軋制圓鋼和鍛件,有的則直 接用圓鋼。 由于碳鋼比合金鋼價(jià)廉,對應(yīng)力集中的敏感性較低,同時(shí)也可以用熱處理或 化學(xué)熱處理的辦法提高耐磨性和抗疲勞強(qiáng)度,故采用碳鋼制造軸尤為廣泛,其 中最常用的是 45 鋼。常見幾種鋼材的特性如下: 表 4.2 材料牌 號 熱 處 理 毛坯直 徑 (mm) 硬度 (HBS) 抗拉強(qiáng) 度極限 (MPa) 彎曲疲勞 極限 (MPa) 剪切疲 勞極限 (MPa) 需用彎曲 應(yīng)力 (MPa) 45 正 火 100 170217 590 255 140 55 40Cr 調(diào) 質(zhì) 100 241286 735 355 200 70 40CrNi 調(diào) 質(zhì) 100 270300 900 430 260 75 45 鋼應(yīng)用最廣泛,材料獲得較為方便,且有優(yōu)良的性能;40Cr 合金鋼用于 載荷較大,而無很大沖擊的重要軸;40CrNi 具有較高的力學(xué)性能,用于重要軸。 根據(jù)此專用擴(kuò)孔機(jī)的受力特點(diǎn)及生產(chǎn)條件,第軸選擇 45 鋼。 4.7.3 軸的設(shè)計(jì)計(jì)算 21048/min.5nri37.904.15Pkw242970.8.9783.1Ti Nm 求作用在齒輪上的力 因低速級大齒輪的分度圓直徑為 28357cos1nzmdm29.60.0tTFNantan25.614.9coscos.5rt697t87at 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 4 擴(kuò)孔機(jī)傳動系統(tǒng)設(shè)計(jì) 20 4.7.4 按扭轉(zhuǎn)強(qiáng)度初步估算軸徑 主軸材料 45 鋼,調(diào)質(zhì)到 HB220250 左右,45 鋼 T=45Mpa,又 。4.915,8/minPkwr 根據(jù)公式 (見式 )3950.2TPd 14.33417..8 當(dāng)軸上有鍵槽時(shí),應(yīng)增大軸徑以考慮鍵槽對軸強(qiáng)度的削弱,對于 的軸,有一個(gè)鍵槽時(shí),軸徑增大 57。10dm 另調(diào)整 為 (15)50mm47. 同理,求得、軸的最小直徑分別為 , 31min950.43926.8.2dm32in950.1735.2.4dm 輸出的最小直徑顯然是安裝平旋盤處的直徑 ,選擇此處 ,0d 為螺紋 。M 4.7.5 軸的機(jī)構(gòu)設(shè)計(jì) 1)擬定軸上零件的裝配方案 現(xiàn)選用圖所示的裝配方案及結(jié)構(gòu)。 圖 4.2 軸的結(jié)構(gòu)圖 2)根據(jù)軸向定位的要求確定軸的各段直徑和長度 (1)為了滿足平旋盤的軸向定位要求,-軸段右端需制出一軸肩,故取 -的直徑 ;平旋盤與軸配合的應(yīng)略長 2mm,使螺母提供一定5Vdm 的軸向預(yù)緊力。 (2)初步選擇滾動軸承。因軸承主要受徑向力的作用,故用單列角接觸球軸承。 參照工作要求并根據(jù) ,由軸承產(chǎn)品目錄中初步選取 0 基本游隙組、0 標(biāo)準(zhǔn)精度級的單列角接觸 7011AC,其尺寸為 ,5918dDBm 故 ;而 。5Vdm19Vlm 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 4 擴(kuò)孔機(jī)傳動系統(tǒng)設(shè)計(jì) 21 (3)取安裝齒輪處的軸段-的直徑 ;齒輪的左端采用彈性擋62Vdm 圈定位。已知齒輪輪轂的寬度為 70,齒輪的右端采用軸肩定位,軸肩高度 ,取 ,則軸環(huán)處的直徑 。軸環(huán)寬度 ,取0.7hd5hm70 1.4bh 。2Vl 3)軸上零件的周向定位 齒輪、平旋盤與軸的周向定位均采用鍵聯(lián)接。 用 A 型平鍵,由手冊查Vd 得 A 型平鍵截面 (GB109679) ,鍵長為 63mm,同時(shí)為了保證齒輪與18 軸配合有良好的對中性,故選取齒輪輪轂與軸的配合為 ;同樣,平旋盤76Hn 與軸的聯(lián)接,選用 C 型平鍵為 (GB1096 79) ,平旋盤與軸的配合1608 為 。滾動軸承與軸的周向定位是借助過渡配合來保證的,此處選軸的直7Hk 徑尺寸公差為 。6m 4)確定軸上圓角和倒角尺寸 參考表 ,取軸端倒角為 ,各軸肩處的圓角半徑均為 1mm。145-2145 4.7.6 求軸上的載荷 在確定軸承的支點(diǎn)位置時(shí),應(yīng)從手冊14中查取 值。對于 7011AC 型角接a 觸球軸承,由手冊14 中查得 。因此,作簡支梁的軸的支承跨距29.5am 。根據(jù)軸的計(jì)算簡圖作出軸的彎矩圖和扭矩圖 4.3 所示。379.5lm 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 4 擴(kuò)孔機(jī)傳動系統(tǒng)設(shè)計(jì) 22 圖 4.3 彎矩圖和扭矩圖 從軸的結(jié)構(gòu)圖以及彎矩和扭矩圖中可以看出截面 C 是軸的危險(xiǎn)截面?,F(xiàn)將 計(jì)算出軸的受力情況。 (式 4.32)120NHtF (式 4.33)23()tll 由上式求得 236950.71.253tNHlFN12.48tNH (式 4.34)0NVr (式 4.35)232()Fll 由上式求得 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 4 擴(kuò)孔機(jī)傳動系統(tǒng)設(shè)計(jì) 23 23614.937.45.rNVFl N12..169.rNV (式 4.37)481708HMl m1269.53.2.5vNVF23(1).34l N 表 4.3 載荷 水平面 H 垂直面 V 支反力 F 1438N25169.5NF24V 彎矩 M 1.Vm8.3Mm 總彎矩 22608498.56072.134.N 扭矩 T 31N 4.7.7 按彎扭合成應(yīng)力校核的軸的強(qiáng)度 進(jìn)行校核時(shí),只需對軸上承受最大彎矩和扭矩的截面(即危險(xiǎn)截面 C)的 強(qiáng)度。根據(jù)3365 頁公式 155 及上表中的數(shù)值,并取 ,軸的計(jì)算應(yīng)力0.6a (見式 ) 33 36297.8Wdm 14.38 (見式 ) 2 22 250..691036378caMTMPa14.9 前已選定軸的材料為 45 鋼,調(diào)質(zhì)處理,由3355 頁表 151 查得 。因此 ,故安全。15P1ca 4.7.8 精確校核軸的疲勞強(qiáng)度 1) 判斷危險(xiǎn)截面 截面 A,,,B 只受扭矩作用,雖然鍵槽、軸肩及過渡配合所引起的 應(yīng)力集中均將削弱軸的疲勞強(qiáng)度,但由于軸的最小直徑是按扭轉(zhuǎn)強(qiáng)度較為寬裕 地確定的,所以截面 A,,,B 均無需校核。 從應(yīng)力集中對軸的疲勞強(qiáng)度的影響來看,截面和處過盈配合引起的應(yīng) 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 4 擴(kuò)孔機(jī)傳動系統(tǒng)設(shè)計(jì) 24 力集中最為嚴(yán)重;從受載的情況來看,截面 C 上的應(yīng)力最大。截面 V 的應(yīng)力集 中的影響和截面的相近,但截面不受扭矩作用,同時(shí)軸徑也較大,故不必 作強(qiáng)度校核。截面 C 上雖然應(yīng)力最大,但應(yīng)力集中不大(過盈配合及鍵槽引起 的應(yīng)力集中均在兩端) ,而且這里的軸徑最大,故截面 C 不必校核。截面和 顯然更不必校核。鍵槽的應(yīng)力集中系數(shù)不過盈配合小,因而該軸的校核截面 左右兩側(cè)即可。 2)截面左側(cè) 抗彎截面系數(shù) (式 4.40)3330.1.5167.5Wdm 抗扭截面系數(shù) (式 4.41)22T 截面左側(cè)的彎矩 M 為 (式 4.42)7.6.8480.13Nm 截面上的扭矩 3 (式 4.43)90TNm 截面上的彎矩應(yīng)力 (式 4.44)4812.79.635b MPaW 截面上的扭矩切應(yīng)力 (式 4.45)0.4T 軸的材料為 45 鋼,調(diào)質(zhì)處理。由表 151 查得 ,640ba , 。1275MPa15Pa 截面上由于環(huán)槽而形成的理論集中系數(shù) 及 ,查14表 5114 環(huán)槽 處有效應(yīng)力集中系數(shù)得,因 , ,經(jīng)插值后可查得0.86rd2.75Dd ,2.761.82 又由附表 31 查得軸的敏感系數(shù)為 ,0.q.5 故有效應(yīng)力集中系數(shù)為 (式 4.46)()0.82(.761)2.4k (式 4.47)11 由表 5116 查得絕對尺寸影響系數(shù) ,扭轉(zhuǎn)尺寸系數(shù) 。0.80.76 軸按磨削加工,由附表查得表面質(zhì)量系數(shù)為 0.92 軸未經(jīng)表面強(qiáng)化處理,即 ,計(jì)算綜合系數(shù)為1q1.43.80.92k.7.6 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 4 擴(kuò)孔機(jī)傳動系統(tǒng)設(shè)計(jì) 25 碳鋼的特性系數(shù) 取0.12:0.1 取5 5 于是計(jì)算安全系數(shù) (見式 )1273.053.91.camSk 14.8 (見式 )1 4.876.846.2..2 14.9 (見式 )223.057.51..caS:14.50 故可知其安全。 3)截面右側(cè) 抗彎截面系數(shù) 3330.1.6282.Wdm 抗扭截面系數(shù) 4765T 截面右側(cè)的彎矩 M 為 .157.80.3Nm 截面上的扭矩 3 90TNm 截面上的彎矩應(yīng)力 4812.70.3b MPaW 截面上的扭矩切應(yīng)力 39.465.T 軸的材料為 45 鋼,調(diào)質(zhì)處理。由表 151 查得 ,640ba , 。1275MPa15Pa 查表 環(huán)槽處有效應(yīng)力集中系數(shù)得 4 過盈配合處的 值,用插值法求出,并取 ,于是得/k /.8/k ,/.k0.8/.25 軸按磨削加工,由附表查得表面質(zhì)量系數(shù)為 .92 軸未經(jīng)表面強(qiáng)化處理,即 ,計(jì)算綜合系數(shù)為1q1.53.092k 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 4 擴(kuò)孔機(jī)傳動系統(tǒng)設(shè)計(jì) 26 1212.30.9k 碳鋼的特性系數(shù) 取0.:. 取51 5 于是計(jì)算安全系數(shù) 275.23.90.31camSk1 7.98.48.4..22531.5.3.9caS: 故可知其安全。 4.7.9 對軸進(jìn)行設(shè)計(jì) 1) 軸的設(shè)計(jì)計(jì)算 1250/min.nri2439.7085.1Pkw1693.4Ti Nm 求作用在齒輪上的力 圖 4.4 軸受力分析圖 對軸進(jìn)行受力分析,如圖 4.4 所示: 由第軸上齒輪受力可知 16950tFN24.r87a 因低速級大齒輪的分度圓直徑為 219cosnzmd 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 4 擴(kuò)孔機(jī)傳動系統(tǒng)設(shè)計(jì) 27 239.40518tTFNd2tantan213.coscosrt4035t06a 2)按扭轉(zhuǎn)強(qiáng)度初步估算軸徑 主軸材料 45 鋼,調(diào)質(zhì)到 HB220250 左右,45 鋼 T=45Mpa,又 。5.17,2/minPkwr 根據(jù)公式 3950.TPd317.24 當(dāng)軸上有鍵槽時(shí),應(yīng)增大軸徑以考慮鍵槽對軸強(qiáng)度的削弱,對于 的軸,有一個(gè)鍵槽時(shí),軸徑增大 57。10dm 另調(diào)整 為 (15)35mm3 輸出的最小直徑顯然是安裝軸承的直徑 ,選擇此處 。d35dm 3)軸的機(jī)構(gòu)設(shè)計(jì) (1)擬定軸上零件的裝配方案 現(xiàn)選用圖 4.5 所示的裝配方案及結(jié)構(gòu)。 圖 4.5 軸的結(jié)構(gòu)圖 (2)根據(jù)軸向定位的要求確定軸的各段直徑和長度 為了滿足軸承的軸向定位要求,-軸段右端需制出一軸肩,故取- 的直徑 。軸段為實(shí)心軸齒輪,軸段安裝大齒輪,齒45dm 輪寬為 ,為了便于軸套安裝,在安裝齒輪軸段需比齒輪寬度略短。l (4) 初步選擇滾動軸承 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 4 擴(kuò)孔機(jī)傳動系統(tǒng)設(shè)計(jì) 28 因軸承主要受徑向力的作用并有一定得軸向力,故用單列角接觸球軸承。 參照工作要求并根據(jù) , ,由軸承產(chǎn)品目錄中初步選40dmV35dm 取 0 基本游隙組、標(biāo)準(zhǔn)精度級的單列角接觸球軸承 7207AC,其尺寸分別為: , ,4918dDB721DB 。53Vlm (3)取安裝大齒輪處的軸段-的直徑 ;大齒輪的右端采用軸40Vd 套定位。已知齒輪輪轂的寬度為 55mm,齒輪的左端采用軸肩定位,軸肩高度 ,取 ,則軸環(huán)處的直徑 。軸環(huán)寬度 ,0.7hdh6m 1.4bh 取 。2Vl (4)軸上零件的周向定位 齒輪與軸的周向定位均采用鍵聯(lián)接。 用 A 型平鍵,由手冊查得 A 型Vd 平鍵截面 (GB109679) ,鍵長為 50mm,同時(shí)為了保證齒輪150,6Ahm 與軸配合有良好的對中性,故選取齒輪輪轂與軸的配合為 。76Hn (5)確定軸上圓角和倒角尺寸 參考表 ,取軸端倒角為 ,各軸肩處的圓角半徑均為 1mm。142145 (6)求軸上的載荷 在確定軸承的支點(diǎn)位置時(shí),應(yīng)從手冊中查取 值。對于 7207AC 型角接觸a 球軸承,由手冊中查得 。因此,作簡支梁的軸的支承跨距29.am 。根據(jù)軸的計(jì)算簡圖作出軸的彎矩圖和扭矩圖如圖 4.6 所示:37lm 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 4 擴(kuò)孔機(jī)傳動系統(tǒng)設(shè)計(jì) 29 圖 4.6 軸的彎矩圖和扭矩圖 從軸的結(jié)構(gòu)圖以及彎矩和扭矩圖中可以看出截面 B 是軸的危險(xiǎn)截面?,F(xiàn)將 計(jì)算出軸的受力情況。 已知 56,25ABCDBClml 水平方向 12120NHttFF 對 A 點(diǎn)求力偶得 122tBNHADtClll 由上式求得 214035(62)950.7629.5tAtBNHDFll N1212..1ttNH 垂直方向 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 4 擴(kuò)孔機(jī)傳動系統(tǒng)設(shè)計(jì) 30 12120NVrFF 對 A 點(diǎn)求力偶得 A212NVBrrDlll 由上式求得 122614.953.2817.7rABrCNVDFll N112...4.rNV87061NVa 表 4.4 載荷 水平面 H 垂直面 V 支反力 F 152N09.1274.NF8V 彎矩 M 173Hm2530.8N46H10Mm237.V 總彎矩 21192670Vm22184HM233VN4429H 扭矩 T 390.Nm (7)按彎扭合成應(yīng)力校核的軸的強(qiáng)度 進(jìn)行校核時(shí),只需對軸上承受最大彎矩和扭矩的截面(即危險(xiǎn)截面 B)的 強(qiáng)度。根據(jù)3365 頁公式 155 及上表中的數(shù)值,并取 ,軸的計(jì)算應(yīng)力0.6a2 22239670.947398caMTMPW 前已選定軸的材料為 45 鋼,調(diào)質(zhì)處理,由3355 頁表 151 查得 。因此 ,故安全。15P 1ca 攀枝花學(xué)院本科畢業(yè)設(shè)計(jì)(論文 ) 4 擴(kuò)孔機(jī)傳動系統(tǒng)設(shè)計(jì) 31 同理,對軸進(jìn)行設(shè)計(jì),由于軸小于以上兩軸得載荷,無需進(jìn)行強(qiáng)度校 核。 確定最小直徑為 。 31min950.43926.8.2dm 軸的具體結(jié)構(gòu),如圖 4.9 所示: 圖 4.9 軸的結(jié)構(gòu)圖 4.8 對所有選用鍵進(jìn)行強(qiáng)度校核 已知軸上選擇鉤頭楔鍵 1087bhl 軸上選擇圓頭普通平鍵 250A 軸上選擇圓頭普通平鍵 63l 對所有鍵進(jìn)行強(qiáng)度校核 軸上鉤頭楔鍵 已知 ,對鑄鐵和鋼 選擇 ,1680TNm0.12.7f:0.14f 。,7,3bmLd 根據(jù) (見式 )12()ppGbf 14.5 68081.2107(.43)p p 查表 333 鍵的連接的許用應(yīng)力 ,因此符合設(shè)計(jì)要求。0MPa 軸上圓頭普通平鍵 根據(jù) , 得2ppTkld2Tdbl 已知 ,23940Nm1,50,4,42hLmdk
收藏