喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有請放心下載,原稿可自行編輯修改=====================【QQ:1304139763可咨詢交流】喜歡就充值下載吧。。
喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有請放心下載,原稿可自行編輯修改=====================【QQ:1304139763可咨詢交流】喜歡就充值下載吧。。
喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有請放心下載,原稿可自行編輯修改=====================【QQ:1304139763可咨詢交流】喜歡就充值下載吧。。
江蘇廣播電視大學
畢業(yè)設計論文(說明書)
設計課題:
市校 淮安市直 分校(辦學點)
04級 機電一體化 專業(yè)
學生姓名 學號
指導教師姓名:馮正國 職稱 講師
目錄
摘要: 3
第一章封閉板成形模及沖壓工藝 4
設計任務書 4
一、選題的依據(jù)及課題的意義 4
二、國內外研究概況及發(fā)展趨勢 5
三、實驗方案 6
4.結論 7
第二章封閉板成形模及沖壓工藝設計 8
2.1 零件結構及工藝分析 8
2.1.1 零件結構 8
2.1.2 工藝分析 9
第三章 落料模設計 10
3.1落料毛坯形狀和尺寸的確定 10
3.2彎曲成形部分的毛坯形狀和尺寸的計算 11
3.2.1三處翻邊成形的毛坯尺寸的確定和計算 12
3.3排樣和裁板 14
3.3.1確定排樣方式并計算材料利用率 14
3.3.2裁板 15
3.4落料模結構設計 16
3.4.1總體結構 16
3.4.2導向裝置 17
3.4.3定位裝置 17
3.4.3卸料裝置 17
3.5 落料模工藝計算 17
3.5.1計算沖壓力 17
3.5.2確定壓力中心 18
3.5.3凸、凹模刃口尺寸及制造公差 19
3.6工作零件的設計 20
3.6.1 凹模設計 20
3.6.2凸模設計 21
3.7卸料元件的設計 21
3.7.1卸料橡膠的選用和設計 21
3.7.2卸料螺釘?shù)脑O計 23
3.8設計其它零件并校核壓力機 23
3.8.1其它零件的設計及選用 23
3.8.2校核壓力機 24
第四章 雙向彎曲(翻邊)成形模設計 25
4.1成形模結構設計 25
4.1.1總體結構 25
4.1.2工作原理 27
4.2 成型模工藝計算 27
4.2.1彎曲力的計算 27
4.2.2回彈量的確定 29
4.2.3 計算壓力中心 29
4.2.4工作部分尺寸計算 29
4.3關鍵零件的設計 30
4.3.1凹模設計 30
4.3.2翻邊凸模設計 31
4.3.3彈簧的設計 31
4.4 設計其它零部件并校和核壓力機 32
4.4.1 模座的選用 32
4.4.2 定位裝置的設計 33
4.4.3頂料板的設計 33
4.4.4彎曲凸模的設計 33
4.4.5計算閉合高度并校核壓力機 33
參考文獻 34
封閉板成形模及沖壓工藝
摘要:
隨著全球經(jīng)濟一體化的深入,模具工業(yè)在國民經(jīng)濟中所發(fā)揮的作用越來越明顯。模具設計水平的高低直接影響產(chǎn)品的質量及生產(chǎn)效率。
設計本模具是為了制造某車型中一個支柱端頭的封閉板。設計中分析了封閉板零件的結構及工藝性,擬訂該零件的沖壓工藝為“落料——雙向彎曲(翻邊成形)”,討論了復雜彎曲(翻邊)零件毛坯展開形狀和尺寸的確定方法,設計了落料模和雙向彎曲(翻邊)成形模,對關鍵零件的結構設計作了詳細闡述,并指出了模具設計時的注意事項。其中,雙向彎曲成形模是本設計的重點,將雙向彎曲(翻邊)成形集中于一套模具中,使得沖件的質量和生產(chǎn)效率較高,滿足了生產(chǎn)需要。
由于模具設計是一種經(jīng)驗性較強的設計,經(jīng)過長期發(fā)展積累了大量豐富的沖壓工藝技術資料,在設計這兩套模具時必然要借鑒這些經(jīng)驗數(shù)據(jù),含括了落料模、彎曲模、拉深模中常用的工藝數(shù)據(jù)以及模具材料的選取和壓力機基本參數(shù)等等.
關鍵詞:沖壓工藝 毛坯展開 雙向彎曲成形模 CAD
第一章封閉板成形模及沖壓工藝
設計任務書
一、選題的依據(jù)及課題的意義
隨著全球經(jīng)濟一體化的深入,模具工業(yè)在國民經(jīng)濟中所發(fā)揮的作用越來越明顯,模具技術水平的高低,已成為衡量一個國家制造水平高低的重要標志,并在很大程度上決定著產(chǎn)品的質量、效益和新產(chǎn)品的開發(fā)能力。
模具設計是一種相對來講經(jīng)驗性較強的設計。設計人員在長期的工作中積累的經(jīng)驗和知識對模具設計起著十分重要的影響。近年來,模具CAD/CAM技術已成功應用于模具工業(yè),有效提高了模具設計與制造水平。
模具是現(xiàn)代工業(yè)生產(chǎn)中應用廣泛的優(yōu)質、高效、低耗、適應性很強的生產(chǎn)技術,或稱成型工具、成型工裝產(chǎn)品,是技術含量高、附加值高、使用廣泛的新技術產(chǎn)品,是價值很高的社會財富。由于模具生產(chǎn)技術的現(xiàn)代化,在現(xiàn)代工業(yè)生產(chǎn)中,模具已廣泛應用于電動機和電器產(chǎn)品、電子計算機產(chǎn)品、儀表、家用電器產(chǎn)品與辦公設備、汽車、軍械、通用機械等產(chǎn)品的生產(chǎn)中。模具技術水平的高低,已成為衡量一個國家制造水平高低的重要標志,并在很大程度上決定著產(chǎn)品的質量、效益和新產(chǎn)品的開發(fā)能力。為此本人選擇了“封閉板成型模及沖壓工藝設計”作為畢業(yè)課題。
二、國內外研究概況及發(fā)展趨勢
目前,隨著汽車及輕工業(yè)的迅速發(fā)展,模具設計制造日益受到人們的廣泛關注,已成為一個行業(yè)。將高新技術應用于模具設計與制造,已成為快速制造優(yōu)質模具的有力保證:1)、CAD/DAE/CAM的廣泛應用,顯示了用信息技術帶動和提升模具工業(yè)的優(yōu)越性。在歐美,CAD/DAE/CAM已成為模具企業(yè)普遍應用的技術。在CAD的應用方面,已經(jīng)超越了甩掉圖板、二維繪圖的初級階段,目前3D設計已達到了70℅--89℅,PRO/E、UG、CIMATRON等軟件的應用很普遍。2)、為了縮短制造周期,提高市場競爭力,普遍采用高速切削加工技術。3)、快速成型技術與快速制模技術獲得普遍應用。有SLA、SLS、FDM、LOM等各種類型的快速成型設備。
國外工業(yè)先進國家都擁有上萬個模具企業(yè)與支持模具企業(yè)或為模具企業(yè)提供生產(chǎn)裝備的企業(yè)相組成的強大的產(chǎn)業(yè)基礎。這是為適應社會產(chǎn)品工業(yè)化規(guī)模生產(chǎn)的重要條件和特點。如汽車的工業(yè)化規(guī)模生產(chǎn)需要一大批專業(yè)性模具企業(yè)為其提供模具,同時根據(jù)汽車零件的生產(chǎn)技術要求,這些模具企業(yè)還配有相應的先進技術裝備,包括數(shù)控和計算機數(shù)控機床、CAD/CAM系統(tǒng),以及各種工藝裝備。
模具的社會效益很高,是高技術含量的社會產(chǎn)品,其價值和價格主要取決于模具材料、加工、外購件的勞動與消耗三項直接發(fā)生的費用和模具設計與試模等技術費用,后者,是模具價值和市場價格的主要組成部分,其中一部分技術價值計入了市場價格,而更大一部分價值,則是模具用戶和產(chǎn)品用戶受惠變?yōu)樯鐣б?。如電視機用模,其模具費用僅為電視機產(chǎn)品價格的1/3000~1/5000,盡管模具的一次投資較大,但在大批量生產(chǎn)的每臺電視機的成本中僅占極小的部分,甚至可以忽略不計,而實際上,很高的模具價值為社會所擁有,變成了社會財富。所以設計本模具具有非常重要的現(xiàn)實意義。
本模具設計是為制造某車型中一個支柱端頭上的封閉板,該零件左、右對稱,生產(chǎn)中要求左、右件數(shù)量相等。而且該零件本身屬不對稱的異形件,存在雙向的彎曲(翻邊)成形,單件沖壓時存在著橫向不平衡力,影響模具壽命和沖壓質量,將左、右件合在一套模具上一次沖壓成形,就能消除橫向不平衡力,同時,也提高了沖件質量和生產(chǎn)效率。據(jù)此,擬定該零件的沖壓工藝為“落料——雙向彎曲(翻邊)成形,并設計了落料和成形兩套模具。在使用AutoCAD進行模具設計時,可以方便、快捷地調用工藝資料,達到了提高產(chǎn)品質量,縮短周期,降低成本,增加經(jīng)濟效益的目的,具有非常重要的現(xiàn)實意義。因此,模具廣泛應用于汽車制造業(yè),有助于推動我國汽車行業(yè)的發(fā)展。
由于本人水平有限,本論文中必然存在不少紕漏及錯誤之處,敬請評閱老師批評指正。
三、實驗方案
本課題要研究的是某車型中一個支柱端頭上的封閉板成型模的設計。該零件左右對稱,生產(chǎn)中要求左、右件數(shù)量相等,生產(chǎn)綱領為中等批量。
由于該零件存在著雙向彎曲(翻邊),因此初步擬訂如下兩種工藝方案:
方案一:落料→外緣彎曲(翻邊)→彎曲成形
方案二:落料→雙向彎曲(翻邊)
以上兩種工藝方案中,前一種方案需要三副模具,若定位不好的話,很容易造成零件的不一致,影響零件質量,且工作效率低,后一種方案,成形模結構較復雜,但沖壓質量好,生產(chǎn)效率較高,故決定采用后一種沖壓工藝方案。
在設計落料模之前,首先要確定落料毛坯形狀和尺寸,其中既有理論計算,也涉及到定性地估算,最終通過實驗確定。該零件雖說是左右對稱件,但展開后的形狀卻是相同的,因此只需設計一副落料模即可,該模具采用下出料彈壓卸料結構。
雙向彎曲(翻邊)成形模結構復雜,其關鍵之處在于為了保證成形的可靠,要求成形動作按設計意圖順序動作,其中上下模彈簧規(guī)格的選擇起著決定性的作用。該模具每一個沖壓過程完成左、右各一件封閉板零件的成形加工,坯料靠定位板定位,這樣不僅能消除橫向不平衡力,同時,也提高了沖件質量和生產(chǎn)效率。
在選擇壓力機時,涉及到壓力中心的確定,擬訂采用一種基于AutoCAD中“工具”的壓力中心確定方法,快速直接,簡單方便,精度較高。
4.結論
該零件雖說是左、右對稱件,且存在著雙向彎曲成形,但合理安排沖壓工藝,仔細進行模具設計后,其加工過程并不復雜。通過該零件的沖壓工藝和模具設計可以看出,形狀復雜的彎曲(翻邊)成形零件,在計算展開尺寸時,不僅需要根據(jù)書本知識進行計算,適當?shù)慕?jīng)驗以及對沖件工藝性的改進也是必要的另外,合理安排沖壓工藝,并進行精心地設計,可最大限度地滿足沖件質量和生產(chǎn)的要求。
在設計成形模時,要注意以下幾點:
(1) 凹模采用整體結構,內孔由線切割加工,使左、右對稱性好,沖件質量高。
(2) 合理選擇上、下彈簧的彈力,保證模具順序動作。
(3) 精確調整限位圈的高度,沖壓時靠其準確、快速控制模具的閉合高度。
(4) 注意控制好彎曲模具與頂料板、彎曲凹模之間的間隙,并且頂料板的淬火硬度不能太高(43~48HRC),防止頂料板從中間斷裂。
第二章封閉板成形模及沖壓工藝設計
2.1 零件結構及工藝分析
2.1.1 零件結構
本課題設計的零件是某車型上支柱端頭的封閉板,材料為08Al,料厚1mm,如圖1所示。零件圖所示為封閉板左件,封閉板右件與其對稱,生產(chǎn)中要求左、右件數(shù)量相等,生產(chǎn)綱領為中等批量。該零件從圖紙要求的尺寸和使用情況看,尺寸精度要求并不太高,外形尺寸按IT14級即可,彎曲(翻邊)高度的尺寸公差還可適當放大。
圖1 封閉板零件圖
2.1.2 工藝分析
該零件從形狀上看是不對稱的異形件,且存在雙向彎曲(或翻邊)成形,就其彎曲部分看,成形并不困難,但翻邊部分即三處帶圓弧的轉角處的成形存在一定的困難。
(1) 零件圖中R5mm處的翻邊成形可按矩形件轉角的拉深成形處理,由于底角半徑r=1.5mm,所以
……………………………(2.1)
式中 D——坯料直徑(mm);
d——圓筒形工件直徑(mm),取5×2=10mm;
h——圓筒形工件高度(mm),取10+1=11mm。
將以上數(shù)據(jù)帶入(2.1)式得==23.4mm。因此最大相對高度h/D=11/23.4≈0.47,故成形并不困難,可一次拉深成形。
(2) 而圓角R3.5mm處的翻邊成形難度較大,屬孔的翻邊成形,由于其翻邊半徑R小于翻邊高度,因此成形后此處必然拉裂,必須對其進行工藝處理,降低翻邊高度。
(3) R1mm處若按拉深模型進行計算,則由于底角半徑r=1.5相對于轉角半徑1.5(中性層半徑)不可忽略,所以
………………(2.2)
式中 D——坯料直徑(mm);
d——圓筒形工件直徑(mm),?。?+0.5)×2=3mm;
h——圓筒形工件高度(mm),取10+1=11mm;
r——底角半徑(mm),取1.5mm。
將以上數(shù)據(jù)帶入(2.2)式得:
=
=11.5mm
因此相對高度h/D=11/11.5≈0.95,且毛坯的相對厚度t/D=1/11.5≈0.09又較大,故其一次成形有較大的困難。但從結構上看,其圓弧部分并不多,夾角僅為52°左右,成形時多余三角形的材料并不太多,同時上部與其相鄰的直角彎曲成形部分較短,且另一邊是開放的,其對多余三角形所施加的切向力并不大,即圓角部分的多余三角形材料并不是完全按純拉深時的徑向流動,相反,這里由于切向缺少材料約束而以橫向流動為主,這就大大改善了材料變形情況,使其能夠一次翻邊成形。當然,這使得此處的材料變形情況也變得較復雜,給毛坯展開計算帶來了一定的難度。但考慮到右上部相鄰的轉角開了工藝缺口,故直壁部分翻邊后有一定的誤差也是允許的,只要保證外形尺寸即可,這使得毛坯形狀的確定還是有可能的。
第三章 落料模設計
3.1落料毛坯形狀和尺寸的確定
圖2所示為落料毛坯展開圖,其彎曲成形部分按常規(guī)的彎曲件毛坯尺寸計算方法計算即可,見圖3所示。這里著重討論工藝分析中談到的3處翻邊成形的毛坯尺寸的確定和計算,即圖2的I、II、III處,圖4所示為這3處的計算簡圖。
圖2毛坯展開圖
3.2彎曲成形部分的毛坯形狀和尺寸的計算
∵R/t=1.5/1=1.5,查表4-1[9],得K=0.369。
∴ρ=R+Kt…………………………………(2.3)
式中 ρ——中性層半徑(mm);
R——彎曲內半徑,取1.5mm;
K——中性層位置系數(shù),取0.369;
t——材料厚度,取1mm。
將以上數(shù)據(jù)帶入(2.3)式,得ρ=R+Kt=1.5+0.369×1=1.869mm
L=π/180×α×ρ……………………………(2.4)
式中 L——中性層展開長度(mm);
α——彎曲中心角度(o);
ρ——中性層半徑(mm)。
將數(shù)據(jù)帶入(2.4)式,得:
L1=π/180×α1×ρ=π/180×74×1.869=2.414mm;
L2=π/180×α2×ρ=π/180×90×1.869=2.936mm;
S1=15-(1.5+1)×Sin37o=13.495mm;
S2=74.25-1.5×Sin37o-1.5=71.847mm;
S3=10-1.5=8.5mm。
∴彎曲直壁的展開高度H=S3+L2/2=8.5+2.9/2=9.9mm;
總體展開長度
L= L1+L2+S1+S2+S3=2.414+2.936+13.495+71.847+8.5=99.192mm;
中間部分的展開長度L中=99. 192-15-9.9=74.29mm。
圖3彎曲成形部分的展開計算簡圖
3.2.1三處翻邊成形的毛坯尺寸的確定和計算
(1) 圖4a所示為圖3中Ⅰ處的展開尺寸簡圖,該轉角具有R1mm的過渡圓弧,毛坯展開時通常是將其按盒形件轉角處的拉深成形處理。但此零件由于上段的直角彎曲段較短,且外側缺少材料的約束,使得圓弧部分拉深時的多余三角形材料并不像純拉深時那樣全部轉化為圓弧直壁,使直壁高度增加,而是在切向應力的作用下橫向流動。圖4a中這種橫向流動遠大于徑向流動,這種材料的流動導致此處的變形變得復雜,使毛坯展開的定量計算較困難,只能定性的估算,然后通過試驗確定。具體做法是:將直角彎曲側壁的開放邊ac向右傾斜取邊長為彎曲直壁的高度9.9mm,這是假設材料橫向流動后a點流到了b點。ab段長度的確定是假設R1mm對應扇形部分的材料分為兩部分,一部分為寬1.37mm(按R1.5mm中性層弧長,圓弧夾角為52.4o計算)的材料全部轉化為△abc部分,按面積相等原則,初步估算ab=3mm。當然,若成形尺寸要求高的話,則ab的長度要待試模后再行修整,由于本課題對此要求不高,所以不必再進行修整。
圖4翻邊部分展開尺寸計算簡圖
(2) 圖4b所示為圖2中Ⅱ處的展開尺寸簡圖。該處的變形屬圓孔翻邊,對于圖中圓弧半徑為R3.5mm,翻邊高度為9.9mm的情況,翻邊成形時邊緣必然開裂,故需進行工藝處理,降低該處的翻邊高度,改善成形性能。具體做法如下:
由圓孔翻邊系數(shù)公式K=d/D, 得:
d=KD……………………………(2.5)
式中 d——翻邊前毛坯孔的直徑(mm);
D——翻邊后孔的中性層直徑,D=(3.5+0.5)×2=8mm;
K——翻邊系數(shù),取K=0.47。
將以上數(shù)據(jù)代入(2.5)式,得d=KD=0.47×8=3.76mm。
故翻邊前毛坯的半徑r=d/2=1.88mm。
考慮到凹模的強度,將R1.88mm的圓弧按60°夾角(R3.5mm處的圓弧的圓心角)用兩條直線過渡到彎曲直邊,其交線處再用半徑值為9.9mm的圓弧光滑過渡,如此便確定了其展開尺寸。
(3) 圖4c所示為圖2.2-1中Ⅲ處的毛坯展開簡圖。該處的變形屬盒形件拉深時轉角處的變形,其計算過程較為典型。即先按筒形件拉深變形計算出轉角的圓弧半徑R11.7mm,并畫出圓弧,如圖4c所示,然后過ab線段的中點向半徑R11.7mm的圓弧引切線,并反向延伸至彎曲邊的直線,交接處用R11.7mm的圓弧光滑過渡連接,即完成該處的毛坯展開。
上述毛坯展開只是初步估算,最終尺寸還要經(jīng)過試模確定。
3.3排樣和裁板
3.3.1確定排樣方式并計算材料利用率
計算沖裁件的面積A:充分利用AutoCAD2000計算物體質量特性的功能,依次點取“工具”(Tools)菜單“查詢”(Inquiry)→“質量特性”(Mass Properties),得面積A=5685mm2。擬訂兩種排樣方案,如下:
方案一:直排,且無側壓裝置。(見圖5)
查表2—16[3],得最小搭邊值a=2mm,a1=1.5mm。
條料寬度B-△=[D+2(a1+△)+b0]…………………………(2.6)
式中 B——條料公稱寬度(mm);
D——垂直于送料方向的工件尺寸,取D=15+74.29+9.9=99.19mm;
a——側搭邊值(mm);
b0——條料與導板之間的間隙,查表3—18[4],得b0=0.2mm;
△ ——條料寬度的公差,查表3—18[4]得△=0.6mm。
將以上數(shù)據(jù)代入(2.6)式得
B-△=[D+2(a1+△)+b0]
=[99.19+2×(2+0.6)+0.2]=104.6mm
進距h=57.5+9.9×2+1.5=78.8mm
∴一個進距的材料利用率η=nA/Bh=(1×5685)/(104.6×78.8)=69.0%
圖5排樣方案一
方案二:對排,且無側壓裝置。(見圖6)
查表3—17[4],得最小搭邊值a=a1=2.5mm,D=57.5+9.9×2=77.3mm。
查表3—18[4],得b0=0.1mm,△=0.5mm。
圖6排樣方案二
將以上數(shù)據(jù)代入(2.6)式得:
B-△=[D+2(a1+△)+b0]
=[77.3+2×(2.5+0.5)+0.1]=83.4mm
進距:h=(15+74.29+9.9)+(15+66.75-19+9.9)+2.5×2=176.84mm
∴一個進距的材料利用率η=nA/Bh=(2×5685)/(83.4×176.84)=77.1%
比較上述兩方案,雖然對排比直排省料,但存在著下述問題:如果采取送一次料沖一件的方法,即用單凸模,模具結構與直排時基本相同,模具費用也相差不大,但在沖完一行后,需要到頭沖另一行,沖另一行時,條料的剛度很差,給送料造成很大的困難。如果采取一次沖兩件的方法,即用雙凸模,則模具結構復雜了,模具長度增大了,因而模具費用也增加了。而直排的模具結構簡單,且與對排相比,材料的利用率相差不多,所以決定選擇方案一,即有搭邊的直排。
3.3.2裁板
08Al厚度為1mm,由材料手冊查得規(guī)格為1×850×1800
若采用縱裁,則每板條數(shù)n1=850÷104.6=8條,余13.2mm;
每條個數(shù)n2=(1800-1.5)÷78.8=22個,余64.9mm;
每板個數(shù)n3=n1×n2=8×22=176個。
若采用橫裁,則每板條數(shù)n1=1800÷104.6=17條,余21.8mm;
每條個數(shù)n2=(850-1.5)÷78.8=10個,余60.5mm;
每板個數(shù)n3=n1×n2=17×10=170個。
顯然,縱裁時材料利用率高,所以決定采用縱裁。
3.4落料模結構設計
3.4.1總體結構
該零件雖說是左、右對稱件,但展開后的形狀卻是相同的。因此落料模只需設計1副模具即可。模具采用導柱導向下出料式彈壓卸料結構,沖出的零件通過凹模的內孔從沖床臺面孔漏下,見圖7。模具的上部分由上模座7、導套5、模柄11、凸模固定板6、凸模10、卸料板15、卸料橡膠14和螺釘、銷釘組成,下部分由凹模3、下模座2、導柱4以及螺釘、銷釘組成。
圖7落料模
3.4.2導向裝置
采用模架導向,不僅能保證上、下模的導向精度,而且能提高模具的剛性、延長模具的使用壽命、使沖裁件的質量比較穩(wěn)定、使模具的安裝調整比較容易,因此決定采用模架作為上、下模的導向裝置。
采用壓入式模柄,固定段與上模座孔采用H7/m6過渡,并加騎縫銷防止轉動,裝配后模柄軸線與上模座垂直度較好。
3.4.3定位裝置
條料的送進,由兩個定位銷控制其方向,由一個鉤形擋料銷控制其進距,這種定位零件結構簡單、制造方便,裝在凹模上。為此,在卸料板上與單了定位銷和鉤形擋料銷相應的位置上加工三個通孔,工作時,可使卸料板壓緊條料;為便于刃磨,在下模座上相應的位置處也加工通孔,以便于拆擋料銷。
3.4.3卸料裝置
由于實現(xiàn)外形分離的凸模裝在上模,擬采用橡膠作為彈性元件的卸料裝置裝在上模,由卸料板、橡膠和卸料螺釘組成彈壓卸料裝置。沖程時,橡膠塊受壓縮而積蓄能量,并使卸料板產(chǎn)生壓力而起壓料作用,沖出的落料件通過凹模的內孔從沖床臺面孔漏下。回程時,橡膠塊釋放能量,使卸料板產(chǎn)生反向推力而將廢料從凸模上卸下。在沖壓時,還可壓緊條料,提高沖裁質量。
3.5 落料模工藝計算
3.5.1計算沖壓力
由于該模具采用下出料彈壓卸料結構,因此壓力機在本模具的沖壓過程中,除要克服沖裁力以外,還要克服卸料力、推件力。
(1) 沖裁力的計算
F=Ltбb…………………………………(2.7)
式中 F——沖裁力(N);
L——沖裁輪廓的總長度,
由AutoCAD“工具”→查詢→面積,查得L=327mm;
t——板料厚度,取1mm;
бb——板料的抗拉強度,由《材料手冊》查得бb=390MPa。
將以上數(shù)據(jù)代入(2.7)式,得F=Ltбb=327×1×390=127530N。
(2) 卸料力的計算
F卸=K卸F…………………………………(2.8)
式中 F卸——卸料力(N);
K卸——卸料力系數(shù),查表2-15[3]得K卸=0.06;
F——沖裁力,F(xiàn)=127530N。
將以上數(shù)據(jù)代入(2.8)式,得F卸=K卸F=0.06×127530=7651.8N。
(3) 推件力的計算
F推=nK推F…………………………………(2.9)
式中 F推——推件力(N);
n——同時卡在凹??變鹊墓ぜ驈U料片數(shù),n=h/t,
h為凹模直刃高度(取h=5mm),t為板料厚度(取t=1mm),
∴n=h/t=5/1=5
K推——推件力系數(shù),查表2-15[3],得K推=0.05;
F——沖裁力,F(xiàn)=127530N。
將以上數(shù)據(jù)代入(2.9)式,得F推=nK推F=5×0.05×127530=31882.5N。
綜上,選擇沖床時的總沖壓力
F總=F+F卸+F推=127530+7651.8+31882.5=167064.3N。
初步選擇開式雙柱可傾壓力機J23-25(查附錄B3[3])。
3.5.2確定壓力中心
壓力中心是沖裁模各個沖裁力的合力作用點,在進行沖裁模設計時,必須使模柄中心線與沖模壓力中心重合。如果二者偏移量超過允許范圍,滑塊將承受偏心載荷,在偏心彎矩的作用下,將導致:滑塊與導軌非正常磨損,影響壓力機精度和壽命;凸、模間隙不均勻,降低沖壓件質量和加劇磨損,甚至碰撞和損壞零部件。因此,準確求得壓力中心是沖裁工藝設計和沖模設計的重要環(huán)節(jié)。
圖8壓力中心
本沖壓件輪廓形狀復雜,無法直接計算其壓力中心,故采用基于AutoCAD 2004的沖模壓力中心確定方法來求其壓力中心,具體做法如下:
第一步:用AutoCAD繪出刃口的輪廓線,選定坐標系xoy如圖8所示,并用“快捷工具”→“修改(Modify)" →“段線合并(join)"定義為多段線;
第二步:用“偏移(Offset)”命令將輪廓線分別向兩側偏移極小的距離(0.05mm),并刪除原輪廓;
第三步:用“繪圖(Draw)"下的“面域(Region)"分別創(chuàng)建以內外多義線為邊界的兩個面域;
第四步:用“修改(Modify)"菜單下的“實體編輯”中的“差集(Subtract)"命令創(chuàng)建環(huán)形面域;
第五步:依次點取“工具(Tools)"菜單“查詢(Inquiry)"→“質量特性(Mass Properties)",點選面域,然后回車,屏幕上的文本窗口將顯示面域的質心:xc=44.3401,yc=30.3640。
3.5.3凸、凹模刃口尺寸及制造公差
查表2—10[3],得間隙值Zmin=0.10mm,Zmax=0.13mm。
由于本沖裁件形狀比較復雜,為了保證凸、凹模之間的間隙值,必須采用凸、凹模配合加工的方法制模,現(xiàn)以凹模為基準件,由于該零件的精度要求不高,外形尺寸按IT14級即可,彎曲(翻邊)高度的尺寸公差還可適當放大,故凹模尺寸采用毛坯尺寸,凸模的刃口尺寸按凹模的實際尺寸配制,并保證雙面間隙為0.10mm~0.13mm
3.6工作零件的設計
3.6.1 凹模設計
(1) 凹模板的外形尺寸
圖9凹模外形尺寸的確定
因為一般模具,特別是標準模具,除去模架以外,前后左右都是對稱的,模柄中心線要通過凹模板的中心。沖裁過程中必須使沖壓力的合力作用線(壓力中心)與模柄中心線重合,使壓力機滑塊不受偏載,才能使模具平穩(wěn)工作,減小對壓力機滑塊與模具導向零件的磨損。
為了用簡單的方法滿足上述要求,提出凹模有效面積一詞。在排樣圖上沿著送料方向與垂直送料方向從凹??字g最大距離處畫一矩形l×b,稱為凹模的有效面積。由于壓力中心O不與矩形l×b的中心重合,因此要對凹模有效面積進行修正,取O點沿長度方向到短邊的最大距離為l′的一半,沿寬度方向到長邊的最大距離為b′的一半,則l′×b′即為修正后的凹模有效面積。自矩形l′×b′向四周擴大一個允許的凹模壁厚C值,可得凹模外形尺寸L×B,就能保證壓力中心與凹模及模柄中心線重合。
其中,凹模壁厚C值主要考慮布置連接螺釘孔和銷釘孔的需要,同時也要保證凹模的強度和剛度,查表2-17[2],取C=36mm(見圖9)。
查表3-39[1],與凹模外形尺寸標準值對照,取L×B=200×160。
(2) 凹模板的厚度
凹模板的厚度按如下經(jīng)驗公式估算:
H=Kb…………………………………(2.10)
式中 H——凹模厚度(mm);
K——因數(shù),查表3-21[2],得K=0.22;
b ——凹??椎淖畲髮挾?,取b=15+74.29+9.9=99.19mm。
將以上數(shù)據(jù)代入(2.10)式,得H=Kb=0.22×99.19=21.8mm.圓整后取H=25mm。
(3) 凹模型孔側壁形狀
采用側壁與凹模面垂直的臺階形直壁型孔,其設計參數(shù)有兩個:一是直刃口有效高度h;二是漏料孔比型孔單邊擴大值b。刃口高度按強度考慮應隨沖裁的板料厚度增加而增大,并考慮刃磨量的需要,由于板料厚度為1mm,所以取h=5mm,漏料孔比型孔單邊擴大值b,按凹模強度考慮取小些,為了保證落料件順利漏下又應取大些。一般取b=0.5~1mm,由于本沖裁件形狀復雜,所以b取1mm。
(4) 凹模板上卸料螺釘?shù)陌惭b
查表3-31[1],凹模刃口與擋料銷的最小距離C=5mm,本模具中,擋料銷的規(guī)格選用A15×8×3,送料方向搭邊值為1.5mm,擋料銷與凹模刃口的最小距離為5mm,凹模強度有保證。
(5) 凹模的選材及加工
選用T10A制造凹模,由于凹模沖裁輪廓較復雜,故其型孔采用線切割加工,漏料孔采用化學腐蝕的方法加工,這樣可有效保證加工精度和刃口強度。
3.6.2凸模設計
采用直通式凸模,便于成形磨削或線切割加工,且可以先淬火后精加工,但在工作中容易松動,甚至拔出,因此,用螺釘?shù)跹b固定凸模,在固定板上不加工固定凸模的型孔,而增加兩個銷子對凸模進行定位,這種方法減小了凸模長度,為用線切割方法在一塊坯料上同時制取凹模和凸模創(chuàng)造了有利條件,不僅節(jié)約了貴重的工具鋼原材料,也使沖裁間隙容易均勻。
3.7卸料元件的設計
3.7.1卸料橡膠的選用和設計
橡膠塊作為彈性元件,具有承受負荷比彈簧大、安全及安裝調整方便等優(yōu)點,且此落料模的工作行程較小,所以選擇橡膠塊作為彈壓卸料裝置的彈性元件。
選用硬度為邵氏70~80A的聚氨酯橡膠,其性能比合成橡膠優(yōu)異,不僅可獲得較大的壓力,而且可延長其使用壽命。
(1) 橡膠塊高度的確定
為了使橡膠塊不因多次反復壓縮而損壞其彈性,按下式限定其極限壓縮量hj:
hj=εjH…………………………(2.11)
式中 H——橡膠塊自由狀態(tài)下的高度(mm);
εj——橡膠塊極限壓縮率(%),對于硬度為邵氏70~80A的聚氨酯橡
膠,則應取εj≤35%。
為了使橡膠塊具有一定的預壓力,供卸料之用,必須使其在非工作行程就具有一定的預壓縮量hy:
hy=εyH…………………………(2.12)
式中 εy——橡膠塊預壓縮率(%),對于聚氨酯橡膠,εy=10%。
(2.11)式減去(2.12)式得橡膠塊高度H的計算公式:
H=(hj-hy)/(εj-εy)=hg/(εj-εy)(mm) ………………(2.13)
式中 hg——橡膠塊工作壓縮量,對于卸料橡膠塊,hg為彈壓卸料板的行程,一般取hg=t+1+修磨量,t為板料厚度,取1mm,修磨量取5mm。
將以上數(shù)據(jù)代入(2.13)式,得:
H=(hj-hy)/(εj-εy)=hg/(εj-εy)=(1+1+5)/(0.35-0.1)=28mm
將以上數(shù)據(jù)代入(2.12)式,得hy=εyH=0.1×28=2.8mm。
∴橡膠塊的裝配高度H0=28-2.8=25.2mm,取25mm。
(2) 橡膠塊截面尺寸的計算
考慮模具結構,決定用6個厚壁筒形的聚氨酯彈性體,則每個彈性體的預壓力Fy=7651.8/6=1275.3N。
考慮橡膠塊的工作壓縮量較小,取預壓縮率εy=10%。并由表2—27[2]查得單位壓力Fq=1.1Mpa
A=Fy/Fq…………………………(2.14)
式中 A——橡膠塊截面面積(mm2)
Fy——每個彈性體的預壓力;
Fq——單位壓力。
將以上數(shù)據(jù)代入(2.14)式,得 A=Fy/Fq=1275.3/1.1≈1159.4 mm2取1159 mm2。
選用直徑為8mm的卸料螺釘,選取彈性體穿卸料螺釘孔的直徑d=Ф8.5mm。則彈性體的外徑D可按下式求得:
由 л(D2-d2)/4=A
得 ………………………(2.15)
將以上數(shù)據(jù)代入(2.15)式,得:
=≈39.35,取40mm。
(3) 橡膠塊高度的校核
校核條件:0.5≤H/D≤1.5,將數(shù)據(jù)代入,得H/D=28/40=0.7,滿足校核條件。
3.7.2卸料螺釘?shù)脑O計
采用圓柱頭內六角卸料螺釘(GB2867.6—81),在上模座上加工通孔,容易保證卸料板與模座平行。
卸料螺釘長度L按下式計算:
L=h1+H0………………………(2.16)
式中 h1——固定板厚度(mm);
H0——預壓后彈性元件的高度(mm)。
將以上數(shù)據(jù)代入(2.16)式,得L=h1+H0=20+25=45mm。
注意:凸模經(jīng)刃磨后,在重新安裝彈性元件時,在螺釘頭部應加墊圈,其厚度為刃磨量,以免預壓后過大損害壓力機。
3.8設計其它零件并校核壓力機
3.8.1其它零件的設計及選用
墊板主要用于直接承受和擴散凸、凹模傳來的壓力,防止模座承受過大壓力而出現(xiàn)凹坑,影響模具正常工作,由于本模具的模座采用鋼板制造,且凸模截面面積不太小,故省去墊板。
根據(jù)凹模的最大外形輪廓尺寸L×B=200×160,從表3—39[1]中選?。和鼓9潭ò搴穸?0mm, 外形尺寸與凹模板相同;卸料板厚度16mm,外形與中間型孔的形狀和尺寸與凹模相同。
凸模的自由長度為L=(25+16+1+1+5)mm=48mm.其中,凸模進入凹模的深度為1mm,凸模的修磨量為5mm。
根據(jù)凹模的外形尺寸,選擇模架: 本模具選用適合單個毛坯沖裁的中間導柱標準鋼板模架,這種模架的導柱分布在矩形凹模對稱中心線上,沖壓時可防止由于偏心力矩而引起的模具歪斜,且兩導柱的直徑不同,可避免上模與下模裝錯而發(fā)生啃模事故。
上模座L/mm×B/mm×H/mm=200×160×40
下模座L/mm×B/mm×H/mm=200×160×50
導柱d/mm×L/mm=30×150(左)、32×150(右)
導柱d/mm×L/mm×D/mm=30×100×38(左)、32×100×38(右)
為了保證使用中的安全性與可靠性,應注意:當模具處于閉合位置時,導柱上端面與上模座的上平面留10~15mm的距離,導柱下端面與下模座下平面留2~5mm的距離。導套與上模座上平面留不小于3mm的距離,同時,上模座開橫槽,以便排氣。
3.8.2校核壓力機
模具的閉合高度為H閉合=(40+20+25+16+1+25+50)mm=177mm,下模座的外形尺寸為355mm×160mm。查附錄B3[3]得:J23-25壓力機的最大閉合高度為270mm,最小閉合高度為215mm,模具的閉合高度小于沖床的最小閉合高度,所以要采用墊板,
有: H最大-H1-5≥H?!軭最小-H1+10
式中H1——墊板厚度(mm)
代入數(shù)據(jù):270-50-5≥177≥215-50+10
工作臺尺寸(370mm×560mm)≥下模座的外形尺寸(355mm×160mm)
且工作臺孔為Ф180mm,不會妨礙漏料。所以,確定采用J23—25型壓力機作為沖壓設備。
第四章 雙向彎曲(翻邊)成形模設計
4.1成形模結構設計
4.1.1總體結構
圖10封閉板雙向彎曲成形模
封閉板雙向彎曲(翻邊)成形模的結構見圖10,該模具分上下兩部分,上部為常規(guī)的沖模結構形式,下部通過支承板將下模固定在底座上。這種結構形式的優(yōu)點為:①上部設計可不考慮壓力機的閉合高度,使模具結構緊湊、靈活;②適當設計支承板的高度和底座的固定槽,控制模具的閉合高度在壓力機的閉合高度范圍內,使得模具安裝時不用墊鐵和壓板等,可直接用螺釘固定,模具安裝快捷、安全、方便。
4.1.2工作原理
沖件在模具上采用外形定位,一次沖壓動作能完成雙向彎曲(翻邊)成形,且同時完成左、右封閉板的成形。在導柱上設置了限位圈13,能快速調整模具的閉合高度。另外頂料板17兼有部分凹模的作用,翻邊凸模14兼起壓料板的作用。由于零件的特殊性,其成形過程存在著雙向彎曲(翻邊),為保證成形的可靠,要求成形動作按設計意圖順序動作,其下部彈簧21的彈力要大于上部彈簧彈力與中間15mm邊長彎曲成形力之和。模具的 工作過程為:上模隨壓力機滑塊向下運動,首先翻邊凸模14壓住坯料,此時,頂料板17與凹模上平面平齊。上模繼續(xù)下行,壓縮彈簧6,在彎曲凸模15與頂料板上彎曲凹模槽作用下完成邊長15mm的向下彎曲。當翻邊凸模上平面碰到凸模固定板11后,再開始壓縮彈簧21,在翻邊凸模14與凹模16的作用下完成向上的彎曲(翻邊)成形。沖壓成形后,上?;爻蹋陧斄习?7的作用下,將沖件頂出凹模,完成一個沖壓過程。為使零件彎曲圓角成形清晰,上模需下行至頂料板的下平面碰到下模板,起到校正彎曲的作用。
4.2 成型模工藝計算
4.2.1彎曲力的計算
(1)邊長15mm的彎曲力的計算
F1=0.6KBt2бb/(R+t)……………………(2.17)
式中 F1——自由彎曲力(沖壓行程結束,尚未進行校正彎曲時的壓力)(N);
B——彎曲件寬度(mm),取57.5-2-2=53.5mm;
t——彎曲件材料厚度(mm),取1mm;
R——彎曲內半徑(mm),取1.5mm;
бb——材料抗拉強度(Mpa),取390Mpa;
K——安全因數(shù),一般取K=1.3。
將以上數(shù)據(jù)代入(2.17)式,得:
F1=0.6KBt2бb/(R+t)
=0.6×1.3×53.5×12×390/(1.5+1)
=6509.88N
同時彎曲左、右兩對稱件的彎曲合力F=2F1cos37o=2×6509.88×cos37o=10398N,見圖(11)。
F2=qA……………………(2.18)
圖11 彎曲合力
式中 F2——校正力(N);
q——單位校正力,查表3-3[3],取
q=15MPa;
A——工件被校正部分的投影面積(mm2),
A=53.5×15×Sin16o≈221.19mm。
將以上數(shù)據(jù)代入(2.18)式,得F2=qA=15×221.19=3317.85N。
F3=(0.3~0.8)F……………………(2.19)
式中 F3——壓料力(N);
F——自由彎曲力(N),取10398N。
將以上數(shù)據(jù)代入(2.19)式,得:
F3=(0.3~0.8)F
=(0.3~0.8)×10398=3119.4~8318.4,取8318.4N。
(2) 10mm的直角彎曲力的計算
高10mm的彎曲(翻邊)成形力按彎曲L形件的彎曲力公式計算,如下:FL=(0.65~0.8)Bt2бb /(R+t) ……………………(2.20)
式中 B——彎曲線長度,
由AutoCAD的“工具”→“查詢”,得B=184.12mm;
t——板料厚度,取1mm。
бb——材料抗拉強度,取390MPa;
R——彎曲內半徑(mm),取1.5mm;
將以上數(shù)據(jù)代入(2.20)式,得:
FL=(0.65~0.8)Bt2бb /(R+t)
=(0.65~0.8)×(184.12×12×390)/(1.5+1)
=18669.8~22978.2,取22978.2N。
F總=F+F2+F3+FL=10398+3317.85+8318.4+22978.2=45012.45N。
根據(jù)總沖壓力初步選擇J23-6.3壓力機(查附錄B3[3])。
4.2.2回彈量的確定
由于R=1.5mm,t=1mm,R<(5~8)t,所以工件的彎曲半徑變化不大,只需考慮角度回彈,又由于采用施加校正力的方法消除回彈,所以回彈量很小,能滿足工件要求,不需作回彈計算。
4.2.3 計算壓力中心
由于零件左、右對稱,其壓力中心一定在對稱軸Y上,故Xc=0,采用基于
圖12 壓力中心
AutoCAD2000的沖模壓力中心確定方法,(具體作法見沖裁模壓力中心的計算),得Yc=-30.5mm。見
圖12。
4.2.4工作部分尺寸計算
(1) 凸、凹模的圓角半徑
彎曲件的相對彎曲半徑r/t=1.5/1=1.5較小,故彎曲(翻邊)凸模圓角半徑rp取彎曲件的內彎曲半徑1.5mm。
凹模圓角半徑不能太小,以免增加彎曲力,擦傷工作表面,按材料厚度來選?。?
當t≤2mm時,rd=(3~6)t……………………(2.21)
式中 t——材料厚度,取1mm;
rd——凹模圓角半徑(mm)。
將數(shù)據(jù)代入(2.21)式,取 rd=3×1=3mm。
(2) 凹模深度
凹模的工作深度決定板料的進模深度。凹模深度過大,不僅增加模具鋼的消耗,而且將增大壓力機的工作行程,使最大彎曲力提前出現(xiàn),對壓力機很不利。凹模深度過小,可能造成彎曲件直邊不平直,降低其尺寸精度。因此,凹模深度要適當。查表3—17[2],得凹模深度增加值△L=3mm。
(3) 凸、凹模之間的間隙
Z=t+ct……………………(2.22)
式中 Z——凸、凹模之間的間隙(mm);
t——板料厚度,取1mm;
c——間隙系數(shù),查表3—18[2],得c=0.1。
將以上數(shù)據(jù)代入(2.22)式,得Z=t+ct=1+0.1×1=1.1mm。
彎曲凸模與頂料板之間的間隙可適當取大一些(≥1.1mm),以防止頂料板的彎曲變形或斷裂,故取1.15mm。
翻邊凸模與凹模之間的間隙則應取小些,取1.1mm,以提高沖件彎曲(翻邊)的成形質量。
4.3關鍵零件的設計
4.3.1凹模設計
圖13凹模
凹模用整體結構,這樣可極大地提高凹模的剛性,防止沖壓時的變形,提高沖件的質量。同時,整體結構便于制造和裝配,能簡化模具結構,提高加工精度。
凹模的中間型孔尺寸是這樣得來的:將工件尺寸向外偏移一個凸、凹模間隙1.1mm,(即將間隙取在凹模上),然后左、右件對稱布置,橫向距離取31mm,查表3—17[2]得凹模壁厚為40mm,則經(jīng)圓整得凹模的外形尺寸260mm ×138mm,凹模的結構見圖13。
凹模材料選T10A,熱處理HRC56~60。中間型孔由線切割加工,使左、右件對稱性好,沖件質量高。
4.3.2翻邊凸模設計
由于零件單獨成形時存在著橫向不平衡力,為使左、右件的橫向不平衡力相互抵消,將翻邊凸模設計成整體結構,但中間要通過彎曲凸模,并通過彎曲凸模導向。
圖(14)
圖14翻邊凸模
所示為翻邊凸模的結構簡圖,在設計和制造時均要保證外部翻邊凸模輪廓與中間矩形孔之間的位置精度和尺寸精度,其中外部翻邊凸模按凹模配作,保證單面
間隙1.1mm,內孔按彎曲凸模配作,保證單面間隙0.25mm。
為了節(jié)約模具材料和安裝方便、安全,將翻邊凸模的非工作部分作成矩形,尺寸為180.5mm×97.5mm。
4.3.3彈簧的設計
為了保證按設計意圖順序動作,上模彈簧的總彈力必須小于下模彈簧的總彈力與彎曲(翻邊)成形力之和,且下部彈簧的總彈力要大于上部彈簧彈力與中間15mm邊長彎曲成形力之和。根據(jù)以上兩原則,上模選擇9號彈簧,下模選擇80號彈簧。
4.4 設計其它零部件并校和核壓力機
4.4.1 模座的選用
本模具選用中間導柱標準鋼板模架,這種模架的導柱分布在矩形凹模對稱中心線上,沖壓時可防止由于偏心力矩而引起的模具歪斜。
根據(jù)凹模的外形尺寸260mm ×138mm,選取如下:
上模座L/mm×B/mm×H/mm=250×200×40
下模座L/mm×B/mm×H/mm=250×200×50
導柱d/mm×L/mm=30×150(左)、32×150(右)
導柱d/mm×L/mm×D/mm=30×100×38(左)、32×100×38(右)
兩導柱的直徑不同,可避免上模與下模裝錯而發(fā)生啃模事故。
為了保證使用中的安全性與可靠性,應注意:當模具處于閉合位置時,導柱上端面與上模座的上平面留10~15mm的距離,導柱下端面與下模座下平面留2~5mm的距離。導套與上模座上平面留不小于3mm的距離,同時,上模座開橫槽,以便排氣。
圖15 頂料板
4.4.2 定位裝置的設計
由于上道工序的落料件上無可以利用的定位孔,且沖件輪廓形狀復雜,因此利用零件的外形輪廓,用定位板對其進行約束,使其定位準確、可靠。
4.4.3頂料板的設計
頂料板圖(15)兼起彎曲凹模的作用,為了保證邊長15mm的彎曲質量,適當增加工作部分長度,取17mm。
為了防止頂料板從中間
斷裂,適當加大中部的厚度,取10mm。頂料板的整體厚度為10+17×cos16o=26.34mm,圓整后取27mm。
其外型尺寸按凹模配作,保證間隙為1.1mm。
選擇45號鋼,熱處理48~52。
4.4.4彎曲凸模的設計
為了保證邊長15mm彎曲邊的質量,適當增加彎曲凸模工作部分的長度,取16mm。其總長度為32+35+16.5×cos16o=82.86mm,圓整后取83mm。
4.4.5計算閉合高度并校核壓力機
墊板厚度取8mm;
凸模固定板厚度取32mm;
凹模厚度?。?7+10+3+3)mm=43mm,其中卸料板厚度為27mm,翻邊高度為10mm,凹模深度增加值△L=3mm,凹模圓角為3mm。
定位板厚度取4mm;
翻邊凸模厚度取35,其中工作部分厚度取(10+3+3+4+3)=23mm,其中翻邊高度為10mm,凹模深度增加值△L=3mm,凹模圓角為3mm,定位板厚度取4mm,再留3mm的余量。
支承板厚度取40mm;
底座厚度取60mm。
閉合高度H=(50+8+32+35+1+27+40+40+60)mm=293mm,底座的外形尺寸為550×300。由附錄B3[3]可知J23-6.3壓力機的工作臺尺寸為200mm×310mm,故23-63壓力機不能適用,改選用J23-63壓力機,該壓力機的最大閉合高度為360,最小閉合高度為280mm,
有: H最大-5≥H模≥H最小+10
代入數(shù)據(jù);360-5≥293≥280+10
工作臺尺寸(370mm×560mm)≥底座的外形尺寸(550mm×300mm)
所以,確定采用J23—63型壓力機作為沖壓設備。
雙向彎曲成形模由于需將雙向彎曲(翻邊)成形集中于一套模具,使得沖件的質量和生產(chǎn)效率較高,滿足了生產(chǎn)需要。設計要求模具在閉合狀態(tài)下,能對零件進行彎曲校正,因此,裝模過程中要嚴格控制模具的閉合高度(靠限位圈來完成),要求在閉合狀態(tài)時,限位圈上平面與導套下平面有0.5mm~1mm的間隙(試模時可在其中放入一段鉛絲,通過測量變形后鉛絲的厚度來嚴格控制模具的閉合高度。
參考文獻
1 葉偉昌編.刀量模具設計簡明手冊.北京:機械工業(yè)出版社,1999年5月
2 鐘毓斌主編.沖壓工藝與模具設計.北京:機械工業(yè)出版社,2000年5月
3 模具實用技術叢書編委會編.沖模設計應用實例.北京:機械工業(yè)出版社,1999年6月
4許發(fā)樾主編.實用模具設計與制造手冊.北京:機械工業(yè)出版社,2000年10月
5 許發(fā)樾主編.模具標準應用手冊.北京:機械工業(yè)出版社,1994年10月
6 王新華編.沖模設計與制造實用計算手冊.北京:機械工業(yè)出版社,2003年3月
7李奇涵等.基于AutoCAD2000的沖模壓力中心確定方法.模具工業(yè).2003年,第2期
8 “沖模設計手冊”編寫組編著.沖模設計手冊.北京:機械工業(yè)出版社1988年
36