喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預(yù)覽哦。。。下載后都有,,請(qǐng)放心下載,,文件全都包含在內(nèi),,【有疑問咨詢QQ:1064457796 或 1304139763】
南昌航空大學(xué)科技學(xué)院學(xué)士學(xué)位論文
1 課題意義
聯(lián)合國(guó)發(fā)表報(bào)告指出:當(dāng)二十一世紀(jì)上半葉到來(lái)時(shí),全球人口將增加0.6倍,
而老年人口將增加2.3倍,老年人【1】口占總?cè)丝诘谋壤龑⑸仙?0%。也就是說(shuō),
全世界人口老齡化進(jìn)程正在加快,今后50年內(nèi),60歲以上的人口比例預(yù)計(jì)將會(huì)
翻一番。而我國(guó)是人口最多的國(guó)家,老齡化和殘疾是我們不得不面對(duì)的重大問
題,據(jù)老齡委統(tǒng)計(jì)結(jié)果顯示,目前我國(guó)60歲以上的老年人已達(dá)到1.43億,超過
總?cè)丝诘?0%。而我國(guó)有殘疾人6000多萬(wàn),平均每5個(gè)家庭就有一個(gè)殘疾人12J。
另一項(xiàng)調(diào)查顯示,2000年,我國(guó)60歲以上老年人中有腿腳不便情況的人已接近
2800萬(wàn)。此外,根據(jù)中殘聯(lián)統(tǒng)計(jì)數(shù)據(jù),目前我國(guó)肢體殘疾人接近900萬(wàn),其下
肢殘疾人為200萬(wàn)左右。
隨著老年人和殘疾人的日益增多,服務(wù)需求將會(huì)日益增加。助老/助殘服務(wù)
機(jī)器人系列產(chǎn)品的研發(fā)有助于形成未來(lái)老年人和殘疾人生活的新模式和新概
念,并解決人口老齡化帶來(lái)的重大社會(huì)服務(wù)問題,以及2015年實(shí)現(xiàn)我國(guó)“人人享
有康復(fù)服務(wù)”的國(guó)家戰(zhàn)略目標(biāo)和社會(huì)協(xié)調(diào)發(fā)展提供技術(shù)支撐。智能輪椅是助老/
助殘服務(wù)機(jī)器人系列產(chǎn)品中的一個(gè)重要研究領(lǐng)域。輪椅作為廣大老弱病殘人員
使用的輔助運(yùn)動(dòng)工具,隨著人工智能和機(jī)器人技術(shù)的發(fā)展,智能輪椅【3J的研發(fā)也
必將成為一種趨勢(shì)。研究并開發(fā)實(shí)用的智能輪椅具有非常重要的現(xiàn)實(shí)意義。
1.1多模態(tài)智能輪椅
江西省焊接與自動(dòng)化機(jī)器人重點(diǎn)實(shí)驗(yàn)室研究的多模態(tài)智能輪椅包括手柄控
制,語(yǔ)音控制中可避障控制,自主避障控制三種模態(tài)。各模態(tài)之間即可相互獨(dú)
立,又可根據(jù)實(shí)際應(yīng)用場(chǎng)合進(jìn)行多模態(tài)融合。
(1)手動(dòng)控制
常規(guī)模態(tài),智能輪椅相當(dāng)于普通的電動(dòng)輪椅。此模態(tài)有兩種控制方式,手
柄控制和鍵盤控制。使用者即可通過手柄,也可通過小鍵盤操作輸出四路模擬
電壓,輪椅本身配有電機(jī)控制器,四路模擬電壓通過電機(jī)控制器產(chǎn)生直流電機(jī)
信號(hào)來(lái)控制直流電機(jī),通過對(duì)直流電機(jī)的開環(huán)控制控制輪椅的前進(jìn)、后退、加
第1章緒論
速、減速、左轉(zhuǎn)、右轉(zhuǎn)、停止等運(yùn)動(dòng)控制。
(2)自主避障控制
本課題智能輪椅是基于超聲波傳感器技術(shù)基礎(chǔ)上的避障控制。由分布在輪
椅各個(gè)方向上的七組超聲波傳感器獲得障礙物信息,由單片機(jī)根據(jù)獲得的障礙
物信息做出相應(yīng)的避障決策,使智能輪椅靈活避障。
(3)語(yǔ)音控制模態(tài)可避障系統(tǒng)
智能輪椅語(yǔ)音控制系統(tǒng)是屬于一個(gè)擁有數(shù)個(gè)或十余個(gè)詞的小詞匯量的語(yǔ)音
識(shí)別控制系統(tǒng),使用者先進(jìn)行自身的語(yǔ)音訓(xùn)練,訓(xùn)練好的語(yǔ)音模型保存在存儲(chǔ)
器中,當(dāng)用戶選擇語(yǔ)音控制模態(tài)后,語(yǔ)音命令與存儲(chǔ)器中的語(yǔ)音模型進(jìn)行相似
度對(duì)比,從而實(shí)現(xiàn)語(yǔ)音識(shí)別。進(jìn)而實(shí)現(xiàn)語(yǔ)音控制。如果語(yǔ)音控制過程中出現(xiàn)障
礙物,播放“前方有障礙物,重新識(shí)別"。同時(shí)可以輸入其它語(yǔ)音控制命令。
二 國(guó)內(nèi)外智能輪椅研究現(xiàn)狀
2.1 國(guó)外智能輪椅研究現(xiàn)狀
自1986年英國(guó)開始研制第一輛智能輪椅來(lái),許多國(guó)家投入大量資金研究智
能輪椅,如美國(guó)麻省理工學(xué)院wheelesley項(xiàng)目,法國(guó)VAHM項(xiàng)目,德國(guó)烏爾姆
大學(xué)MAID項(xiàng)目,西班牙SIAMO項(xiàng)目,加拿大AAI公司TAO項(xiàng)目,歐盟TIDE項(xiàng)目等。1989年法國(guó)開始研究VAHM項(xiàng)目,第一階段的智能輪椅由輪椅、PC486、超聲波傳感器、人機(jī)界面和一個(gè)可匹配用戶身體能力轉(zhuǎn)換的圖形屏幕組成,設(shè)置為手動(dòng)、自動(dòng)、半自動(dòng)三種模式,手動(dòng)時(shí)輪椅執(zhí)行用戶具體指令和行動(dòng)任務(wù):自動(dòng)狀態(tài)時(shí)用戶只需選定目標(biāo),輪椅控制整個(gè)系統(tǒng),此模式需要高度的可靠性:半自動(dòng)模式下用戶與輪椅分享控制。為了更好適應(yīng)用戶需求,研究者在康復(fù)中心進(jìn)行了一系列調(diào)查,得出結(jié)論:系統(tǒng)必須是多功能的,不僅應(yīng)適應(yīng)殘障人士的生理和認(rèn)知能力,也應(yīng)適應(yīng)環(huán)境的結(jié)構(gòu)和形態(tài)。在此基礎(chǔ)上,經(jīng)改進(jìn)研制出第二代產(chǎn)品,相對(duì)于第一代產(chǎn)品,其功能更豐富,面向用戶范圍更廣,性價(jià)比更好,改良了大量控制。德國(guó)烏爾姆大學(xué)在一個(gè)商業(yè)輪椅基礎(chǔ)上研制了輪椅機(jī)器人MAID,在烏爾姆市中心車站的客流高峰期及1998年漢諾威工業(yè)商品博覽會(huì)的展覽大廳環(huán)境中進(jìn)行了實(shí)地現(xiàn)場(chǎng)表演。該輪椅機(jī)器人在公共場(chǎng)所有大量乘客的擁擠環(huán)境中,通過了超過36小時(shí)的考驗(yàn),能夠自動(dòng)口!別和判斷出行駛的前方是否有行人擋路,或是否可能出現(xiàn)行駛不通的情況,自動(dòng)采取繞行動(dòng)作,它甚至還能夠提醒擋路的行人讓開道路。根據(jù)航行的環(huán)境不同,機(jī)器運(yùn)行模式分為:NAN(狹窄區(qū)域航行)和WAN(寬區(qū)域航行),大大增加了航行準(zhǔn)確率。此項(xiàng)目得到德國(guó)科學(xué)技術(shù)部的財(cái)政支持,據(jù)計(jì)劃,這種智能輪椅將于兩年后『F式面世,價(jià)格會(huì)比普通電動(dòng)輪椅高出約50%。同本北海道工業(yè)設(shè)計(jì)學(xué)院的研究人員研制出一種不爿j人工操作的聲控輪
椅。研究人員將uT感應(yīng)語(yǔ)占聲響的晶片,裝置在輪椅的控制機(jī)關(guān)內(nèi),在使用者
對(duì)著麥克風(fēng)講出要求后,感應(yīng)系統(tǒng)便會(huì)依照要求啟動(dòng)運(yùn)作,除了可向前后左右
和快慢行走外,椅背還可向后傾,方便使用者休息。
2.2 國(guó)內(nèi)智能輪椅研究現(xiàn)狀
我國(guó)智能輪椅研究起步較晚,在機(jī)構(gòu)的復(fù)雜性和靈活性上和國(guó)外相比有一定差距,但也根據(jù)自身特色研制出技術(shù)指標(biāo)接近國(guó)外先進(jìn)水平的智能輪椅。研究單位有中科院自動(dòng)化所、臺(tái)灣中正大學(xué)電機(jī)系、上海交通大學(xué)和第三軍醫(yī)大學(xué)等。中國(guó)科學(xué)院自動(dòng)化研究所承擔(dān)了“863”智能機(jī)器人智能輪椅項(xiàng)目,研制了一種具有視覺和口令導(dǎo)航功能并能與人進(jìn)行語(yǔ)音交互的機(jī)器人輪椅NLPR, 中科院研制的智能輪椅曾在“863”。計(jì)劃十五周年成就展展館的人群中穿棱自如。此項(xiàng)研究成果于2000年11月通過“863”智能機(jī)器人主題專家組的鑒定,并研制出我囡第一臺(tái)多模態(tài)交瓦式智能輪椅樣機(jī)。此項(xiàng)研究高度重視了智能輪椅人機(jī)控制界面的設(shè)計(jì),在輪椅的設(shè)計(jì)中綜合運(yùn)用模式識(shí)別實(shí)驗(yàn)室有關(guān)圖像處理、計(jì)算機(jī)視覺和語(yǔ)音識(shí)別等最新成果,使人能通過語(yǔ)音控制輪椅自出行走,輪椅可以實(shí)現(xiàn)簡(jiǎn)單的人機(jī)對(duì)話功能。上海交通大學(xué)開發(fā)成功一種聲控輪椅.主要是為四肢全部雀失功能的殘疾者設(shè)計(jì),使用者只需發(fā)出“開”、“前”、“后”、“左”、“右”、“快”、“慢”、“?!钡戎噶?,輪椅可在1.2秒內(nèi)按指令執(zhí)行。上海交通大學(xué)研制的智能輪椅具有自辛避障,目標(biāo)跟蹤和防跌功能。同時(shí)還設(shè)計(jì)可抓取日常用品的機(jī)械手臂。臺(tái)灣中正大學(xué)電機(jī)系以一臺(tái)工業(yè)級(jí)Pc為控制中心,通過馬達(dá)控制卡驅(qū)動(dòng)放大器,利用操作桿執(zhí)行基本的電動(dòng)輪椅操作功能,采取平行化設(shè)計(jì),配備了麥克風(fēng)、CCD,LCD、傳感器、無(wú)線網(wǎng)絡(luò)通訊界面等,并搭配了自行開發(fā)的軟件以達(dá)到系統(tǒng)配置最佳效果。天津大學(xué)研制的智能輪椅可用腦電信號(hào)控制智能輪椅,采用的控制器是計(jì)算機(jī)。
2.3 智能輪椅關(guān)鍵技術(shù)研究
2.3.1移動(dòng)機(jī)器人路徑規(guī)劃理論
路徑規(guī)劃[41技術(shù)是移動(dòng)機(jī)器人技術(shù)研究領(lǐng)域中的一個(gè)重要分支,是機(jī)器人智能化的重要標(biāo)志。總的控制目標(biāo)是使移動(dòng)機(jī)器人運(yùn)動(dòng)到目標(biāo)點(diǎn),總的約束是在整個(gè)過程中,機(jī)器人不碰到任何一個(gè)障礙物。該問題根據(jù)對(duì)環(huán)境信息的掌握程度可以分為兩類:一類是環(huán)境信息已知的全局規(guī)劃,另一類是環(huán)境信息未知的局部規(guī)劃。全局規(guī)劃方法依照己獲取的環(huán)境信息,給機(jī)器人規(guī)劃出一條路徑【5J,規(guī)劃路徑的精確程度取決于獲取環(huán)境信息的準(zhǔn)確程度。全局方法通??梢詫ふ易顑?yōu)解,但是需要預(yù)先知道環(huán)境的準(zhǔn)確信息,并且計(jì)算量很大。局部規(guī)劃方法側(cè)重于考慮機(jī)器人當(dāng)前的局部環(huán)境信息,讓機(jī)器人具有良好的避碰能力。很多機(jī)器人規(guī)劃方法通常是局部的方法,因?yàn)樗男畔@取僅僅依靠傳感器系統(tǒng)獲取的信息,并且隨著環(huán)境的變化實(shí)時(shí)地發(fā)生變化。和全局規(guī)劃方法相比較,局部規(guī)劃方法更具有實(shí)時(shí)性和實(shí)用性。缺陷是僅僅依靠局部信息,有時(shí)會(huì)產(chǎn)生局部極點(diǎn),無(wú)法保證機(jī)器人能順利到達(dá)目的地。上述兩種方法各有利弊,故將兩種方法互相結(jié)合,取長(zhǎng)補(bǔ)短的綜合研究方法漸漸成為研究的趨勢(shì)。
(1)環(huán)境信息的獲得,即研究機(jī)器人獲得周圍工作環(huán)境信息的途徑的問題,其中最普遍的方式就是通過自身的各類傳感器來(lái)獲取,除此之外還有示教等。這里面涉及到機(jī)器人的導(dǎo)航與定位的問題以及傳感器信息融合等問題。
(2)環(huán)境信息的理解問題,也可以稱之為將環(huán)境建模或建立地圖模型,即’運(yùn)一些算法將所獲得的環(huán)境信息變成機(jī)器人能夠識(shí)別和運(yùn)用的數(shù)據(jù)信息,以備下一進(jìn)行可行路徑的搜索,主要是一些算法理論的研究。
(3)可行路徑搜索問題,即研究如何將第二步所得的數(shù)據(jù)信息按照一定的標(biāo)準(zhǔn)或要求組織生成一條(段)可行的路徑,主要是一些優(yōu)化算法和理論的研究。按運(yùn)動(dòng)類型的不同,移動(dòng)機(jī)器人的路徑規(guī)劃可分為三種:最優(yōu)路徑規(guī)劃、局部路徑規(guī)劃和自適應(yīng)路徑規(guī)劃。本課題著重研究局部路徑規(guī)劃。
2.3.2 局部路徑規(guī)劃
局部路徑規(guī)劃[71是指在未知或者部分已知的環(huán)境中進(jìn)行的路徑規(guī)劃,它根據(jù)有無(wú)最終目標(biāo)位置可以分成兩種情況:探索和漫游。后者僅要求移動(dòng)機(jī)器人能避開障礙物,對(duì)運(yùn)動(dòng)的朝向沒有約束。而對(duì)前者,則還有個(gè)最終目標(biāo)位置作指引,機(jī)器人必須努力向這個(gè)位置靠近,在機(jī)器人前進(jìn)的過程中,由于缺乏先驗(yàn)的全局環(huán)境信息,有時(shí)一條明顯的路徑要花費(fèi)很大努力才能找到,而且由于信息的不完整性,不存在全局意義上的最優(yōu)指標(biāo),但它可以達(dá)到某種次優(yōu)性。這種情況下,移動(dòng)機(jī)器人一般配有能感知周圍局部環(huán)境的距離傳感器,其路徑規(guī)劃則常按照“Hypothesize.a(chǎn)nd.test假設(shè)一測(cè)試,HT"的思想來(lái)實(shí)現(xiàn),顧名思義,它先假設(shè)一條從起點(diǎn)到終點(diǎn)的直線路徑,行進(jìn)過程中,發(fā)現(xiàn)正前方有障礙物時(shí),一般采用沿著障礙物邊緣行走的方法避障,直到它發(fā)現(xiàn)前方目標(biāo)方向上不再有障礙物時(shí),又轉(zhuǎn)回到這條直線路徑上來(lái):為了讓工作在漫游狀態(tài)下的移動(dòng)機(jī)器人能避開動(dòng)態(tài)障礙物,一類基于行為的路徑規(guī)劃方法被大量采用。它把路徑規(guī)劃問題分解成許多相對(duì)獨(dú)立的小系統(tǒng),在運(yùn)行狀態(tài)下通過競(jìng)爭(zhēng)機(jī)制取得控制機(jī)器人運(yùn)動(dòng)的主導(dǎo)權(quán),并在環(huán)境交互作用中最終達(dá)到目標(biāo)。對(duì)室外移動(dòng)機(jī)器人,它的移動(dòng)范圍大,由于環(huán)境是不可預(yù)知的,在它的行駛過程中,必須以局部環(huán)境信息和機(jī)器人自身狀態(tài)信息為基礎(chǔ),規(guī)劃出一段短行程內(nèi)與障礙物無(wú)碰撞的理想路徑。局部路徑規(guī)劃【8】[91[101算法包括:C空間法、人工勢(shì)場(chǎng)法、模糊邏輯算法遺傳算法和神經(jīng)網(wǎng)絡(luò)法等、基于滾動(dòng)窗口的路徑規(guī)劃算法。
(1)C空間法
C空間又稱位姿空間,是由Lozano—Perez和Wesley于1978年提出的。目前的很多規(guī)劃方法都是基于位姿空間的規(guī)劃方法。其實(shí)質(zhì)是根據(jù)運(yùn)動(dòng)物體的大小和姿態(tài),把周圍的障礙物向外擴(kuò)展一定的距離,即相應(yīng)的“膨脹",變成擴(kuò)展障礙。與此同時(shí),運(yùn)動(dòng)物體縮為一個(gè)點(diǎn)(運(yùn)動(dòng)物體位姿的描述簡(jiǎn)化為位姿空問中的一個(gè)點(diǎn)),于是得到一個(gè)新的空間,稱為位姿空間。這實(shí)際上構(gòu)造了一個(gè)虛擬的空間:把運(yùn)動(dòng)物體、障礙物及其幾何約束關(guān)系做了等效變換,將物體的規(guī)劃問題轉(zhuǎn)變?yōu)辄c(diǎn)的規(guī)劃問題,將復(fù)雜問題簡(jiǎn)單化,同時(shí)又具有實(shí)際意義,因此得到了廣泛的運(yùn)用。這種方法本質(zhì)上屬于環(huán)境建模的方法。
(2)人工勢(shì)場(chǎng)法
人工勢(shì)場(chǎng)法最初是由Khatib提出的一種虛擬辦法。勢(shì)場(chǎng)法的基本思想是在移動(dòng)機(jī)器人的工作環(huán)境中構(gòu)造一個(gè)人工勢(shì)場(chǎng),使得在該勢(shì)場(chǎng)中移動(dòng)的機(jī)器人受到其目標(biāo)位置引力場(chǎng)和障礙物周圍斥力場(chǎng)的共同作用。勢(shì)場(chǎng)法的吸引力在于數(shù)學(xué)描述上簡(jiǎn)潔、美觀。但它也有其內(nèi)在的局限性,即當(dāng)目標(biāo)附近有障礙物時(shí),移動(dòng)機(jī)器人受到的斥力大于或者等于目標(biāo)點(diǎn)產(chǎn)生的引力,將永遠(yuǎn)也到達(dá)不了目的地。如果目標(biāo)和障礙物都離的很遠(yuǎn),障礙物的斥力會(huì)隨著機(jī)器人向目標(biāo)的接近而變的越來(lái)越小,甚至可以忽略,機(jī)器人將只受到吸引力的作用而直達(dá)目標(biāo)。但在當(dāng)在實(shí)際環(huán)境中至少有一個(gè)障礙物與目標(biāo)點(diǎn)離的很近的情況下,當(dāng)移動(dòng)機(jī)器人逼近目標(biāo)的同時(shí),它也將向障礙物靠近,如果利用以前對(duì)引力場(chǎng)函數(shù)和斥力場(chǎng)函數(shù)的定義,斥力將比引力大的多,這樣目標(biāo)點(diǎn)將不是整個(gè)勢(shì)場(chǎng)的全局最小點(diǎn),因此移動(dòng)機(jī)器人將不可能到達(dá)目標(biāo)??偟膩?lái)說(shuō)這個(gè)方法存在著三個(gè)方面的問題:在相近的障礙物之間不能發(fā)現(xiàn)路徑;在障礙物前可能會(huì)出現(xiàn)震蕩;在狹窄通道中出現(xiàn)擺動(dòng)現(xiàn)象。
(3)模糊邏輯算法
采用模糊邏輯算法進(jìn)行局部路徑規(guī)劃,是基于機(jī)器人本身裝備的傳感器的實(shí)時(shí)測(cè)量到的環(huán)境信息,通過查表得到規(guī)劃的控制策略,此算法計(jì)算量不大,能滿足實(shí)時(shí)性要求。模糊邏輯算法最大的特點(diǎn)是其控制規(guī)則是由人的經(jīng)驗(yàn)總結(jié)出來(lái)的,能夠克服勢(shì)場(chǎng)法容易產(chǎn)生的局部極小問題,對(duì)處理環(huán)境未知下的規(guī)劃問題具有了很大的優(yōu)越性。對(duì)于解決當(dāng)遇到用通常的定量的方法來(lái)說(shuō)是很復(fù)雜的問題或當(dāng)外界僅能夠提供定性的、近似的、不確定的信息數(shù)據(jù)時(shí)模糊邏輯算法是非常有效的。
(4)遺傳算法
遺傳算法運(yùn)用于輪椅機(jī)器人路徑規(guī)劃的研究進(jìn)來(lái)取得了許多成果,其基本思想是:首先初始化種群內(nèi)的所有個(gè)體,即將個(gè)體編碼為路徑中一系列中途點(diǎn),然后進(jìn)行遺傳操作,如選擇、交叉、復(fù)制、變異。經(jīng)過若干代進(jìn)化以后,停止進(jìn)化,輸出當(dāng)前最優(yōu)個(gè)體。遺傳算法主要依靠適應(yīng)度函數(shù)來(lái)控制進(jìn)化方向,因此,適應(yīng)度的構(gòu)造至關(guān)重要。遺傳算法作為并行算法,不容易陷入局部最優(yōu),故更有可能搜索到全局最優(yōu)解。但和人工勢(shì)場(chǎng)法、模糊邏輯算法相比,遺傳算法實(shí)時(shí)性交叉,且需要較大的存儲(chǔ)空間和較多的運(yùn)算時(shí)間。
(5)神經(jīng)網(wǎng)絡(luò)法
近年來(lái),隨著人工神經(jīng)網(wǎng)絡(luò)研究的深入,人們已將神經(jīng)網(wǎng)絡(luò)引入到智能機(jī)器人避障研究中,通過實(shí)例教學(xué)使網(wǎng)絡(luò)收斂,學(xué)習(xí)完成后的網(wǎng)絡(luò),除了其固有的并行特性外,還具有一定的容錯(cuò)能力,并且對(duì)學(xué)習(xí)中未遇到的情況,也能進(jìn)行一定的處理。機(jī)器人系統(tǒng)是一個(gè)實(shí)時(shí)性要求很高的非線性系統(tǒng),人工神經(jīng)網(wǎng)絡(luò)提供了解決這方面問題的可能性。由于神經(jīng)網(wǎng)絡(luò)是一個(gè)高度并行的分布式系統(tǒng),所以可用來(lái)完成對(duì)視覺系統(tǒng)探測(cè)到的圖像進(jìn)行處理,它不僅處理速度高,還可以充分利用其非線性處理能力達(dá)到環(huán)境及目標(biāo)辨識(shí)的目的,還可以完成機(jī)器人內(nèi)部坐標(biāo)和全局坐標(biāo)的快速轉(zhuǎn)換。另外,基于環(huán)境拓?fù)浣Y(jié)構(gòu)組織的網(wǎng)絡(luò),在給出目標(biāo)后,還可以通過網(wǎng)絡(luò)能量函數(shù)的收斂得到一條最優(yōu)途徑。神經(jīng)網(wǎng)絡(luò)在導(dǎo)航中的應(yīng)用還在于對(duì)避障和路徑規(guī)劃方面。由于避障和路徑規(guī)劃工作沒有明顯的規(guī)則和難以進(jìn)行時(shí)間分類,可以讓神經(jīng)網(wǎng)絡(luò)通過大量的實(shí)例學(xué)習(xí)來(lái)掌握。由于不需要迭代,采用前向網(wǎng)絡(luò)學(xué)習(xí)算法來(lái)學(xué)習(xí)避障行為時(shí),速度很快;Kohonen網(wǎng)絡(luò)的自組織特性也可以用來(lái)融合傳感器信息,學(xué)習(xí)從地圖上不同位置到目標(biāo)的行走路線,一旦學(xué)習(xí)完成后,機(jī)器人就能夠?qū)崿F(xiàn)自主避障。
(6)基于滾動(dòng)窗口的路徑規(guī)劃算法
基于滾動(dòng)窗口的機(jī)器人路徑規(guī)劃是一類典型的在不確定環(huán)境下進(jìn)行路徑規(guī)劃的算法,它借鑒了預(yù)測(cè)控制滾動(dòng)優(yōu)化原理,把控制論中優(yōu)化和反饋兩種基本機(jī)制合理地融為一體,使得整個(gè)控制既基于模型與優(yōu)化的,又是基于反饋的?;跐L動(dòng)窗口的路徑規(guī)劃算法的基本思路:首先進(jìn)行場(chǎng)景預(yù)測(cè),在滾動(dòng)的每一步,機(jī)器人根據(jù)其探測(cè)到的局部窗口范圍內(nèi)的環(huán)境信息,用啟發(fā)式方法生成局部子目標(biāo),并對(duì)動(dòng)態(tài)障礙物的運(yùn)動(dòng)進(jìn)行頂測(cè),判斷機(jī)器人行進(jìn)是否可能與動(dòng)態(tài)障礙物發(fā)生碰撞;其次,機(jī)器人根據(jù)窗口內(nèi)的環(huán)境信息及預(yù)測(cè)結(jié)果,選擇局部規(guī)劃算法,確定向子目標(biāo)行進(jìn)的局部路徑,并依所規(guī)劃的局部路徑行進(jìn)一步,窗口相應(yīng)向前滾動(dòng);然后,在新的滾動(dòng)窗口產(chǎn)生后,根據(jù)傳感器所獲取的最新信息,對(duì)窗口內(nèi)的環(huán)境及障礙物運(yùn)動(dòng)狀況進(jìn)行更新?;跐L動(dòng)窗口的路徑規(guī)劃方法,主要用于全局未知的環(huán)境中,該方法放棄了對(duì)全局最優(yōu)解的要求,利用機(jī)器人實(shí)時(shí)測(cè)得的局部環(huán)境信息,以滾動(dòng)方式進(jìn)行在線規(guī)劃,具有良好的避碰能力。滾動(dòng)窗口的路徑規(guī)劃是一種基于C自由空間的局部路徑規(guī)劃算法,由于滾動(dòng)窗口獲得的環(huán)境信息有限,就全局看來(lái),按這種方法規(guī)劃出的整條路徑并非全局最優(yōu),這也是所有局部路徑規(guī)劃方法都不可避免的問題。
語(yǔ)音識(shí)別技術(shù)
一個(gè)典型的語(yǔ)音識(shí)別過程包括語(yǔ)音信號(hào)的預(yù)處理、特征提取、訓(xùn)練、識(shí)別、后處理五個(gè)基本單元。
(1)預(yù)處理
語(yǔ)音信號(hào)的預(yù)處理,包括預(yù)濾波、語(yǔ)音信號(hào)的數(shù)字化、預(yù)加重處理、分幀、噪聲抑制和端點(diǎn)檢測(cè)等。語(yǔ)音信號(hào)的預(yù)處理是語(yǔ)音識(shí)別過程的前期預(yù)備工作,為以后各個(gè)環(huán)節(jié)的處理奠定了基礎(chǔ)。
(2)特征提取
預(yù)處理后進(jìn)行特征參數(shù)的提取,合理的選用語(yǔ)音特征是語(yǔ)音識(shí)別的一個(gè)根本問題,并且對(duì)系統(tǒng)的識(shí)別性能有著重要的影響。因此,針對(duì)系統(tǒng)的實(shí)際需求,選用合理的語(yǔ)音特征參數(shù)是非常關(guān)鍵的。
(3)模型訓(xùn)練
經(jīng)過預(yù)處理及特征提取,進(jìn)行模型訓(xùn)練,訓(xùn)練過程的目的是讓系統(tǒng)從大量的真實(shí)語(yǔ)音中學(xué)習(xí)必要的模型參數(shù)形成語(yǔ)音參考模式庫(kù)。
(4)模式匹配
根據(jù)一定的規(guī)則,利用上述模型參數(shù)對(duì)輸入的語(yǔ)音進(jìn)行模式匹配,并給出一個(gè)識(shí)別結(jié)果。
(5)后處理
后處理單元可能涉及語(yǔ)句分析、語(yǔ)句理解、語(yǔ)義網(wǎng)絡(luò)以及語(yǔ)言模型等。它往往不是一個(gè)孤立的單元,而是與匹配計(jì)算單元、參考模式庫(kù)融合在一起,構(gòu)成一個(gè)邏輯關(guān)系復(fù)雜的系統(tǒng)整體。目前后處理在小詞匯量實(shí)用語(yǔ)音系統(tǒng)中還很難使用。
2.3.3 分類
語(yǔ)音識(shí)別系統(tǒng)可以根據(jù)對(duì)輸入語(yǔ)音的限制加以分類。如果從說(shuō)話者與識(shí)別系統(tǒng)的相關(guān)性考慮,可以將識(shí)別系統(tǒng)分為3類:(1)特定人語(yǔ)音識(shí)別系統(tǒng):僅考慮對(duì)于專人的話音進(jìn)行識(shí)別;(2)非特定人語(yǔ)音識(shí)別系統(tǒng):識(shí)別的語(yǔ)音與人無(wú)關(guān),通常要用大量不同人的語(yǔ)音數(shù)據(jù)庫(kù)對(duì)識(shí)別系統(tǒng)進(jìn)行學(xué)習(xí);(3)多人的識(shí)別系統(tǒng):通常能識(shí)別一組人的語(yǔ)音,或者成為特定組語(yǔ)音識(shí)別系統(tǒng),該系統(tǒng)僅要求對(duì)要識(shí)別的那組人的語(yǔ)音進(jìn)行訓(xùn)練。
語(yǔ)音識(shí)別應(yīng)用系統(tǒng)根據(jù)對(duì)說(shuō)話方式的要求,可以將識(shí)別系統(tǒng)分為3類:(1)孤立詞語(yǔ)音識(shí)別系統(tǒng):孤立詞識(shí)別系統(tǒng)要求輸入每個(gè)詞后要停頓;(2)連接詞語(yǔ)音識(shí)別系統(tǒng):連接詞輸入系統(tǒng)要求對(duì)每個(gè)詞都清楚發(fā)音,一些連音現(xiàn)象開始出現(xiàn);(3)連續(xù)語(yǔ)音識(shí)別系統(tǒng):連續(xù)語(yǔ)音輸入是自然流利的連續(xù)語(yǔ)音輸入,大量連音和變音會(huì)出現(xiàn)。如果從識(shí)別系統(tǒng)的詞匯量大小考慮,也可以將識(shí)別系統(tǒng)分為3類:(1)小詞匯量語(yǔ)音識(shí)別系統(tǒng):通常包括幾十個(gè)詞的語(yǔ)音識(shí)別系統(tǒng)。(2)中等詞匯量的語(yǔ)音識(shí)別系統(tǒng):通常包括幾百個(gè)詞到上千個(gè)詞的識(shí)別系統(tǒng)。(3)大詞匯量語(yǔ)音識(shí)別系統(tǒng):通常包括幾千到幾萬(wàn)個(gè)詞的語(yǔ)音識(shí)別系統(tǒng)。隨著計(jì)算機(jī)與數(shù)字信號(hào)處理器運(yùn)算能力以及識(shí)別系統(tǒng)精度的提高,識(shí)別系統(tǒng)根據(jù)詞匯量大小進(jìn)行分類也不斷進(jìn)行變化。目前是中等詞匯量的識(shí)別系統(tǒng)到將來(lái)可能就是小詞匯量的語(yǔ)音識(shí)別系統(tǒng)。這些不同的限制也確定了語(yǔ)音識(shí)別系統(tǒng)的困難度。
2.3.3 分析
一般來(lái)說(shuō),語(yǔ)音識(shí)別的方法有三種:基于語(yǔ)音學(xué)和聲學(xué)的方法、模板匹配的方法以及利用人工神經(jīng)網(wǎng)絡(luò)的方法。’
(1)基于語(yǔ)音學(xué)和聲學(xué)的方法
該方法起步較早,在語(yǔ)音識(shí)別技術(shù)提出的開始,就有了這方面的研究。但由于其模型及語(yǔ)音知識(shí)過于復(fù)雜,現(xiàn)階段沒有達(dá)到實(shí)用的階段。
(2)模板匹配的方法
模板匹配的方法發(fā)展比較成熟,目前已達(dá)到了實(shí)用階段。在模板匹配方法中,要經(jīng)過四個(gè)步驟:特征提取、模板訓(xùn)練、模板分類、判決。常用的技術(shù)有三種:動(dòng)態(tài)時(shí)問規(guī)整(DTW)、隱馬爾可夫模型(HMM)理論、矢量量化(VQ)技術(shù)。
(3)神經(jīng)網(wǎng)絡(luò)的方法。
利用人工神經(jīng)網(wǎng)絡(luò)的方法是80年代末期提出的一種新的語(yǔ)音識(shí)別方法。人工神經(jīng)網(wǎng)絡(luò)(ANN)本質(zhì)上是一個(gè)自適應(yīng)非線性動(dòng)力學(xué)系統(tǒng),模擬了人類神經(jīng)活動(dòng)的原理。具有自適應(yīng)性、并行性、魯棒性、容錯(cuò)性和學(xué)習(xí)特性。其強(qiáng)的分類能力和輸入一輸出映射能力在語(yǔ)音識(shí)別中都很有吸引力。但由于存在訓(xùn)練、識(shí)別時(shí)間太長(zhǎng)的缺點(diǎn),目前仍處于實(shí)驗(yàn)探索階段。由于ANN不能很好的描述語(yǔ)音信號(hào)的時(shí)間動(dòng)態(tài)特性.所以常把ANN與傳統(tǒng)識(shí)別方法結(jié)合,分別利用各自優(yōu)點(diǎn)來(lái)進(jìn)行語(yǔ)音識(shí)別。這些結(jié)合形成的算法提高了識(shí)別的性能,并彌補(bǔ)了神經(jīng)網(wǎng)絡(luò)的缺點(diǎn),增強(qiáng)了識(shí)別系統(tǒng)的魯棒性。
三 研究?jī)?nèi)容和實(shí)驗(yàn)方案
根據(jù)調(diào)研結(jié)果,智能輪椅在國(guó)外已取得長(zhǎng)足的發(fā)展,但大多數(shù)也都是在實(shí)驗(yàn)室或是少數(shù)定做,還沒有形成批量生產(chǎn),在國(guó)內(nèi)也是近幾年才開始進(jìn)行研究。智能輪椅作為幫助殘疾人的一種服務(wù)機(jī)器人,應(yīng)以人為核心進(jìn)行設(shè)計(jì),即應(yīng)當(dāng)在安全行駛和實(shí)用性方面下功夫。本文以人為本,對(duì)智能輪椅安全避障,語(yǔ)音控制中可避障控制,手動(dòng)控制進(jìn)行了深入研究。
(1)研究目的
本課題的目標(biāo)是構(gòu)建智能輪椅多模態(tài)控制系統(tǒng):自主避障模態(tài)、手動(dòng)控制模態(tài)、語(yǔ)音控制中可避障模態(tài)。適應(yīng)多種用戶的需要。
(2)研究方法
本課題智能輪椅多模態(tài)控制系統(tǒng)總體設(shè)計(jì)采用模塊化設(shè)計(jì),采用超聲波傳感器測(cè)距原理和局部路徑規(guī)劃理論設(shè)計(jì)了輪椅自主避障模態(tài),采用SPI模擬技術(shù)設(shè)計(jì)了手動(dòng)控制模態(tài),語(yǔ)音識(shí)別技術(shù)和決策層融合技術(shù)設(shè)計(jì)了語(yǔ)音控制可避障模態(tài)。
(3)研究結(jié)果
本課題在實(shí)驗(yàn)室外空曠區(qū)域進(jìn)行了智能輪椅多模態(tài)控制系統(tǒng)實(shí)驗(yàn),經(jīng)過實(shí)驗(yàn)我們發(fā)現(xiàn),多模態(tài)控制系統(tǒng)運(yùn)行良好,可以滿足多種用戶的需要,具有很高的實(shí)用價(jià)值。
四 目標(biāo),主要特色及工作進(jìn)度
本課題創(chuàng)新點(diǎn)體現(xiàn)在以下幾點(diǎn):
(1)僅在SPCE061A單片機(jī)的基礎(chǔ)上,實(shí)現(xiàn)了語(yǔ)音控制中可避障控制、自主避障控制、手動(dòng)控制,使得智能輪椅人機(jī)交互性更強(qiáng),運(yùn)行更加安全、穩(wěn)定可靠。并且在功能上可以根據(jù)不同的用戶對(duì)象分模塊定制。
(2)利用超聲波測(cè)距原理和路徑規(guī)劃理論,以一塊SPCE061A單片機(jī)開發(fā)板為控制核心,電動(dòng)輪椅為控制載體,設(shè)計(jì)了智能輪椅自主避障模態(tài)的硬件系統(tǒng)和軟件系統(tǒng)。
(3)基于安全角度考慮,在對(duì)語(yǔ)音控制單模態(tài)和自主避障控制單模態(tài)進(jìn)行分析的基礎(chǔ)上,設(shè)計(jì)了語(yǔ)音控制中可避障模態(tài)。
(4)利用SPI模擬技術(shù)設(shè)計(jì)了DA驅(qū)動(dòng)控制模塊和手動(dòng)控制模塊。
工作進(jìn)度:
(1) 收集有關(guān)資料,寫出相關(guān)報(bào)告; 3.24—4.3
(2) 系統(tǒng)方案設(shè)計(jì) 4.6---4.23
(3) 輪椅結(jié)構(gòu)及主要部件功能 4.26—5.5
(4) 繪制零件圖 5.7---5.25
(5) 撰寫論文 5.28—6.6
五 參考文獻(xiàn)
【1】張桂榮.人口老齡化與社會(huì)養(yǎng)老保險(xiǎn)[D】.山東,山東大學(xué)
【2】李芳蕾.我國(guó)報(bào)刊殘疾人報(bào)道研究【D】.北京,中央民族大學(xué)
【3】Brooks R A robust layered control system for a mobile robot.IEEE Transactions on Robotics
and Automation.1 986.2(¨.1 4~23
【4】向靜波.移動(dòng)機(jī)器人的路徑規(guī)劃和控制研究【D】.河北,西北工業(yè)大學(xué).2004
【5】BorockeR R W et a1.Asymptomic Stability and Feedback Stabilization.Differential
Geometric Control Theory,1 983:1 8 1"-208
【6】N Nilsson.A mobile automation:An application of artificial intelligence techniques.In proc
IJCAI,1969
【7】C.Ronald Kube and Hong Zhang.Task modelling in Collective Robotics.Autonomous
Robots,1997 53"72
【8】Koren,Y and Broenstein,j.Potential Field Methods and their Limitations for mobile Robot
Navigation.IEEE Int.Conf.on Robotics and Automation.1 99 1:1 398~1404
[9】張穎,吳成東,原寶龍.機(jī)器人路徑規(guī)劃方法綜述【J】.控制工程,2006(12):23"-'25
【10】樊長(zhǎng)虹,陳衛(wèi)東,席裕庚.未知環(huán)境下移動(dòng)機(jī)器人安全路徑規(guī)劃的一種神經(jīng)網(wǎng)絡(luò)方法【J】.
自動(dòng)化學(xué)報(bào).2004。30(6):2~8
【1 l】Gang Feng.A Compensating Scheme for Robot Tracking Based Oil Neural Networks.
Robotics and Autonomous Systems.1 995:1 99-206
【1 2】Yang Simon X,Meng Max.An Effcient Neural Network Method for Real-time Motion
Planning with Safety Consideration.Robot and Autonomous Systems.2000
[13】張穎,吳成東,原寶龍.機(jī)器人路徑規(guī)劃方法綜述.控制工程.2003,10(50):1~2
【14】李玲,鄒大勇,謝維達(dá).基于自適應(yīng)模糊人工勢(shì)場(chǎng)法的自動(dòng)引導(dǎo)小車路徑規(guī)劃.長(zhǎng)沙電力
學(xué)院學(xué)報(bào).2005.20(3):1"-3 。
[15】謝宏斌,劉國(guó)棟,李春光.基于遺傳算法的機(jī)器人動(dòng)態(tài)路徑規(guī)劃的仿真.武漢工業(yè)學(xué)院學(xué)
報(bào).2003,22(3):1---3
【16】劉成良,張凱,付莊.神經(jīng)網(wǎng)絡(luò)在機(jī)器人路徑規(guī)劃中的應(yīng)用研究.機(jī)器人.2001,23(7):1~4
【1 7】李磊,葉濤,譚民.移動(dòng)機(jī)器人技術(shù)研究現(xiàn)狀與未來(lái).機(jī)器人.2005,24(5):1"-'5
【1 8】Levent Yenilmez,Hakan Temeltas.Real Time Multi-Sensor Fusion And Navigation For
Mobile Robots.Electroteehnical Conference,1 998,VOL.1:22 1"-'225
【19】何友,王國(guó)宏,陸大淦,彭應(yīng)寧.傳感器信息融合及其應(yīng)用【MJ.北京:電子工業(yè)出版社,
2000
【20】袁軍,王敏,黃心漢,陳錦江.智能系統(tǒng)多傳感器信息融合研究進(jìn)展.控制理論與應(yīng)用,
1994,ll(5):513~519
【21】Chang and Song Ultrasonic Sensor Data integration[J].Journal of Robotic System,1996,
8(3):664~667
12