櫻桃番茄分級傳輸機構設計【氣動水果分級傳輸裝置】
櫻桃番茄分級傳輸機構設計【氣動水果分級傳輸裝置】,氣動水果分級傳輸裝置,櫻桃番茄分級傳輸機構設計【氣動水果分級傳輸裝置】,櫻桃,番茄,分級,傳輸,機構,設計,氣動,水果,生果,瓜果,裝置
設計課題名稱:櫻桃番茄傳輸分級系統(tǒng)專業(yè):指導老師:姓名:班級:目錄前言機構工作原理設計過程總結前言 此系統(tǒng)分級操作簡單準確,成本低,便于推 廣和使用。氣動有效減小了機械力對水果的損傷。前景:必將取代傳統(tǒng)的分級機構。整體結構電機選擇減速機減速機中心高中心高電動機電動機功率功率輸出轉速輸出轉速輸出轉距輸出轉距 電電 動動 機機輸出軸軸徑機座號端蓋序號極數(shù) 1320.55 57 86 32801 F22 52 96 47.5 104 43 115 36 135鏈輪參數(shù)1.齒數(shù) 2.分度圓直徑3.齒頂圓直徑 4.齒根圓直徑 鏈輪鏈條示圖意鏈條傳輸鏈軸的設計1.軸的最小許用軸徑主動軸從動軸同步帶輪設計1.小帶輪 整個機構的轉速都非常的?。╪750r/min)。據(jù)同步帶最小許用齒數(shù)(GB11361-89)H型同步帶的小帶輪齒數(shù)選擇為Z=14.帶輪的節(jié)距小帶輪節(jié)圓直徑 d=56.60mm小帶輪大帶輪傳動比所以大帶輪的節(jié)圓直徑大帶輪齒數(shù) Z=35大帶輪總結 通過畢業(yè)設計,發(fā)現(xiàn)了以往學習中存在的許多不足,從中自己學到了很多新的知識,但畢竟能力有限,設計中難免存在許多不足,許多地方還有待完善。在以后的工作和學習當中我將繼續(xù)保持畢業(yè)設計時的努力與鉆研,不斷完善自己。謝謝!任務書
設計(論文)
課題名稱
櫻桃番茄分級傳輸機構設計
學生姓名
院(系)
專 業(yè)
指導教師
職 稱
學 歷
畢業(yè)設計(論文)要求:熟練掌握AutoCAD,Pro/E等繪圖軟件,對機械原理,機械設計有較深入的理解和認識。
畢業(yè)設計(論文)內(nèi)容與技術參數(shù):
1. 分揀速度5個/秒,鏈傳動速度V=0.25m/s。
2. 系統(tǒng)高度小于2m,總長小于2.5m。
3. 功率p=0.5kw。
畢業(yè)設計(論文)工作計劃:
1.設計前期階段,
根據(jù)原理大致的估計設計的大致模型,以至構思簡單的設計思路。對櫻桃番茄的一些物理參數(shù),形狀大小進行提取
2.初模型設計階段,畫出模型的大致草圖,并最終確定設計思路。
3.計算和階段, 此階段的工作任務是計算出零件的尺寸以及機構的安裝尺寸。
4.畫零件圖和裝配圖階段,根據(jù)第三階段計算出的數(shù)據(jù)畫出零件圖和裝配圖,并將其轉換成三維立體圖像以便更準確直觀的分析和改進。
5優(yōu)化并編寫設計說明書階段。
接受任務日期 2009 年 3 月 20日 要求完成日期 2009年5月15日
學 生 簽 名 年 月 日
指導教師簽名 年 月 日
院長(主任)簽名 年 月 日
學校代碼:
序 號:
設 計
題目: 櫻桃番茄分級傳輸機構設計
學 院:
姓 名:
學 號:
專 業(yè):
年 級:
指導教師:
二OO九年 五 月 十 日
櫻桃番茄分級傳輸機構設計
摘要
隨著科學技術的飛速發(fā)展,各行各業(yè)都已不同程度的步入了機械化時代。而傳統(tǒng)的人操縱機械已逐步被淘汰,取而代之的是科技含量高的自動化,機電一體化。水果自動分揀系統(tǒng)是一中集機械傳動,圖像處理,PLC電路控制的機電結合的現(xiàn)代化設備。目前,對于一些體積小重量輕的水果一般采用氣動分揀。它主要可分為水果圖象采集段和水果分級段,水果在攝像室內(nèi)進行圖象采集后,圖象采集段輸出信號給水果分級段,水果分級段的控制件根據(jù)信號做出相應的動作控制氣泵噴氣將符合分級標準的水果,吹離輸送裝置并完成分級。由于氣動機構的氣體壓力可調(diào)節(jié),分級操作簡單準確成本低,便于推廣和使用,且有效減小了機械力對水果的損傷。因此,它必將取代傳統(tǒng)的水果分揀系統(tǒng)。
關鍵字
自動化
圖像處理
氣動
分揀
Abstract
With the rapid development of science and technology, have varying degrees of all walks of life entered the era of mechanization. Whereas the traditional manipulation of machinery has gradually been eliminated, replaced by high-tech automation, electrical and mechanical integration. Automatic fruit sorting system is a set of mechanical transmission, image processing, PLC's mechanical and electrical circuit control combined with the modern equipment. At present, some small and light weight of the fruit generally use pneumatic sorting. It can be divided into image collecting fruits and fruit classification paragraph, fruit indoors in camera after the image acquisition, image acquisition above the output signal to the above classification of fruit, fruit pieces graded in accordance with paragraph control signal to the corresponding action to control air jet would be consistent with the classification standards of fruit, blown off and complete the grading conveyor. Institutions as a result of gas pressure pneumatic adjustable, accurate classification is simple and low cost, ease of dissemination and use of, and effectively reduces mechanical damage to fruit. Therefore, it will replace the traditional fruit sorting system.
Keyword
Automation
Image Processing
Pneumatic
Sorting
II
櫻桃番茄分級傳輸機構設計
目錄
摘要 I
Abstract II
第一章 緒論 1
1.1氣動水果分級傳輸裝置原理簡介 1
1.2傳輸分級機構工作原理 2
1.3設計安排 2
第二章 主要技術參數(shù)和電機選擇 4
2.1主要技術參數(shù)和電機選擇 4
2.2櫻桃番茄主要參數(shù) 5
第三章 傳動系統(tǒng)設計 6
3.1鏈條和鏈輪的設計 6
3.1.1鏈輪的設計 6
3.1.2鏈條的設計計算 8
3.2滾子設計 10
3.3 軸承和軸承座的設計 11
3.3.1 軸和軸承的安裝方式 12
3.4同步帶和同步帶輪設計 13
3.4.1同步帶選擇 13
3.4.2同步帶帶輪設計計算 14
3.5軸的設計 15
3.5.1主動軸設計及校核 15
3.5.2從動軸設計 16
第四章 安裝結構設計計算 17
4.1機架設計 17
4.1.1機架材料選擇 17
4.1.2 機架連接方式 18
總結 19
參考文獻 20
第一章 緒論
1.1氣動水果分級傳輸裝置原理簡介
帶有氣動分級機構的水果輸送裝置,該裝置包括基架、固定在基架上的驅動機構和水果輸送機構,水果輸送機構分為水果圖象采集段和水果分級段,水果在攝像室內(nèi)進行圖象采集后,圖象采集段輸出信號給水果分級段,水果分級段內(nèi)基架的一側邊,固設有一個以上氣動機構,它主要由儲氣罐和控制件組成,在儲氣罐端部開設氣體噴嘴,由控制件控制其動作,該控制件的輸入與攝像室水果圖象采集的分級輸出信號相連,氣動機構接收信號后產(chǎn)生噴氣動作,將符合分級標準的水果,吹離輸送裝置并完成分級。本氣動機構的氣體壓力可調(diào)節(jié),分級操作簡單準確,滾子的模具制造簡單、成本低,便于推廣和使用,且有效減小了機械力對水果的損傷。原理如圖:
1.2傳輸分級機構工作原理
本設計的設計目的是設計一種機構對櫻桃番茄按大小形狀同進行分級,根據(jù)設計要求將櫻桃番茄分成三個級別。此機構是通過氣動進行分級。在此機構中主要由基架,定制的雙側套筒傳動鏈,雙錐式滾子,雙側鏈輪,軸承,軸承套,同步帶和同步帶輪以及動力裝置電動機。
本裝置是水平放置的橫式傳輸機構,首先櫻桃番茄由入料可均勻的進入界以雙側鏈的錐式滾子上,在入口處裝有毛刷擋板以確保櫻桃番茄是逐個無重疊的在滾子上傳輸。鏈條以恒定的轉速水平進行傳動。動力裝置通過同步帶驅動鏈輪的主動軸驅使套筒鏈勻速轉動,櫻桃番茄油滾子傳輸至第一級出口處,此時空壓機和氣泵根據(jù)要求進行噴氣使櫻桃番茄脫離滾子以達到分級的要求。下一等級的櫻桃番茄傳輸至第二級出口時以同樣的原理進行分級。剩下的第三級隨著滾子直接進入位于機構末端的出口。整個過程中機構平穩(wěn)的精確的根據(jù)要求將櫻桃番茄分成了三個等級。進而達到設計目的。
1.3設計安排
在做本設計前,我將我的設計工作安排劃分為五個階段。
第一階段,設計前期階段。
在此階段的主要任務是,首先要清楚此設計的設計目的和任務以及整體裝置的工作原理。根據(jù)原理大致的估計設計的大致模型,以至構思簡單的設計思路。其次是了解掌握必要的市場動向,借鑒類似前沿的產(chǎn)品以便產(chǎn)生必要的設計靈感,使設計達到最優(yōu)化。第三,因為做此機構是用來對櫻桃番茄進行分級的,所以必須對櫻桃番茄的一些物理參數(shù),形狀大小進行提取。這也是第一階段的重點工作。
第二階段,初模型設計階段。
此階段的主要工作任務是在第一階段的前提下大致的構思出機構的模型以及機構的大體組成部分。畫出模型的大致草圖,并最終確定設計思路。
第三階段,計算和必要零件選擇階段。
此階段的工作任務是計算出零件的尺寸以及機構的安裝尺寸,并根據(jù)需要確定哪些零件是要定制件哪些是采用標準件。另外,通過計算從機械手冊選擇出標準件。
第四階段,畫零件圖和裝配圖階段。
此階段的主要任務是根據(jù)第三階段計算出的數(shù)據(jù)畫出零件圖和裝配圖,并將其轉換成三維立體圖像以便更準確直觀的分析和改進。
第五階段,優(yōu)化并編寫設計說明書階段。
在此階段可以參照二維和三維模型對設計的不合理以及有待進一步優(yōu)化的地方進行改進和優(yōu)化。在改進優(yōu)化確認無誤后編寫出設計說明書。
第二章 主要技術參數(shù)和電機選擇
2.1主要技術參數(shù)和電機選擇
傳輸鏈輪傳輸速率v(m/s)
0.25
機架長度L(mm)
2210
整體高度H(mm)
1850
鏈輪傳輸功率P(KW)
0.5
電機選擇
根據(jù)鏈輪的速率知整個系統(tǒng)的轉速都非常小,估計在在20-60之間.所以盡量選轉速小的電機,以免使同步帶帶輪尺寸過大而不便設計和安裝。下表是YCJ系列部分齒輪減速電動機基本型譜
減速機中心高H/mm
電動機功率P/KW
輸出轉速
n/()
輸出轉距
電 動 機
輸出軸軸徑
機座號
端蓋序號
極數(shù)
132
0.55
57
86
801
F2
4
52
96
47.5
104
43
115
36
135
所以在這選擇YCJ序列減速機中心高為132mm,輸出轉速為43的減速電機。
2.2櫻桃番茄主要參數(shù)
設計之前對櫻桃番茄分成大,中,小三個等級,分別選20個測量出各項參數(shù)并分別求出平均值。個參數(shù)測量數(shù)據(jù)如下表1:
級別類型
測量樣本數(shù)(個)
測量質(zhì)量平均值(g)
測量平均長徑
(mm)
測量平均段徑
(mm)
大
20
19.5
46.3
30.4
中
20
14.8
31.6
22.7
小
20
5.9
18.0
12.0
表1
從表中可以看出,櫻桃番茄主要物理參數(shù)有三中,單在本機器中是通過圖像處理來辨別它的大小。因此必須選擇櫻桃番茄的長徑或鍛徑來進行分級。由數(shù)據(jù)可以以得出各級的長徑和短徑比都接近1.5.故選長徑或短徑都可以,在這選擇櫻桃番茄的長徑來作為標準進行分級。分級如下:
第一級:長徑小于20mm.
第二級:長徑介于20mm和35mm.之間。
第三級:長徑大于35mm.
第三章 傳動系統(tǒng)設計
經(jīng)分析此機構主要包括機架,定制的雙側套筒傳動鏈,滾子,雙側鏈輪,軸承,軸,軸承套,同步帶和同步帶輪要進行設計。
3.1鏈條和鏈輪的設計
在設計此機構的過程中,分別可以用帶傳動和鏈傳動來傳輸載體櫻桃番茄。但是由于帶傳動中傳動帶的材料不是完全的彈性體因而帶在工作一段時間后會發(fā)生塑性伸長而松弛使張緊力降低,從而使傳動不是勻速進行的。而在本機構中要求的是傳動中需保持絕對的勻速。所以不用帶傳動。
而鏈傳動由于經(jīng)濟,可靠,它廣泛用于各類制造業(yè)中的機械上來傳遞動力。它相對于帶傳動的優(yōu)點是,沒有彈性滑動和打滑,能保持準確的平均傳動比。需要的張緊力小,作用在軸上的壓力也小,工況相同時,傳動尺寸較緊湊。能在溫度較高,濕度較大,有油污等惡劣的環(huán)境下工作。效率較高(η=98%)。而且鏈傳動的制造和安裝精度要求不高,中心距較大時傳動結構簡單。鏈傳動在傳遞功率,速度,傳動比,中心距等方面范圍很廣。目前最大傳動功率達到5000kw,最高速度達到40m/s,最大傳動比達到15,最大中心距達到8m。而在本機構中中心距有也很大。故很適合選用鏈傳動。
傳動鏈主要有套筒鏈,套筒滾子鏈和齒形鏈。它們都已經(jīng)標準化。在本設計中要求用雙側的鏈條中間夾裝有滾子,但在標準化的鏈中他們的尺寸偏大會使的機構過于龐大。所以根據(jù)設計需要,考慮盡可能的減小機構的體積和節(jié)省材料。在本設計中我采用定制的鏈條。
在設計時取鏈的節(jié)距P=50.00mm.
前后鏈輪中心距a=1375mm.
3.1.1鏈輪的設計
鏈輪輪齒的齒型應保證鏈節(jié)能夠自由地進入和退出嚙合,在嚙合時應保證良好的接觸,同時形狀應盡可能簡單,并便于加工。
國家標準只規(guī)定了鏈輪的最大和最小齒槽形狀。實際齒槽形狀在最大和最小范圍內(nèi)都可用,因而鏈輪齒廓曲線的幾何形狀可以有很大的靈活性。在這采用的齒廓為“三遠弧一直線”齒形。
鏈輪的尺寸計算如下:
因為本機構的傳動速率V=0.25m/s<0.6m/s.速率很低,所以在齒數(shù)的選擇上有很大的空間,在這里區(qū)齒數(shù)Z=17.
所以,分度圓直徑 d===272.1mm
齒頂圓直徑
齒根圓直徑
鏈輪齒廓圓弧直接)。
最大齒根距離
齒側凸緣直徑
鏈輪的結構如圖2:
圖2
圖2
3.1.2鏈條的設計計算
節(jié)距p=50mm,中心距=1375mm,鏈輪齒數(shù)z=17。
1).由以上數(shù)據(jù)確定鏈條的鏈節(jié)數(shù):
節(jié)。
所以總個鏈條的節(jié)數(shù)為72節(jié)。
2).鏈傳動的受力分析:
鏈傳動安裝時,所需的張緊力不大,主要是保證鏈條松邊垂度不要過大,以免影響鏈條的正常退出嚙合和產(chǎn)生震動,跳齒和脫節(jié)現(xiàn)象。不考慮傳動中的動載荷,作用在鏈上的力有工作拉力F,離心拉力Fc和懸垂拉力。在這取帶傳動的效率。
工作拉力(N)取決于傳動功率P(KW)和鏈速V(m/s)
F=1000==1980N.
離心拉力
式中 q 表示單位長度鏈條的質(zhì)量,kg/m,在這q=5kg/m.
懸垂拉力可用求懸索拉力的方法近似求得
為垂度系數(shù)。與中心線和水平線的夾角有關。垂直分布時可取=1.0,水平布置時可取=6.5.在這是水平布置。故取=6.5。
由此得到鏈緊邊和松邊拉力為
緊邊拉力 : 。
松邊拉力 : 。
3) 靜強度校核:
由于鏈條的速率v=0.25m/s小于0.6m/s,而鏈速低于0.6m/s的低速鏈傳動,其主要失效形式是練條的靜力拉斷,故應進行靜強度校核。靜強度安全系數(shù)應滿足下式要求
式中 表示單排鏈的極限拉伸載荷,在這取極限小值為60000N.
表示工作情況系數(shù),查表在載荷平穩(wěn)的情況下取=1.0
所以,,故符合要求。
另外,鏈條的形狀和主要加工尺寸如下圖3所示:
圖3
3.2滾子設計
在滾子設計中,技術要求不必要很高,它只是做承載作用。但是應該選擇摩擦系數(shù)小的工程塑料作材料。以減小櫻桃番茄在被吹離時的摩擦力。所以選用化學材料聚四氟乙烯。查簡明機械零件設計手冊表1-13 工程材料的摩擦因數(shù)知聚四氟乙烯的動摩擦因數(shù)。在與鏈條的配合中可以用過盈配合使其固定在雙側鏈條的中間。簡圖如下圖 4:
圖4
3.3 軸承和軸承座的設計
1.軸承可分為滑動軸承和滾動軸承。由于滑動軸承本身具有一些獨特的優(yōu)點:承載能力高、抗振性好、工作平穩(wěn)可靠、噪音小、壽命長等,使得它在某些特殊場合仍站有重要地位,目前他廣泛用于內(nèi)燃機、軋鋼機、大型電機及儀表、雷達、天文望遠鏡等方面。、
滑動的類型很多,按軸承承受載荷方向的不同,軸承可分為徑向軸承和推立球軸承。根據(jù)其華東表面間摩擦狀態(tài)的不同,可分為液體摩擦滑動軸承、非液體摩擦滑動軸承。液體摩擦的特點是軸頸和軸承兩想對運動表面間完全被一層油膜所分開,而根據(jù)油膜形成原理的不同,還可分為液體動力潤滑軸承和液體靜力潤滑軸承。
滾動軸承是現(xiàn)代機器中廣泛應用的部件之一,它是依靠主要元件間的滾動接觸來轉動零件的。與滑動軸承相比,滾動軸承的主要優(yōu)點是:(1)摩擦力矩和發(fā)熱較小,在通常的速度范圍內(nèi),摩擦力矩很少隨速度而改變。啟動轉矩比滑動軸承的要低得多(比后者小80%-90%);(2)維護比較方便,潤滑劑較少,(3)軸承單位寬度的承載能力較大;(4)大大地減少有色金屬的消耗。
滾動軸承的缺點是:(1)徑向外廊尺寸比滑動軸承大;(2)接觸應力高,承受沖擊載荷能力較差,高速重負荷小壽命較低;(3)小批生產(chǎn)特殊的滾動軸承時成本較高;(4)減振能力比滑動軸承低(5)運轉時有噪音,不適合用于有沖擊和瞬間過載的高轉速場合。
常用的滾動軸承絕大多數(shù)已經(jīng)標準化,并由專業(yè)的工廠大量制造及供應各種常用規(guī)格的軸承,因為傳輸分級機需要的軸承載荷并不太大,而;而且傳輸分級機在正常工作時基本沒有減振、沖擊和瞬間過載的高轉速。所以選用滾動軸承。這樣比較有利于機器更換,從經(jīng)濟的角度上來講也節(jié)約了制造成本。
選用滾動軸承中的深溝球軸承,因為其軸向緊固簡單,支承結構的軸向尺寸?。幻芊庑院脻櫥唵?;自動調(diào)心內(nèi)圈較寬便于裝拆。
3.3.1軸承的選擇
左圖為深溝球軸承的基本尺寸和和狀尺寸示意圖,下表為0系列深溝球軸承的選用表。深溝球軸承在傳輸分級機的正常工作載荷遠遠小于軸承的基本額定載荷,所以選用軸承主要是根據(jù)軸端的安裝來選的。在這選用代號為6008的深溝球軸承。
軸承型號
基本尺寸(mm)
安裝尺寸(mm)
基本額定載荷(KN)
d
D
B
da(min)
Da(max)
(max)
6005
25
47
12
30
43
0.6
7.9
5.05
6006
30
55
13
36
50
1
10.4
7
6007
35
62
14
41
57
1
12.5
8.7
6008
40
68
15
46
63
1
13.2
9.45
6009
45
75
16
51
70
1
16.3
12.4
6010
50
80
16
56
75
1
16.3
12.4
6011
55
90
18
63
83
1.2
22.1
17.3
3.3.1 軸和軸承的安裝方式
軸承和軸承座以及軸和軸承的連接形式如下圖5:
圖5
3.4同步帶和同步帶輪設計
在本設計中,鏈輪的主動軸是由電動機通過同步帶來驅動的。不同于其他帶傳動同步帶的工作面有齒,帶輪的輪緣表面也有相應的齒槽,帶與帶輪是靠嚙合進行傳動的,故傳動比恒定。
同步帶通常以鋼絲繩或玻璃纖維作承載層,氯丁橡膠或聚胺脂作基體。帶薄而且輕,可用于高速,傳動效率最高可達98%,所以同步帶的應用非常的廣泛。其主要缺點就是制作和安裝精度要求較高,中心距要求較嚴格。
在規(guī)定張緊力下,相鄰兩齒中心線的直線距離叫節(jié)距,它是同步帶傳動的主要參數(shù)。同步帶有單面帶和雙面帶兩種,單面帶單面有齒,雙面帶兩面均有齒。同步帶也 已經(jīng)有標準化了,它的型號分為最輕型MXL,超輕型XXL,特輕型XL,輕型L,重型H,特重型XH,超重型XXH七中(GB11362-89)。
同步齒形帶帶輪的齒形采用漸開線齒型,可以用范成法加工而成,也可采用直邊齒形。
3.4.1同步帶選擇
根據(jù)帶傳動的功率P=0.55KW.查簡明機械零件設計手冊帶傳動動設計同步帶選型圖,在這選擇型號為H的同步帶。
同步帶尺寸和形狀如下圖6:
圖6
3.4.2同步帶帶輪設計計算
根據(jù)鏈輪線速度v=0.25m/s.可以得出主鏈輪的角速度
W=
得出大帶輪的轉速 。
1.小帶輪設計計算
由于整個機構的轉速都非常的?。╪<750r/min)。根據(jù)簡明機械零件設計手冊表7-26 同步帶最小許用齒數(shù)(GB11361-89) H型同步帶的小帶輪齒數(shù)選擇為=14.
根據(jù)H型同步帶尺寸表:帶輪的節(jié)距。
小帶輪節(jié)圓直徑d=56.60mm
2.大帶輪設計計算
根據(jù)電機的轉速/min,鏈輪轉速/min
可以得出小帶輪和大帶輪的傳動比
所以大帶輪的節(jié)圓直徑
由 式 得大帶輪齒數(shù)為=35
圖7
3.5軸的設計
軸的結構設計是根據(jù)軸上零件的安裝,定位以及軸的制造工藝等方面的要求,合理的確定軸的解構形式和尺寸。軸的結構設計不合理,會影響軸的工作能力和軸上零件的工作可靠度,還會曾加軸的制造成本和軸上零件裝配的困難。
在本設計中,有連接前鏈輪以及同步帶的主動軸和連接后鏈輪的軸。他們在結構和尺寸上都有一定的差異,后軸相對于前主軸來說要簡單一些。而且在承受的扭轉切應力要小一些。軸的材料主要是碳鋼和合金鋼。鋼軸的毛胚多數(shù)用軋制圓鋼和鍛件,有的直接用圓鋼。由于碳鋼比合金鋼價廉,對應力集中的敏感性較低,同時也可以用熱處理和化學處理的辦法提高其耐磨性和抗疲勞強度,故在這里采用碳鋼制作軸。
3.5.1主動軸設計及校核
主動軸連接的零件有鏈輪,同步帶輪以及軸承。結構尺寸相對來說要復雜一些,因為他必須同時控制多個零件的軸向和徑向移動,而且各零件的裝配尺寸又有很大的差異。
由于機械傳輸?shù)墓β什淮?,對其重量和尺寸也沒有特殊要求故選擇常用材料45號鋼,調(diào)質(zhì)處理。
計算軸的最小許用軸徑
C--為取決于軸材料的許用扭轉切應力的系數(shù),查表得45號鋼的C值為107至118之間。在這區(qū)C=110.
--帶傳動效率
--電機功率
在本設計中,零件的徑向固定是通過鍵和鍵槽來實現(xiàn)的,這也是最簡單有效的方法,而軸向移動的控制者是通過軸肩以及一端加緊固螺紋來實現(xiàn)的。根據(jù)鏈輪,軸承以及大同步帶輪的尺寸設計出軸的結構和尺寸如下圖8:
圖8
3.5.2從動軸設計
從動軸跟主動軸尺寸和結構相比只是少了連接同步帶輪的伸出部分,其他部分結構和尺寸相同。其結構和尺寸如下圖9:
圖9
第四章 安裝結構設計計算
4.1機架設計
機架是各種機器的基本部件,在以臺機器的總質(zhì)量中占有很大的比例。整個機構是固定在機架上實現(xiàn)運動和傳輸?shù)?,機架又是固定在底做上的,因此結構的工作精度及抗震性能,耐磨性和機構能否平穩(wěn)安全的進行工作,都和機架有關聯(lián)。因此,機架和底座的設計是至關重要的。所以正確選擇機架零件的材料和正確設計其結構尺寸,對減小機器質(zhì)量,節(jié)約材料,提高工作精度,增強機器鋼度及耐磨性,曾加整個機器的美觀性有很重要的作用。而在本設計中機架的精度和表面粗糙度方面要求不高。
4.1.1機架材料選擇
機架主要有鑄造機架,焊接機架,花崗巖機架和鋼筋混凝土機架??紤]到經(jīng)濟實用性,在這我選擇鑄造機架。常用的鑄造機架材料有鑄鐵,鑄鋼和鑄造鋁合金。為方便結構的美觀和方便拆卸,選擇者鑄造鋁合金作為本設計機構的機架材料。鑄造鋁合金通過熱處理強化可使其具有足夠高的強度,較好的塑性,良好的低溫韌性和耐熱性。
機架的橫斷面和連接方式如下圖10:
4.1.2 機架連接方式
圖 10
總結
首先,在這我衷心的感謝在本畢業(yè)設計中給與我細心指導我的劉仲壽老師,正是在劉老師的悉心輔導下本畢業(yè)設計才得以順利的按時完成。通過做本次畢業(yè)設計我深刻的認識到無論是在做畢業(yè)設計還是在其他的工作中和學習中都必須抱有嚴謹悉心的態(tài)度,只有這樣才能把事情做好,做到有突破性。另外通過本次畢業(yè)設計還使我認識到在生活中你會感受到許多的坎坷和挫折,許多的事情并不是你不行,而是你沒有勇氣去嘗試,其實如果你嘗試了,也許就會成功,不去嘗試的話,永遠都不會知道你會成功。歌德說過:那些是你的夢想的,那你就要去做,去嘗試,去努力,去奮斗。
其次,此次畢業(yè)設計是我們從大學畢業(yè)生走向未來工程師重要的一步。從最初的選題,開題到計算、繪圖直到完成設計。其間,查找資料,老師指導,與同學交流,反復修改圖紙,每一個過程都是對自己能力的一次檢驗和充實。通過這次實踐,我了解了分級系統(tǒng)的用途及工作原理,熟悉了分級系統(tǒng)的設計步驟,鍛煉了工程設計實踐能力,培養(yǎng)了自己獨立設計能力。此次畢業(yè)設計是對我專業(yè)知識和專業(yè)基礎知識一次實際檢驗和鞏固,同時也是走向工作崗位前的一次熱身。
第三,畢業(yè)設計收獲很多,比如學會了查找相關資料相關標準,分析數(shù)據(jù),提高了自己的繪圖能力,懂得了許多經(jīng)驗公式的獲得是前人不懈努力的結果。同時,仍有很多課題需要后輩去努力去完善。 但是畢業(yè)設計也暴露出自己專業(yè)基礎的很多不足之處。比如缺乏綜合應用專業(yè)知識的能力,對材料的不了解,等等。這次實踐是對自己大學四年所學的一次大檢閱,使我明白自己知識還很淺薄,雖然馬上要畢業(yè)了,但是自己的求學之路還很長,以后更應該在工作中學習,努力使自己 成為一個對社會有所貢獻的人,為中國制造業(yè)添上自己的微薄之力。
參考文獻
【1】朱龍根主編,簡明機械零件設計手冊,北京機械工業(yè)出版設,1997.11。
【2】成大先主編,機械設計圖冊,化學工業(yè)出版社,1997。
【3】曾志新,呂明主編,機械制造技術基礎,武漢理工大學出版社,2007。
【4】楊明忠,朱家誠主編,機械設計,武漢理工大學出版社,2001。
【5】余桂英,郭紀林主編,CAD 2006中文版實用教程,大連理工大學出版社,
2006。
【6】東南大學機械學學科組,鄭文緯,吳克堅主編,機械原理,高等教育出版 社,1996 。
【7】中國機械工程學會機械設計分會,謝里陽主編,現(xiàn)代機械設計方法,機械 工業(yè)出版社,2005 。
【8】于永泗,齊民主編,機械工程材料,大連理工大學出版社,2007 。
【9】丁玉蘭主編,人機工程學,北京理工大學出版社,2004 。
【10】 徐灝主編,機械設計手冊,機械工業(yè)出版社,1992 。
【11】譚建榮,張樹有,陸國棟,施岳定主編,圖學基礎教程,高等教育出版社,2004。
【12】劉鴻文主編. 材料力學. 北京:高等教育出版社1991。
【13】《機械工程標準手冊》編委會 編 機械工程標準手冊技術制圖卷中國標準出版社 2002。
21
編號
無錫太湖學院
畢業(yè)設計(論文)
相關資料
題目: 工業(yè)窯爐的設計(輸送裝置)
信機 系 機械工程及自動化 專業(yè)
學 號: 0923220
學生姓名: 李 歡
指導教師: 徐偉明(職稱: 教 授 )
(職稱: )
2013年5月25日
目 錄
一、畢業(yè)設計(論文)開題報告
二、畢業(yè)設計(論文)外文資料翻譯及原文
三、學生“畢業(yè)論文(論文)計劃、進度、檢查及落實表”
四、實習鑒定表
無錫太湖學院
畢業(yè)設計(論文)
開題報告
題目: 工業(yè)窯爐的設計(輸送裝置)
信機系 機械工程及自動化 專業(yè)
學 號: 0923220
學生姓名: 李 歡
指導教師: 徐偉明(職稱: 教 授 )
(職稱: )
2012年11月20日
課題來源
本課題來源于導師布置的任務導老師
科學依據(jù)(包括課題的科學意義;國內(nèi)外研究概況、水平和發(fā)展趨勢;應用前景等)
輸送裝置的設計是機械工程及其自動化專業(yè)所包含的一個較為基礎的內(nèi)容,選擇輸送裝置方向的畢業(yè)設計題目完全符合本專業(yè)的要求,從應用性方面來說,輸送裝置又是很多機器所必不可少的一個部分。有效保證輸送裝置的功率及穩(wěn)定性能夠達到設計的要求,具有很好的發(fā)展前途和應用前景。
研究內(nèi)容
1、 選擇電動機,計算傳動裝置的運動和動力參數(shù);
2、 擬定、分析傳動裝置的運動和動力參數(shù);
3、 進行傳動件的設計計算,校核軸、軸承、聯(lián)軸器、鍵等;
4、 繪制減速器裝配圖及典型零件圖(圖紙數(shù)達到3張或以上);
5、 完成設計說明一份,分析明晰,計算正確,闡述清楚。適合的生產(chǎn)加工工 藝
擬采取的研究方法、技術路線、實驗方案及可行性分析
首先確定整體設計方案,由公式的演算得到電動機的動力和運動分析,在以此推算相配的傳動件,軸系零部件的尺寸規(guī)格。綜上計算可以得到相關尺寸,再根據(jù)力學性能對所得零部件尺寸進行校驗從而驗證整體方案是否可行。
研究計劃及預期成果
研究計劃:
2012年11月 布置任務。
2013年1月 對課題研究方向進行學習
2013年2月~3月 擬定方案,提出專機總體方案,供討論
2013年4月5日~10日 確定方案,專機總體布置
11日~20日 整機設計、部件設計
21日~30日 改進并完成設計
2013年5月1日~10日 撰寫設計說明書
11日~15日 總結
預期成果:圖紙、設計說明書
特色或創(chuàng)新之處
帶式輸送機本身便具有價格便宜,標準化程度高特點,使成本大幅降低。高速級齒輪常布置在遠離扭矩輸入端的一邊,以減小因彎曲變形所引起的載荷沿齒寬分布不均現(xiàn)象。
已具備的條件和尚需解決的問題
與指導老師的溝通中,對自己所做課題有了整體的認識,清晰了思路。指導老師提供了論文指導,從而使自己明確了每一步的方向。因第一次繪制復雜的裝配圖,所以在繪圖方面還有待提高。
指導教師意見
同意作為本專業(yè)學生畢業(yè)設計課題,其難度和工作量均合適。
指導教師簽名:
年 月 日
教研室(學科組、研究所)意見
教研室主任簽名:
年 月 日
系意見
主管領導簽名:
年 月 日
英文原文
Esign of Speed Belt Conveyors
G. Lodewijks, The Netherlands.
This paper discusses aspects of high-speed belt conveyor design. The capacity of a belt conveyor is determined by the belt speed given a belt width and troughing angle. Belt speed selection however is limited by practical considerations, which are discussed in this paper. The belt speed also affects the performance of the conveyor belt, as for example its energy consumption and the stability of it's running behavior. A method is discussed to evaluate the energy consumption of conveyor belts by using the loss factor of transport. With variation of the belt speed the safety factor requirements vary, which will affect the required belt strength. A new method to account for the effect of the belt speed on the safety factor is presented. Finally, the impact of the belt speed on component selection and on the design of transfer stations is discussed.
Belt machine by conveyor belt continuous or intermittent motion to transport all kinds of different things ,Can transport all kinds of bulk materials, but also transport a variety of cardboard boxes, packaging bags, weight of single pieces of small goods, a wide range of uses . Belt conveyor belt material: rubber, silicone, PVC, PU and other materials, in addition to ordinary material conveying, but also to meet the transmission oil resistant, corrosion resistance, antistatic and other special requirements for material. Belt conveyor structure: groove belt machine, flat belt conveyor, climbing belt machine, turning machines and other forms belt, conveyor belt can also be created to enhance the tailgate, skirts and other accessories, can meet a variety of technological requirements.The belt conveyor drive: deceleration motor drive, electric drive roller.Belt conveyor mode: frequency control, stepless transmission.The belt rack material: carbon steel, stainless steel, aluminum profile.Scope of application: light industry, electronics, food, chemical, wood, etc..Belt machine equipment characteristics: belt conveyor is stable, the material and the conveyor belt there is no relative motion, to avoid damage to the carrier material. Low noise, suitable for quiet work environment requirements. Simple structure, easy maintenance. Low energy consumption, low use cost.
Conveyor is a common don't have flexible traction component continuous conveying machinery, also called continuous conveyor.It is a material handling equipment, it with handling ability strong, persistent, direction, flexible, and other advantages in industrial production in large being applied. Although many types of belt conveyor, but its working principle is basic similar, most are driving draught device and drive transmission container transport materials. Conveyor can undertake level, the tilt and vertical conveyor, also can make the space transport routes, transmission lines is usually fixed, is a modern production and logistics transport indispensable important mechanical equipment. It has transmission capacity is strong, long distance transportation etc.
With the development of industry, conveyor also obtained fast development, conveyor products have been also gradually improved. With the emergence of the power equipment of similar principle is applied, conveyor continuing into the 19th century, britons use basketwork, wire rope for traction belt conveyor. The principle of belt conveyor, when applied in the 17th century also recorded conveyor, in 1880 German company developed driven by steam belt conveyor. Then the British and German and launched inertial conveyor, if the conveyor belt, the application of the principle, creating a tilt of the belt conveyor, belt, traction with chains. All sorts of conveyor during this time arise conveyor, based on human, hydraulic power drive such. All the structures conveyor successively appeared. In 1887 americans produced the screw conveyor, make enterprise internal, between enterprise and inter-city transportation possible. The development history of belt conveyor, they very ancient instead of the original motive for conveyor provide driving force. Ancient people began to use water overturned and high TongChe conveyor, in turn after the water conservancy project's belt conveyor begin in power. Quick-tempered exalts
According to the mode of operation conveying machinery can be divided into: 1: belt conveyor 2: screw conveyor 3: dou pattern lift machine
The future of large scale, will toward belt use scope, energy consumption, low pollution less, material automatically grading, etc.
Past research has shown the economical feasibility of using narrower, faster running conveyor belts versus wider, slower running belts for long overland belt conveyor systems. See for example [I]-[5]. Today, conveyor belts running at speeds around 8 m/s are no exceptions. However, velocities over 10 m/s up to 20 m/s are technically (dynamically) feasible and may also be economically feasible. In this paper belt speeds between the 10 and 20 m/s are classified as high. Belt speeds below the 10 m/s are classified as low.
Using high belt speeds should never be a goal in itself. If using high belt speeds is not economically beneficial or if a safe and reliable operation is not ensured at a high belt speed then a lower belt speed should be selected.
Selection of the belt speed is part of the total design process. The optimum belt conveyor design is determined by static or steady state design methods. In these methods the belt is assumed to be a rigid, inelastic body. This enables quantification of the steady-state operation of the belt conveyor and determination of the size of conveyor components. The specification of the steady-state operation includes a quantification of the steady-state running belt tensions and power consumption for all material loading and relevant ambient conditions. It should be realized that finding the optimum design is not a one-time effort but an iterative process [6].
Design fine-tuning, determination of the optimum starting and stopping procedures, including determination of the required control algorithms, and determination of the settings and sizes of conveyor components such as drives, brakes and flywheels, are determined by dynamic design methods. In these design methods, also referred to as dynamic analyses, the belt is assumed to be a three-dimensional (visco-) elastic body. A three dimensional wave theory should be used to study time dependent transmission of large local force and displacement disturbances along the belt [7]. In this theory the belt is divided into a series of finite elements. The finite elements incorporate (visco-) elastic springs and masses. The constitutive characteristics of the finite elements must represent the rheological characteristics of the belt. Dynamic analysis produces the belt tension and power consumption during non-stationary operation, like starting and stopping, of the belt conveyor.
This paper discusses the design of high belt-speed conveyors, in particular the impact of using high belt speeds on the performance of the conveyor belt in terms of energy consumption and safety factor requirements. Using high belt speeds also requires high reliability of conveyor components such as idlers to achieve an acceptable component life. Another important aspect of high-speed belt conveyor design is the design of efficient feeding and discharge arrangements. These aspects will be discussed briefly.
Many methods of analyzing a belt’s physical behavior as a rheological spring have been studied and various techniques have been used. An appropriate model needs to address:
1. Elastic modulus of the belt longitudinal tensile member
2. Resistances to motion which are velocity dependent (i.e. idlers)
3. Viscoelastic losses due to rubber-idler indentation
4. Apparent belt modulus changes due to belt sag between idlers
Since the mathematics necessary to solve these dynamic problems are very complex, it is not the goal of this presentation to detail the theoretical basis of dynamic analysis. Rather, the purpose is to stress that as belt lengths increase and as horizontal curves and distributed power becomes more common, the importance of dynamic analysis taking belt elasticity into account is vital to properly develop control algorithms during both stopping and starting.
Using the 8.5 km conveyor in Figure 23 as an example, two simulations of starting were performed to compare control algorithms. With a 2x1000 kW drive installed at the head end, a 2x1000 kW drive at a midpoint carry side location and a 1x1000kW drive at the tail, extreme care must be taken to insure proper coordination of all drives is maintained.
Figure 27 illustrates a 90 second start with very poor coordination and severe oscillations in torque with corresponding oscillations in velocity and belt tensions. The T1/T2 slip ratio indicates drive slip could occur. Figure 28 shows the corresponding charts from a relatively good 180 second start coordinated to safely and
smoothly accelerate the conveyor.
Figure 27-120 Sec Poor Start
BELTSPEED
BELT SPEED SELECTION
The lowest overall belt conveyor cost occur in the range of belt widths of 0.6 to 1.0 m [2]. The required conveying capacity can be reached by selection of a belt width in this range and selecting whatever belt speed is required to achieve the required flow rate. Figure 1 shows an example of combinations of belt speed and belt width to achieve Specific conveyor capacities. In this example it is assumed that the bulk density is 850 kg/m3 (coal) and that the trough angle and the surcharge angle are 35' and 20' respectively.
Figure 1: Belt width versus belt speed for different capacities.
Belt speed selection is however limited by practical considerations. A first aspect is the troughability of the belt. In Figure 1 there is no relation with the required belt strength (rating), which partly depends on the conveyor length and elevation. The combination of belt width and strength must be chosen such that good troughability of the belt is ensured. If the troughability is not sufficient then the belt will not track properly. This will result in unstable running behavior of the belt, in particular at high belt speeds, which is not acceptable. Normally, belt manufacturers expect a sufficiently straight run if approximately 40% of the belt width when running empty, makes contact with the carrying idlers. Approximately 10% should make tangential contact with the center idler roll.
A second aspect is the speed of the air relative to the speed of the bulk solid material on the belt (relative airspeed). If the relative airspeed exceeds certain limits then dust will develop. This is in particular a potential problem in mine shafts where a downward airflow is maintained for ventilation purposes. The limit in relative airspeed depends on ambient conditions and bulk material characteristics.
A third aspect is the noise generated by the belt conveyor system. Noise levels generally increase with increasing belt speed. In residential areas noise levels are restricted to for example 65 dB. Although noise levels are greatly affected by the design of the conveyor support structure and conveyor covers, this may be a limiting factor in selecting the belt speed.
BELT SPEED VARIATION
The energy consumption of belt conveyor systems varies with variation of the belt speed, as will be shown in Section 3. The belt velocity can be adjusted with bulk material flow supplied at the loading point to save energy. If the belt is operating at full tonnage then it should run at the high (design) belt speed. The belt speed can be adjusted (decreased) to the actual material (volume) flow supplied at the loading point. This will maintain a constant filling of the belt trough and a constant bulk material load on the belt. A constant filling of the belt trough yields an optimum loading-ratio, and lower energy consumption per unit of conveyed material may be expected. The reduction in energy consumption will be at least 10% for systems where the belt speed is varied compared to systems where the belt speed is kept constant [8].
Varying the belt speed with supplied bulk material flow has the following advantages:
Less belt wear at the loading areas
Lower noise emission
Improved operating behavior as a result of better belt alignment and the avoidance of belt lifting in concave curve by reducing belt tensions
Drawbacks include:
Investment cost for controllability of the drive and brake systems
Variation of discharge parabola with belt speed variation
Control system required for controlling individual conveyors in a conveyor system
Constant high belt pre-tension
Constant high bulk material load on the idler rolls
An analysis should be made of the expected energy savings to determine whether it is worth the effort of installing a more expensive, more complex conveyor system.
ENERGY CONSUMPTION
Clients may request a specification of the energy consumption of a conveyor system, for example quantified in terms of maximum kW-hr/ton/km, to transport the bulk solid material at the design specifications over the projected route. For long overland systems, the energy consumption is mainly determined by the work done to overcome the indentation rolling resistance [9]. This is the resistance that the belt experiences due to the visco-elastic (time delayed) response of the rubber belt cover to the indentation of the idler roll. For in-plant belt conveyors, work done to overcome side resistances that occur mainly in the loading area also affects the energy consumption. Side resistances include the resistance due to friction on the side walls of the chute and resistance that occurs due to acceleration of the material at the loading point.
The required drive power of a belt conveyor is determined by the sum of the total frictional resistances and the total material lift. The frictional resistances include hysteresis losses, which can be considered as viscous (velocity dependent) friction components. It does not suffice to look just at the maximum required drive power to evaluate whether or not the energy consumption of a conveyor system is reasonable. The best method to compare the energy consumption of different transport systems is to compare their transport efficiencies.
TRANSPORT EFFICIENCY
There are a number of methods to compare transport efficiencies. The first and most widely applied method is to compare equivalent friction factors such as the DIN f factor. An advantage of using an equivalent friction factor is that it can also be determined for an empty belt. A drawback of using an equivalent friction factor is that it is not a 'pure' efficiency number. It takes into account the mass of the belt, reduced mass of the rollers and the mass of the transported material. In a pure efficiency number, only the mass of the transported material is taken into account.
The second method is to compare transportation cost, either in kW-hr/ton/km or in $/ton/km. The advantage of using the transportation cost is that this number is widely used for management purposes. The disadvantage of using the transportation cost is that it does not directly reflect the efficiency of a system.
The third and most "pure" method is to compare the loss factor of transport [10]. The loss factor of transport is the ratio between the drive power required to overcome frictional losses (neglecting drive efficiency and power loss/gain required to raise/lower the bulk material) and the transport work. The transport work is defined as the multiplication of the total transported quantity of bulk material and the average transport velocity. The advantage of using loss factors of transport is that they can be compared to loss factors of transport of other means of transport, like trucks and trains. The disadvantage is that the loss factor of transport depends on the transported quantity of material, which implies that it can not be determined for an empty belt conveyor.
The following are loss factors of transport for a number of transport systems to illustrate the concept:
Continuous transport:
Slurry transport around 0.01
Belt conveyors between 0.01 and 0.1
Vibratory feeders between 0.1 and 1
Pneumatic conveyors around 1 0
Discontinuous transport:
Ship between 0.001 and 0.01
Train around 0.01
Truck between 0.05 and 0.1
INDENTATION ROLLING RESISTANCE
For long overland systems, the energy consumption is mainly determined by the work done to overcome the indentation rolling resistance. Idler rolls are made of a relatively hard material like steel or aluminum whereas conveyor belt covers are made of much softer materials like rubber or PVC. The rolls therefore indent the belt's bottom-cover when the belt moves over the idler rolls, due to the weight of the belt and bulk material on the belt. The recovery of the compressed parts of the belt's bottom cover will take some time due to its visco-elastic (time dependent) properties. The time delay in the recovery of the belt's bottom cover results in an asymmetrical stress distribution between the belt and the rolls, see Figure 2. This yields a resultant resistance force called the indentation rolling resistance force. The magnitude of this force depends on the visco-elastic properties of the cover material, the radius of the idler roll, the vertical force due to the weight of the belt and the bulk solid material, and the radius of curvature of the belt in curves in the vertical plane.
Figure 2: Asymmetric stress distribution between belt and roll [7].
It is important to know how the indentation rolling resistance depends on the belt velocity to enable selection of a proper belt velocity, [11].
Figure 3: Loss factor (tanb) of typical cove
收藏