新型單軌起重機牽引系統液壓系統的設計與仿真外文文獻翻譯、中英文翻譯、外文翻譯
新型單軌起重機牽引系統液壓系統的設計與仿真外文文獻翻譯、中英文翻譯、外文翻譯,新型,單軌,起重機,牽引,系統,液壓,設計,仿真,外文,文獻,翻譯,中英文
Design and Simulation for the Hydraulic System of a New-style Monorail Crane Traction System
Abstract
In order to meet the requirement of the underground cable checked, the hydraulic system of a new-style monorail crane traction system is introduced. The hydraulic system of the traction system was designed. The modeling and simulation for the hydraulic system was build, and the simulation results were analyzed subsequently. The research shows the system performance reaches the requirements. The simulation results are almost the same as the theoretical value, and the design scheme of the hydraulic system is feasible.
Keywords: monorail crane, traction system, hydraulic system, modeling and simulation
Introduction
The design of hydraulic system is the component of the whole system. The hydraulic system is to make the host achieve requirements under the cooperation or control of the hydraulic system. According to the requirement of the new traction system, a hydraulic system was designed; the modeling and simulation for the hydraulic system was build to analysis the hydraulic system performance
Calculation of hydraulic system design
Analysis of load and movement
Calculate work load. Work load is the name for traction 45KN. This is the dynamic friction, fluid power is provided by hydraulic motor。
Calculate inertial load
Calculate feeding speed. According to the requirements of the traction system designed, the feeding speed of the system is at 0.12 m/s [2] .
Protocol hydraulic system diagram
Choose basic hydraulic loop. The design of hydraulic system power is bigger, work load change tiny at work, the system mainly realizes transportation function and lowly demand for stability of system, so volume control loop has been chosen. That is the variable pump-quantitative motor speed regulation
The motor oil is mainly as traction wheel operation in the system work, when the system is stable, the hydraulic cylinder piston is in balance, and the flow is unchanged in a certain speed of 0.12m /s. This shows that system in operation is in high pressure and large flow. For improving the efficiency of the system and meeting the needs of the speed regulation, variable piston pump scheme is chosen as the main loop, and gear pump control is chosen for controlling the hydraulic fluid port
System Modeling and Simulation
Simulate for system under the AMESIM. Start AMESIM, enter into the Sketch pattern. In this pattern, the components in the standard library and optional library are used to set up a hydraulic system .As the figure shows:
1) Travel motor and its control parts 2-Pressure cylinder and its control parts 3-Braking cylinder
4-Simulation braking spring
Fig1 Hydraulic system under AMESIM environmen
After completing the system building, click Sub-model mode button to enter the Sub-model model, in this mode, use the preferred sub-model function of Premier Sub-model for each of the system components selecting sub-model.
After determining the sub-model, click the Parameter mode button to enter the Parameter model, at this time, AMESIM performs various inspections for the system and generate executable code, System compilation window gives the technical information, which illustrates with the correctness of the front modeling .
After setting parameters, click on the Simulation mode button into the operation mode, set operation parameters: running time is 50 seconds, click on the start button to complete the simulation
Analyze for simulation results. After completion of the above operation, a part of the resulting drawing is shown fig2 and fig3.
The two figures show, when motor output torque meets the requirement of 735Nm, the entrance pressure reaches 229.75bar after the system stability, that is 22.975MPa, in starting, entrance pressure reaches to 25MPa and starting torque can reach to 800Nm, the entrance pressure difference between this and the previous in the selection of motor is , this phenomenon is mainly caused by the result did not consider mechanical efficiency and volume efficiency of the oil motor in simulation. From the results of the motor entrance pressure simulation we can see, when starting motor, the system pressure has a very fast rise process, but that is still in setting range [5] .
Fig2 Curve of motor inlet pressure Fig3 Curve of Motor output torque
Through the model of the system simulation, we can easily see the motor needs back pressure under different conditions. Set the motor torque were 735Nm, 635Nm, 535Nm, 435Nm, the simulation curve is shown below.
Fig4 Curves of motor inlet pressure under different load
The simulation results show that pressure the system provided is different under different load requirements and the response time of the system is also different. But the maximum pressure is almost the same when the system starts. The results meet the theory and the fact.
Fig5 Pressure curve of hydraulic cylinder
From the pressure cylinder’s braking force curve can be seen, the braking force of the system can reach 28912N in the stability of the system, this complies with the design requirements and is almost the same as the theoretical value
Fig6 Displacement curve of Brake cylinder Fig7 Force curve Brake cylinder piston rod
The displacement curve of the brake cylinder in the figure 6 shows, the brake cylinder displacement becomes big with the pressure increasing in the beginning, and it is a straight line, when the piston rod reaches to the force balance, the displacement will not change, and the displacement is small, that meets the requirements of actual working condition. The force curve of the piston rod in the figure 7 shows, the pressure is big when system produces 45KN, but the force is still in the design range.
Conclusion
According to the requirements of traction system, the hydraulic system of a new-style monorail crane traction system is introduced. The hydraulic system of the traction system was designed, the modeling and simulation for the hydraulic system was build, and the simulation results were analyzed subsequently. The research shows the system performance reaches the requirements. The simulation results are almost the same as the theoretical value, and the design scheme of the hydraulic system is feasible
References
[1] Anon. Developments in monorail [J].Colliery guardian Redhill.1988, 236 (12):438-439.
[2] Evans R J, Mayer check W D, Salinas J L.SURFACE TESTING AND EVALUATION OF THE MONORAIL BRIDGE CONVEYOR SYSTEM. [J].COAL MINING.1987.
[3] Mlinar J R, Erdman A G. Flexible pipelines prevent pressure losses[J]. Engineering and Mining Journal. 2004, 205(8):10.
[4] Xiao L, Li A, Wang X. Research on soft rock or coal seam roadway monorail hanging technology[C]. Henan, China: IEEE Computer Society, 2010.
新型單軌起重機牽引系統液壓系統的設計與仿真
摘要
為了滿足對地下電纜的檢查要求,引入了新型單軌起重機牽引系統的液壓系統。 設計了牽引系統的液壓系統。 建立了液壓系統的建模與仿真,并對仿真結果進行了分析。 研究表明系統性能達到要求。 仿真結果與理論值基本相同,液壓系統的設計方案是可行的。
關鍵詞:單軌起重機;牽引系統;液壓系統;建模與仿真
簡介
液壓系統的設計是整個系統的組成部分。 液壓系統的作用是使主機在液壓系統的協作或控制下達到要求。 根據新牽引系統的要求,設計了液壓系統。 建立了液壓系統的建模與仿真,分析了液壓系統的性能。
1液壓系統設計計算
1.1荷載與運動分析
1.1.1計算工作負載。?工作負載是牽引式45kn的名稱。?這就是動態(tài)摩擦力,液壓馬達提供流體動力。
計算慣性負載:
1.1.2計算進給速度。根據設計的牽引系統要求,系統進給速度為0.12m/s[2]。
1.1.3協議液壓系統圖
1.1.4選擇基本液壓回路。液壓系統設計功率大,工作負載變化小,系統主要實現輸送功能,對系統穩(wěn)定性要求低,故選用容積控制回路。即變量泵定量電機調速
系統工作時,電機油主要作為牽引輪運行,當系統穩(wěn)定時,液壓缸活塞處于平衡狀態(tài),流量在0.12m/s的一定速度下保持不變,說明運行中的系統處于高壓大流量狀態(tài)。
為了提高系統的效率,滿足調速的需要,選用變量柱塞泵方案作為主回路,采用齒輪泵控制來控制液壓油口。
2系統建模與仿真
2.1模擬系統下的系統。 開始AMESIM,進入草圖模式。 在此模式下,采用標準庫和可選庫中的組件建立液壓系統,圖中顯示:
1.行駛馬達及其控制部件 2.壓力缸及其控制部件 3.制動缸 4.模擬制動彈簧圖
圖1 AMESIM環(huán)境下的液壓系統
系統搭建完成后,點擊子模型模式按鈕,進入子模型模式,在此模式下,對選擇子模型的每個系統組件使用Premier Sub model的首選子模型功能。
確定子模型后,點擊參數模式按鈕進入參數模型,此時AMESIM對系統進行各種檢查并生成可執(zhí)行代碼,系統編譯窗口給出技術信息,用前面建模的正確性來說明。
設定參數后,點擊模擬模式按鈕進入操作模式,設定操作參數:運行時間為50秒鐘,點擊啟動按鈕完成仿真。
分析模擬結果。完成上述操作后,生成的圖形的一部分如圖2和圖3所示。
這兩幅圖顯示,當電機輸出轉矩達到735Nm要求時,系統穩(wěn)定后入口壓力達到229.75bar,即22.975MPa,在起動時,入口壓力達到25MPa,起動轉矩可達到800Nm,在電機的選擇上,此入口壓差與前一入口壓差為,造成這種現象的主要原因是仿真結果沒有考慮油馬達的機械效率和容積效率。從電機入口壓力的模擬結果可以看出,啟動電機時,系統壓力有一個很快的上升過程,但仍在設定范圍內[5]。
圖2電機進口壓力曲線圖 圖3電機輸出轉矩曲線
通過系統仿真模型,我們可以很容易地看到電機在不同工況下需要背壓。 電機轉矩設定為:735Nm、635Nm、535Nm、435Nm,仿真曲線如下。
圖4不同負載下電機進口壓力曲線
仿真結果表明,在不同的負載要求下,系統提供的壓力不同,系統的響應時間也不同。但系統啟動時,最大壓力幾乎相同。結果與理論和實際相符。
圖5 液壓缸壓力曲線
從壓力缸的制動力曲線可以看出,系統的制動力在系統的穩(wěn)定性上可以達到28912N,這符合設計要求,與理論值基本一致
從圖6中制動缸的位移曲線可以看出,制動缸的位移在開始時隨著壓力的增大而變大,并且是一條直線,當活塞桿達到力平衡時,位移不會發(fā)生變化,位移很小,符合實際工況要求。圖7中活塞桿的受力曲線顯示,系統產生45KN時壓力較大,但受力仍在設計范圍內。
圖6 制動缸位移曲線圖 圖7 制動缸活塞桿受力曲線
總結
根據牽引系統的要求,介紹了一種新型單軌起重機牽引系統的液壓系統。對牽引系統的液壓系統進行了設計,對液壓系統進行了建模和仿真,并對仿真結果進行了分析。研究表明,系統性能達到要求。仿真結果與理論值基本一致,液壓系統的設計方案是可行的
參考文獻
[1]?Anon。 單軌鐵路的發(fā)展[J]?.Colliery Guardian Redhill.1988,236(12):438-439。
[2] Evans R J,Mayer check W D,Salinas J L.單軌橋輸送系統的表面測試和評估。煤礦開采.1987。
[3] Mlinar J R,Erdman?AG。柔性管道防止壓力損失。 工程與采礦雜志。?2004,205(8):10。
[4]肖麗,李安,王新。軟巖或煤層巷道單軌懸掛技術研究。 中國河南:IEEE計算機學會,2010年。
11
收藏