型砂處理機破碎機構的設計圖紙
型砂處理機破碎機構的設計圖紙,型砂,處理機,破碎,機構,設計,圖紙
一種新的T曲線模型描述石灰石在沖擊式破碎機下的粉碎
摘要
在破碎機的評測,從單顆粒的測試方法得到的T系列曲線是經常使用。眾所周知,有許多困難和問題,在這些試驗中。在這項研究中的沖擊式破碎機三種不同的灰?guī)r破裂行為進行了研究。一種新的粒度分布模型,采用T曲線價值評估和邦德功指數的方法開發(fā)。其結果公式的有效性證明由高回歸值(r2=0.88)。
關鍵詞:石灰石 破損 反擊式破碎機 邦德功指數 粒度分布 T曲線
1.引言
撞擊引發(fā)的巖石碎片是相關的科學和技術的許多領域。沖擊式磨機已在礦物,煤,水泥,化工等行業(yè)得到應用了很長時間。文獻表明,大量的努力已經花費在理解,通過實驗和數學模擬相對于機器配置和操作條件的影響磨機的性能。然而,由于缺乏對碰撞的研磨室內部的速度和能量分布的詳細知識,該機制仍然不清楚?!?】
自20世紀20年代后期邦德測試已使用;實驗室和世界各地的操作中使用的程序作為一個組件粉碎的電路設計以及植物的性能進行評估。盡管這樣的長期使用性,準確性的專題和精密邦德功指數測定的復發(fā)有很大的頻率?!?】
單粒子測試以確定的粉碎問題礦石可被分成雙擺裝置(圖1)和降重裝置(圖2)為基礎的測試。
舒曼[8]報道,尺寸減小本身涉及不同能量輸入,不同的進料粒度和不同的粒度分布。費乃威和里默[9]曾審閱擺錘裝置上的單顆粒破碎,并指出,擺錘裝置可以是適合于任何之間的斷裂產物分布和粉碎能量。
雙擺錘試驗依賴于粒子之間的破損從一個已知的高度和反彈釋放輸入擺錘和輸出擺錘。兩張擺錘,但是,有一些重要的局限性,特別是關于它的低靈活性和可重復性,長的測試時間,可憐的精度估算粉碎能量反彈擺錘的二次運動的結果。
落錘試驗而不同,在該粒子被放置在堅硬的表面上,并擊中一個落錘。這兩個測試已經被廣泛地用在粉碎的領域。在最近幾年中,落錘裝置正在取代的雙擺錘。標準落錘裝置裝有20公斤的質量,這可以擴展到50千克。有效范圍跌落高度的為0.05?1.0μm時,它表示一個廣泛能量范圍從0.01至50千瓦小時/噸(以10-50毫米的顆粒)。后續(xù)樣品制備平均每套顆粒被打破的大規(guī)模計算。從落錘試驗結果提供能量/輸入大小/產品尺寸關系。這種關系是使用一組曲線來描述從提高尺寸減小的破裂事件中產生的尺寸分布分析或能量輸入。
在落錘試驗,已知質量經過一個給定的高度落到單個粒子提供一個事件,它允許根據沖擊破碎礦石的表征。雖然,落錘試驗具有優(yōu)勢,在統(tǒng)計上的可靠性方面與從分析中的潛在用途的數據的它擁有了相當數量的缺點,包括需要特殊的設備,特別的時間長度取來進行一個測試。為每次落錘試驗,15個樣本中5粒級測試在三個層次的能量輸入。
納拉亞南[14]使用了一種新的方法對估算從T-曲線族礦石的破碎分布函數。在該方法中,產品的粒度分布可以表示為一族使用的標記點曲線的粒度分布的百分比經過(t)的母粒子尺度的一小部分。因此,t2為經過一半的開口的百分比母體顆粒尺寸的大小,t4為四分之一和t10是十分之一的母顆粒大小。納拉亞南和懷特[15]提出的經驗公式與參考曲線數據 T10與沖擊能量。
t10的值是由涉及到具體的粉碎能量該公式。
t10=A(1-e)
TN與T10的關系可以被用來預測在不同研磨時間的產品粒度分布
眾所周知,有許多困難和問題應用落錘和雙擺錘試驗方法,需要長時間的測試時間和需要特殊的設備。在這項研究中,三種不同的灰?guī)r在實驗室沖擊式破碎機破碎行為進行了調查。新粒度分布模型方程采用t曲線價值開發(fā)評估和邦德功指數的方法,該模型方程計算進行了測試。
2. 材料與方法
2.1材料
來自不同地區(qū)采取了三種不同的灰?guī)r樣品土耳其的被用作實驗材料?;瘜W石灰石樣品的性能提出了表1中
2.2標準邦德可磨性試驗
該邦德可磨性試驗進行小于3.35毫米干飼料材料在標準的球磨機(30.5*30.5厘米)??以下文獻中描述的標準程序概要[17-24]。工作指數均在一個試驗篩尺寸來確定106納米。它沒有升降機,所有的內角呈圓形。邦德球磨機(圖3)在70rpm下進行操作,并配與轉數計數器。磨礦負荷由285鐵球重20.125克。標準邦德可磨性試驗是閉合循環(huán)干磨和篩分過程中,該方法是直到獲得穩(wěn)定狀態(tài)。此試驗所述為遵循。
該材料是用振動臺裝到700毫升體積。此是用于研磨試驗的材料的體積重量。對于第一個磨削循環(huán),磨機開始磨轉任意選擇的數。在每個磨削周期結束時,整個產品從研磨機排出,并篩選在測試篩尺寸(PI)。對于丕標準的選擇是106升。篩上部分被返回到磨機用于第二運行與新鮮進料,以彌補原始重量對應對應到700毫升。每單位的磨旋轉周期產品的重量,被稱為周期的礦石可磨性,然后計算并用于估計為等同于250%的循環(huán)負載所需的第二次運行的轉數。該過程一直繼續(xù),直到可磨性的一個恒定值來實現,這是平衡條件。此平衡條件可在6-12磨削循環(huán)到達。到達后平衡時,可磨最后三個周期的平均值。該平均值被作為標準邦德可磨(GBG)。
總最后三個周期的產品組合,以形成均衡其余產品。篩分析,開展了對材料和結果繪制,找到80%通過尺寸產品(P80)的。邦德功指數值(無線)是計算得到的的方程。
圖1.雙擺裝置
圖2.重錘試驗裝置
圖3. 邦德磨
3實驗
首先,對已執(zhí)行的標準邦德可磨性試驗3石灰石抽樣樣本。從測試的結果,邦德功指數值的計算4.44,10.10和13.53千瓦時/噸,然后,六個單粒級(-6.7+4.75,-4.75+2.8,-2.8+1.7,-1.7+1.18,-1.18+0.600,-0.600+0.355毫米)已測定的T-曲線族準備畫面。實驗室沖擊式破碎機(圖4),在實驗中使用,由一個1.1千瓦的電動機驅動的工作原理,在2840轉的旋轉,攜帶三行錘。每個樣品取的實驗室沖擊式破碎機的出,然后樣品過篩后的產品尺寸分析。
T-系列曲線與平均粒徑為比例結果不同灰?guī)r示于圖5-7。
圖4. 實驗沖擊式破碎機
圖5.TN與平均粒度的比例-I
圖6.TN與平均粒度比例 - Ⅱ
圖7.TN與平均粒度比例-III
4 提出的粒度分布模型方程
金[25]描述的介紹從落錘試驗獲得的產品粒度分布的方法。它是基于納拉亞南和懷特[26]提出的意見,即產品通過平均尺寸1/nth的餾分去注意到TN,涉及到了路過的十分之一母公司大小記為T10。另據報道,這種關系是適用于不同的沖擊載荷條件下測試不同礦石類型
在這項研究中,不同尺寸分布的關系已經顯示TN值用于破碎產品在實驗室直接沖擊式破碎機。作為這項研究的結果,與邦德功指數的累積百分比及格(TN)之間的關系(無線)和平均粒徑(倍)是由經驗公式描述。
實驗值和由公式得到的計算結果所示進行了比較得出圖8
式(3)主要是滿足在各種進料粒度的實驗值,和公式(3)評價在實際操作中由一個高價值回歸的粒子尺度分布(R2=0.88),尤其是當是有用的。因此,與邦德功指數(無線),平均累計百分比及格(TN)之間的關系粒子間相互作用尺寸(X)是按經驗公式描述。
5.結果與討論
結果表明,石灰石-I?樣品比石灰石-II樣品更易碎,而石灰石-II樣品比石灰石-III樣品更易碎。一組曲線計算從直接的實驗室沖擊式粉碎機和新的粒度分布方程開發(fā)。
從破損按粒子的沖擊式破碎機產品粒度分布可以描述為所有參數(TN)曲線族。該產品的尺寸分布被認為是歸一化的相對于顆粒尺寸。通過材料的累積百分比屬于(TN)的實驗數據與給出的數據一個更好的結果所提出的公式進行比較,并在工業(yè)應用中具有潛在的用途。
在這項研究中,石灰石的類型已經出現很顯然發(fā)揮在粉碎中起重要作用。此外,在破碎機的選擇是發(fā)揮標準的重要作用,邦德和可磨性功指數值。
該t-曲線的可用于描述破損顆粒在單顆粒破碎試驗的產品的粒度分布的粒度分布曲線族。的累積百分比傳遞參數T2,T4,T10,T25,T50和T75是由從破損的產品通過針對不同范圍篩尺寸的線性插值來確定。不過,也有不少困難和問題在落錘和雙擺錘試驗方法,例如是費力的,需要較長的測試時間和需要特殊設備。
本文介紹了調查邦德功指數和中試規(guī)模的沖擊磨粒度分布的平均粒徑的影響的結果。結果表示了粒度分布是密切相關的平均粒徑(X)和邦德功指數(無線)。測定粒度分布與實驗,提出的公式的數據的關系已經出現了高的回歸值(R2 =0.88)。
6.結論
在這項研究中,實驗室破碎的三個不同灰?guī)r測試用沖擊式破碎機進行。的平均粒徑和對產品粒度分布的石灰?guī)r的邦德功指數的影響規(guī)律。
其中包括了在實驗室粉碎的自相似斷裂行為所提出的模型方程可以用來替代落錘和雙擺測試,作為其粒度分布可以更容易地評價。
沒有研究,其中已作出關于進料,轉子速度的效果,襯設計和對沖擊式破碎機的錘頭的設計,在采石場中很常用的量的效果的文獻。因此,破碎機和研磨機制造商將有可能使這種研究具有不同的設計適用于不同的材料被開發(fā)同類機型的適當的選擇。
這項研究表明,產品的粒度分布可能是不同的不同的材料屬性。因此,看來在粉碎工序的各材料的粒度分布,必須以較低的能量成本來評估。
圖8. 對石灰石實驗和計算TN值比較
Original Research PaperA new size distribution model by t-family curves for comminution of limestonesin an impact crusherVedat DenizDepartment of Chemical Engineering, Hitit University, orum, Turkeya r t i c l ei n f oArticle history:Received 11 July 2010Received in revised form 20 October 2010Accepted 31 October 2010Available online 13 November 2010Keywords:LimestoneBreakageImpact crusherBond work indexSize distributiont-Familya b s t r a c tIn the evaluation of crushers, t-family curves obtained from single particle test methods are frequentlyused. It is known that there are many difficulties and problems in these tests. In this study the breakagebehaviour of three different limestones in an impact crusher was investigated. A new size distributionmodel was developed by t-family value evaluation and Bond work index approach. As a result, the validityof the equation was proved by a high regression value (r2= 0.88).? 2010 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of PowderTechnology Japan. All rights reserved.1. IntroductionImpact-induced rock fragmentation is relevant for many fieldsof science and technology. Impact mills have been applied inmineral, coal, cement and chemical industries for a long time.The literature shows that substantial effort has been expended inunderstanding the impact mill performance in relation to machineconfiguration and operational conditions through experimentalwork and mathematical modelling. However, due to lack of de-tailed knowledge on velocity and energy distributions of collisioninside a milling chamber, the mechanisms are still not clear 1.Bond testing has been in use since the late 1920s; laboratoriesand operations around world used the procedure as a componentof comminution circuit design as well as evaluation of plant perfor-mance. In spite of such long-standing use, the topic of accuracy andprecision of Bond work index determinations recurs with great fre-quency 2.Single particle tests to determine the comminution behaviour ofore can be separated into twin pendulum device (Fig. 1) and dropweight apparatus (Fig. 2) based tests 37.Schuhmann 8 reported that the size reduction events couldthemselves involve varying energy input, varying feed particle sizeand varying size distribution. Flavel and Rimmer 9 have reviewedsingle-particle breakage on the pendulum device, and stated thatthe pendulum device can be suitable for obtaining the relation be-tween the breakage product distribution and comminution energy.Twin pendulum test relies on the particle being broken betweenan input pendulum released from a known height and a reboundpendulum. Twin pendulum, however, has some important limita-tions, particularly regarding its low flexibility and reproducibility,long test duration, and the poor accuracy in estimating the commi-nution energy as a result of secondary motion of the rebound pen-dulum 47.The drop weight test differs, in that the particles are placed on ahard surface and struck by a falling weight. Both tests have beenextensively used in the field of comminution. In recent years, how-ever, the drop weight apparatus are being replaced by the twinpendulum. The standard drop weight device is fitted with a 20 kgmass, which can be extended to 50 kg. The effective range of dropheights is from 0.05 to 1.0 m, which represents a wide energyrange from 0.01 to 50 kW h/t (based 1050 mm particles). Follow-ing sample preparation the mean mass of each set of particles to bebroken is calculated. The results from the drop weight testsprovide an energy/input size/product size relationship. This rela-tionship is analysed using a set of curves to describe the size distri-bution produced from breakage events of increasing size reductionor energy input 35,1011.In the drop weight test, a known mass falls through a givenheight onto a single particle providing an event that allows charac-terisation of the ore under impact breakage. Although, the dropweight test has advantages in terms of statistical reliability andthe potential use of the data from the analysis, it has a number0921-8831/$ - see front matter ? 2010 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.doi:10.1016/j.apt.2010.10.020Tel.: +90 364 2274533; fax: +90 364 2274535.E-mail address: vedatdenizhitit.edu.trAdvanced Powder Technology 22 (2011) 761765Contents lists available at ScienceDirectAdvanced Powder Technologyjournal homepage: disadvantages, including necessity a special apparatus, tiringand particularly the length of time taken to carry out a test. Foreach drop weight test, 15 samples are tested in five size fractionsat three levels of energy input 1013.Narayanan 14 was used a novel procedure for estimation ofbreakage distribution functions of ores from t-family of curves. Inthis method, the product size distribution can be represented bya family of curves using marker points on the size distribution de-fined as the percentage passing (t) at a fraction of the parent par-ticle size. Thus, t2is the percentage passing an aperture of halfthe size of the parent particle size, t4is one quarter and t10isone-tenth of parent particle size. Narayanan and Whiten 15 haveproposed empirical equations for relating the reference curve datat10with the impact energy.The t10value is related to the specific comminution energy bythe Eq. (1):t10 A1 ? e?bEcs1The tnversus t10relationships can then be used to predict theproduct size distributions at different grind times 16.It is known that there are many difficulties and problems indrop weight and twin pendulum test methods such as beinglaborious, requiring long test time and requiring a special appara-tus. In this study, breakage behaviours of three different lime-stones in a laboratory impact crusher were investigated. A newsize distribution model equation was developed by t-family valueevaluation and Bond work index approach, and this model equa-tion was tested.2. Materials and method2.1. MaterialThree different limestone samples taken from different regionof Turkey were used as the experimental materials. The chemicalproperties of the limestone samples were presented in Table 1.2.2. The test of standard Bond grindabilityThe Bond grindability tests were conducted less than 3.35 mmof dry feed materials in a standard ball mill (30.5 ? 30.5 cm) fol-lowing a standard procedural outline described in the literature1724. The work indices were determined at a test sieve size of106lm. It has no lifters and all the inside corners are rounded.The Bond ball mill (Fig. 3) is operated at 70 rpm and is equippedwith a revolution counter. The grinding charge consists of 285 ironballs weighing 20.125 g. The standard Bond grindability test is aclosed-cycle dry grinding and screening process, which is carriedout until steady state condition is obtained. This test was describedas follow 1724.The material is packed to 700 cc volume using a vibrating table.This is the volumetric weight of the material to be used forgrinding tests. For the first grinding cycle, the mill is started withan arbitrarily chosen number of mill revolutions. At the end of eachgrinding cycle, the entire product is discharged from the mill and isscreened on a test sieve size (Pi). Standard choice for Piis 106l.The oversize fraction is returned to the mill for the second runtogether with fresh feed to make up the original weight corre-sponding to 700 cc. The weight of product per unit of mill revolu-tion, called the ore grindability of the cycle, is then calculated andis used to estimate the number of revolutions required for thesecond run to be equivalent to a circulating load of 250%. Theprocess is continued until a constant value of the grindability isachieved, which is the equilibrium condition. This equilibriumcondition may be reached in 612 grinding cycles. After reachingequilibrium, the grindabilities for the last three cycles are aver-aged. The average value is taken as the standard Bond grindability(Gbg).The products of the total final three cycles are combined to formthe equilibrium rest product. Sieve analysis is carried out on thematerial and the results are plotted, to find the 80% passing sizeof the product (P80). The Bond work index values (Wi) are calcu-lated from the Eq. (2) .Nomenclaturet10the cumulative percentage passing 1/10th of the initialmean size (%)tnthe cumulative percentage passing 1/nth of the meanparticle size (%)nratio dividing to a characteristic size of the mean parti-cle sizeEcsspecific comminution energy (kW h/t)A,bore impact breakage parametersWiBond work index (kW h/t)Pitest sieve size at which the test is performed (106lm)Gbgstandard Bond grindability, net weight of ball mill prod-uct passing sieve size Piproduced per mill revolution (g/rev)F80sieve opening which 80% of the feed (lm)P80sieve opening which 80% of the product (lm)Xmean particle size (mm)Fig. 1. Twin pendulum device.762V. Deniz/Advanced Powder Technology 22 (2011) 761765Wi 1:1 ?44:5P0:23i? G0:82bg? 10=ffiffiffiffiffiffiffiP80p ? 10=ffiffiffiffiffiffiffiF80p?23. ExperimentsFirstly, standard Bond grindability tests were performed forthree limestone samples. From the result of tests, Bond work indexvalues were calculated 4.44, 10.10 and 13.53 kW h/t, respectively.Then, 1 kg sample of six mono-size fractions (?6.7 + 4.75, ?4.75 +2.8, ?2.8 + 1.7, ?1.7 + 1.18, ?1.18 + 0.600, ?0.600 + 0.355 mm)were prepared by screens for determination of the t-family curves.The laboratory impact crusher (Fig. 4), used in the experiments,works with driven by a 1.1 kW motor, rotating at 2840 rpm, carrythree rows of hammers. Each sample was taken out of the labora-tory impact crusher, and then samples were sieved for product sizeanalysis.Results of t-family curves versus mean particle size fraction fordifferent limestones were shown in Figs. 57.Fig. 3. Bond mill.Fig. 4. Impact crusher using in experiments.Fig. 5. tnversus mean size fraction for limestone-I.Fig. 6. tnversus mean size fraction for limestone-II.Fig. 2. Drop-weight test apparatus.Table 1Chemical composition of limestone samples using in experiments.Oxides (%)Limestone-ILimestone-IILimestone-IIICaO31.0346.8548.99SiO20.058.4510.60Al2O30.901.021.07Fe2O30.000.350.59MgO22.420.921.11SO30.020.070.09Na2O0.070.020.04K2O0.100.060.08Loss on ignition45.2436.5038.72V. Deniz/Advanced Powder Technology 22 (2011) 7617657634. Proposed size distribution model equationKing 25 described a method of presenting the product sizedistributions obtained from drop weight tests. It is based on theobservations made by Narayanan and Whiten 26, that the cumu-lative fraction of products passing 1/nth of the mean size was de-noted by tn, is related to that passing one-tenth of the parent sizedenoted by t10. It was also reported that this relationship wasapplicable to different ore types tested under different impactloading conditions.In this study, a different size distribution relationship has beenexposed tnvalues for crushing products in the direct laboratoryimpact crusher. As a result of this study, the relationship betweenthe cumulative percentage passing (tn) with Bond work index (Wi)and mean particle size (X) was empirically described by Eq. (3).tn406:35W0:921i? n1:1X0:108W0:668i?n2:47W?1:184i3The experimental values and the calculated results obtained byEq. (3) were compared in Fig. 8.Eq. (3) mostly satisfies the experimental values in a wide rangeof feed size, and Eq. (3) is useful especially when evaluating the par-ticle size distribution in the actual operation by a high regressionvalue (r2= 0.88). Thus, the relationship between the cumulativepercentage passing (tn) with Bond work index (Wi) and mean parti-cle size (X) was empirically described by Eq. (3).5. Results and discussionThe results showed that limestone-I sample was more friablethan limestone-II sample while limestone-II sample was more fri-able than limestone-III sample. A set of t-curves were calculatedfrom the direct a laboratory impact mill and a new size distributionequation was developed.The product size distribution from the breakage by impactcrusher of particle can be described as all-parameter (tn) familyof curves. The product size distributions were found to be normal-izable with respect to particle sizes. Cumulative percentages ofpassing material belong to (tn) the experimental data was com-pared with the proposed equation given a better results with dataand has a potential use in industrial applications.In this study, the type of limestone has emerged very clearlyplayed an important role in comminution. In addition, in crusherselection was played an important role of the standard the Bondgrindability and work index values.The t-curves are the family of size distribution curves which canbe used to describe the product size distribution of the breakageparticles during single-particle breakage tests. The cumulative per-centages passing of the parameters t2, t4, t10, t25, t50and t75aredetermined by linear interpolation from the breakage productspassing against the different range of sieve sizes. However, thereare many difficulties and problems in drop weight and twin pendu-lum test methods such as being laborious, requiring long test timeand requiring a special apparatus.This paper presents the results of an investigation into the ef-fects of the Bond work index and the mean particle size on particlesize distribution in a pilot scale impact mill. The results denote thatparticle size distribution is strongly related to mean particle size(X) and Bond work index (Wi). The relationship with data fromexperimental and proposed equation for determination of particlesizedistributionshasemergedbyahighregressionvalue(r2= 0.88).6. ConclusionsIn this study, laboratory crushing tests of three different lime-stones with an impact crusher were carried out. The effects ofmean particle size and Bond work index of limestones on productsize distribution were investigated.The proposed model equation which incorporates the self-similar breakage behaviour in laboratory comminution could beused an alternative to the drop weight and twin pendulum tests,as its particle size distributions could evaluated more readily andreliably.There are no studies in the literature which have been madeabout the effect of the amount of feed, effect of rotor speed, liningdesign and design of the hammer on the impact crushers, verycommonly used in quarries. Therefore, crusher and grinder manu-factures will be possible to make appropriate choices of such stud-ies with different designs for different material to be developingsimilar models.This study showed that product size distribution could be dif-ferent for different material properties. Therefore, it appears thatthe particle size distributions of each material in crushing processmust be evaluated in order to lower the energy costs.References1 N. Djordjevic, F.N. Shi, R.D. Morrison, Applying discrete element modelling tovertical and horizontal shaft impact crushers, Miner. Eng. 16 (2003) 983991.Fig. 7. tnversus mean size fraction for limestone-III.Fig. 8. Comparison of experimental and calculated tnvalue for limestone.764V. Deniz/Advanced Powder Technology 22 (2011) 7617652 J.B. Mosher, C.B. Tague, Conduct and precision of Bond grindability testing,Miner. Eng. 14 (2001) 11871197.3 R.A. Bearman, C.A. Briggs, T. Kojovic, The application of rock mechanicsparameters to the prediction of comminution behaviour, Miner. Eng. 10 (1997)255264.4 D.M. Weedon, F. Wilson, Modelling iron ore degradation using a twinpendulum breakage device, Int. J. Mine. Process. 59 (2000) 195213.5 R.K. Sahoo, Review: an investigation of single particle breakage tests for coalhandling system of the Gladstone port, Powder Technol. 161 (2006) 158167.6 R.K. Sahoo, D.M. Weedon, D. Roach, Single-particle breakage tests of GladstonePort Authoritys coal by a twin pendulum apparatus, Adv. Powder Technol. 15(2004) 263280.7 L.M. Tavares, R.P. King, Single-particle fracture under impact loading, Int. J.Min. Process. 54 (1998) 128.8 R. Schuhmann Jr., Energy input and size distribution in comminution, Trans.SME/AIME 217 (1960) 2225.9 M.D. Flavell, H.W. Rimmer, Particle breakage studies in an impact-crushingenvironment, in: Proc. Trans. Annual Meet, Chicago, IL, 1981, pp. 2128.10 L.M. Tavares, Energy absorbed in breakage of single particles in drop weighttesting, Miner. Eng. 12 (1999) 4350.11 L.M. Tavares, R.M. Carvalho, Impact work index prediction from continuumdamage model of particle fracture, Miner. Eng. 20 (2007) 13681375.12 S.W. Kingman, K. Jackson, A. Cumbane, S.M. Bradshaw, N.A. Rowson, R.Greenwood, Recent developments in microwave in microwave-assistedcomminution, Int. J. Miner. Process. 74 (2004) 7183.13 . Gen, A.H. Benzer, Single particle impact breakage characteristics of clinkersrelated to mineral composition and grindability, Miner. Eng. 22 (2009) 11601165.14 S.S. Narayanan, Single particle breakage tests: a review of principles andapplication to comminution modeling, Bull. Proc. Austr. Inst. Min. Metall. 291(1986) 4958.15 S.S. Narayanan, W.J. Whiten, Determination of comminution characteristicsfrom single particle breakage tests and its application to ball mill scale-up,Trans. Inst. Min. Metall. (Sec. C). 97 (1988) 115124.16 G.W.Sand,G.K.N.Subasinghe,Anovelapproachtoevaluatingbreakage parameters and modelling batch grinding, Miner. Eng. 17 (2004)11111116.17 F.C. Bond, W.L. Maxson, Standard grindability tests and calculations, Trans.SME-AIME 153 (1943) 362372.18 R.F. Yap, J.L. Sepulude, R. Jauregui, Determination of the Bond work index usingan ordinary laboratory batch ball mill, in: Design and Installation ofComminution Circuits: , Soc. Min. Eng. AIME, USA, 1982, pp. 176203.19 N. Magdalinovic, A procedure for rapid determination of the Bond work index,Int. J. Miner. Process. 27 (1989) 125132.20 V. Deniz, G. Balta, A. Yamk, The interrelationships between Bond grindabilityof coals and impact strength index (ISI), point load index (Is) and Friabilityindex (FD), in: Changing Scopes in Mineral Processing, A.A. Balkema, Roterdam,1996, pp. 1519.21 V. Deniz, A study on the specific rate of breakage of cement materials in alaboratory ball mill, Cem. Concr. Res. 33 (2003) 439445.22 V. Deniz, H. zdag , A new approach to Bond grindability and work index:dynamic elastic parameters, Miner. Eng. 16 (2003) 211217.23 V. Deniz, Relation between Bonds grindability (Gbg) and breakage parametersof grinding kinetic on limestone, Powder Technol. 139 (2004) 208213.24 V. Deniz, Y. Umucu, Interrelationships between the Bond grindability withphysicomechanical and chemical properties of coals, Energy Sour. (Part A),2011, in press, doi:1080/15567036.2010.504942.25 R.P.King,ModelingandSimulationofMineralProcessingSystems,ButterworthHeinemann Publishers, New York, USA, 2002.26 S.S. Narayanan, W.J. Whiten, Breakage characteristics for ores for ball millmodelling, in: Proceedings of the Australasian Institute of Mining andMetallurgy, 1983, pp. 3139.V. Deniz/Advanced Powder Technology 22 (2011) 761765765
收藏