喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預覽哦。。。下載后都有,,請放心下載,,文件全都包含在內(nèi),,【有疑問咨詢QQ:414951605 或 1304139763】
==========================================
喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預覽哦。。。下載后都有,,請放心下載,,文件全都包含在內(nèi),,【有疑問咨詢QQ:414951605 或 1304139763】
==========================================
學士學位論文原創(chuàng)性聲明
本人聲明,所呈交的論文是本人在導師的指導下獨立完成的研究成果。除了文中特別加以標注引用的內(nèi)容外,本論文不包含法律意義上已屬于他人的任何形式的研究成果,也不包含本人已用于其他學位申請的論文或成果。對本文的研究作出重要貢獻的個人和集體,均已在文中以明確方式表明。本人完全意識到本聲明的法律后果由本人承擔。
作者簽名: 日期:
學位論文版權(quán)使用授權(quán)書
本學位論文作者完全了解學校有關(guān)保留、使用學位論文的規(guī)定,同意學校保留并向國家有關(guān)部門或機構(gòu)送交論文的復印件和電子版,允許論文被查閱和借閱。本人授權(quán)南昌航空大學可以將本論文的全部或部分內(nèi)容編入有關(guān)數(shù)據(jù)庫進行檢索,可以采用影印、縮印或掃描等復制手段保存和匯編本學位論文。
作者簽名: 日期:
導師簽名: 日期:
畢業(yè)設計(論文)開題報告
題目 標準篩振篩機的總體及夾緊裝置的設計
專 業(yè) 名 稱 機械設計制造及其自動化
班 級 學 號 078105332
學 生 姓 名 徐 立 軒
指 導 教 師 羅 海 泉
填 表 日 期 2011 年 3 月 5 日
說 明
開題報告應結(jié)合自己課題而作,一般包括:課題依據(jù)及課題的意義、國內(nèi)外研究概況及發(fā)展趨勢(含文獻綜述)、研究內(nèi)容及實驗方案、目標、主要特色及工作進度、參考文獻等內(nèi)容。以下填寫內(nèi)容各專業(yè)可根據(jù)具體情況適當修改。但每個專業(yè)填寫內(nèi)容應保持一致。
一、選題的依據(jù)
碎礦、磨礦和選礦過程中所處理的固體物料,一般都是大小不一、形狀不同的松散狀礦料。而礦料的顆粒形狀又與物料的成分、理解、結(jié)構(gòu)等因素有關(guān),主要有塊狀、多棱狀、片狀、柱狀、纖維狀、擬球形以及一些不規(guī)則形狀。
隨著工業(yè)發(fā)展和技術(shù)的進步,目前不少部門不僅對破碎產(chǎn)品粒度和過粉碎有要求,而且對顆粒的形狀也做了規(guī)定。例如:聯(lián)邦德國公路規(guī)程,規(guī)定了粒度為5-35毫米的石料粒度中,立方體顆粒海量不得低于80%。聯(lián)邦德國國家標準DIN52114對立方體定義還作了明文規(guī)定:所謂立方體,是指顆粒的三圍尺寸a、b、c(其中a>b>c)中,a/c的值不得大于3.其目的是為了保證公路鋪路石料的質(zhì)量。此外聯(lián)邦德國的建筑行業(yè)對于碎石的粒度和相撞也作了嚴格的規(guī)定,以保證混凝土的工程質(zhì)量。
所謂粒度,是礦塊(或礦粒)大小的量度,一般用毫米(或微米)表示。如果將松散狀礦料用某種方法分成若干級別,稱為粒級。例如,用稱量法稱出各種級別的重量并算出他們的重量百分比(或累計重量百分比),以說明某批礦料中各粒級顆粒含量多少,這種資料就叫做物料的粒度組成(或顆粒級配)。從粒度組成可以看出各級物料在原料或產(chǎn)品中的分布,這種確定粒度組成的實驗和測定工作就叫做粒度分析。這項工作對于確定碎礦工藝流程、評價碎礦磨礦機械的技術(shù)經(jīng)濟效果和分析生產(chǎn)過程的產(chǎn)、質(zhì)量指標,都是必不可少的。
在碎礦磨礦生產(chǎn)實踐和科學研究中,為了說明含有各種粒級的混合物料的平均粒度的大小,以確定粉碎效率和評估粉碎機械的技術(shù)性能,往往要求算出某一批量物料顆粒群的平均粒度(或平均粒徑)。
根據(jù)無聊粗細不同,工程界和科研部門采用的分析方法之一就是篩分分析。利用篩孔大小不等的一系列篩子對物料進行篩析,并將篩析結(jié)果整理在篩析結(jié)果記錄表上,然后根據(jù)所得數(shù)據(jù),做出物料的粒度曲線或粒度組成特性曲線。
篩析法的有點是設備簡單,操作方便。缺點是顆粒形狀的影響較大。
篩分分析是碎礦磨礦作業(yè)中一種最基本的粒度分析方法。
今年來,隨著選礦工業(yè)迅速發(fā)展,對篩分機械設備的篩分精度、篩分效率和單位處理能力的要求也越來越高,因此,篩分機械也有了很大進展。例如,整機重量達30-40噸、震動構(gòu)件重達25-30噸的篩分機械已經(jīng)相當普遍。在處理塊狀物料時,其處理能力已達1500噸/時。這給篩分作業(yè)帶來了新的生機。
標準篩是由一套篩孔大小有一定比例的篩子組成。上層篩子的篩孔大,下層篩子的篩孔?。涣硗庥幸粋€上蓋,防止式樣在篩析過程中外溢而損失,還有一個篩分底,可直接接收最底層篩子的篩下物。將標準篩按篩孔由大到小、自上而下的排列起來,各個篩子所處的層位次序叫篩序。在使用標準篩時,決不可疊錯篩序,否則會造成實驗結(jié)果混亂。在疊好的篩序中,每兩個相鄰篩子的篩孔尺寸之比叫篩比。有些標準篩還有一個作為基準的基篩。篩析實驗的粒度范圍是0.037-200毫米。各國還制訂了一些標準篩。目前,在國內(nèi),選礦設備的種類有很多,機械式的占絕大多數(shù)。隨著選礦技術(shù)變得越來越成熟,新型的電磁振動式振篩機現(xiàn)在也得到運用。但不管對于實驗室還是工地現(xiàn)場,機械式振篩機的運用占據(jù)了主要位置。而標準篩振篩機憑借其優(yōu)良的工作性能和方便輕巧的優(yōu)點也深受用戶的喜愛,所以,對標準篩振篩機的研究與設計變得越來越重要。廣泛用于地質(zhì)、冶金、化工、煤炭、國防、科研、砂輪制造、水泥生產(chǎn)等部門化驗室對物料進行篩分分析。振擊次數(shù)穩(wěn)定可靠,裝夾套篩方便靈活,夾緊牢靠,并能自動停車,根據(jù)用戶需要,可篩分多種特性的產(chǎn)品每次開機五分鐘,既方
便又簡單完成分級工作。
二、 國內(nèi)外研究概況及發(fā)展趨勢(含文獻綜述):
1、篩分機械的應用現(xiàn)狀
基于振動篩的三種不同的運動軌跡,采用不同的篩分方法,并針對國民經(jīng)濟中各行業(yè)的特殊需要。形成了各種形式的篩分機械,并使其在工業(yè)部門得到廣泛的應用。在冶金工業(yè)部門,選礦廠普遍采用園振動篩對礦石進行預先篩分和檢查篩分;用振動細篩對磨礦機的產(chǎn)品進行分級以及提高精礦品位;針對燒結(jié)廠熱結(jié)礦和冷燒結(jié)礦分級的要求,采用直線運動軌跡和二次隔振原理,形成了熱礦篩和冷礦篩;另采用直線篩對焦炭進行篩分,取代了原始的滾軸篩。
2、篩分機機械的發(fā)展方向
綜合國內(nèi)外機械發(fā)展現(xiàn)狀,篩分機械將向以下幾個方向發(fā)展。
2.1向大型化發(fā)展。工業(yè)的現(xiàn)代化進程促使企業(yè)規(guī)模增大,生產(chǎn)能力大大提高。如從前我國選礦生產(chǎn)200-300萬T/A就是大型的,而現(xiàn)在出現(xiàn)1200萬T/A的選煤廠,這就需要大型篩分機與之配套,德國KHD公司生產(chǎn)的USK篩機已達到4500*6000MM,篩面達27.2M,德國的另一篩子技術(shù)公司生產(chǎn)的5500MM*11000MM的篩機達60.5M。
2.2向重型超重型篩發(fā)展。大的礦業(yè)工程需要處理大塊物料,法國蘇梅斯塔公司省柴的振動棒可處理直徑達1M以上的大塊物料。
2.3向理想運動軌跡振動篩發(fā)展。以提高各區(qū)段的篩分效率和整個篩機生產(chǎn)率為目標,尋找一種以理想運動方式為基礎的新型篩分機成為篩分設備發(fā)展的一個新方向。較為理想的篩面運動方式是:在垂直方向上,入料端的振幅大于出料端的振幅,延長度方向上,從入料端,物料運動速度遞減。在此理想情況下,可以創(chuàng)造良好的透篩環(huán)境。該理想篩機的篩分效果要優(yōu)于一般的篩分機械。
2.4向反共振振動篩發(fā)展。以減輕整機重量、降低成本、提高試用壽命和可靠性為目標,提出新型的反共振振動篩機。
2.5向標準化、系列化、通用化發(fā)展。
2.6應用自同步技術(shù)。采用雙電機自同步技術(shù)以代替齒輪強迫同步,可簡化結(jié)構(gòu),降低噪音,從而簡化了機械潤滑、維護和檢修等經(jīng)常性工作,減少設備故障。
2.7振動強度增大。篩機的振動過程逐漸強化,以取得較大的速度和加速度,從而提高生產(chǎn)能力和篩分效果。
2.8向空間發(fā)展。針對細物料,先后出現(xiàn)了旋流振動篩、錐形振動篩、碟型振動篩、旋轉(zhuǎn)概率篩等,既減少占地面積,又提高生產(chǎn)能力和篩分效率。
2.9向難篩分物料篩機發(fā)展。對于D<1MM、含水7%-14%的細濕物料的干篩以及水煤漿、垃圾處理等,篩分難度很大,德國海因勒曼公司生產(chǎn)的弛張篩,物料運動速度達1.3M/S,篩分效率達90%-95%。為解決難篩分物料篩分開創(chuàng)了先河。
三、 研究內(nèi)容及實驗方案:
3.1 研究內(nèi)容
本次設計的主要任務主要是總體設計和夾緊機構(gòu)的設計,所以主要著眼于總體結(jié)構(gòu)的布置和各個動作的實現(xiàn)。所以要做好以下幾個方面的工作:
3.1.1 在電動機的選擇上,在不影響整機裝配和機器工作性能的前提下,盡量選擇安裝尺寸比較小的電動機,從而能減少整機尺寸,有利于對振篩機結(jié)構(gòu)進行小型化改造。
3.1.2 對關(guān)鍵部位,譬如偏心軸部分進行重新選材并校核。且在整體的布置上盡量科學和優(yōu)化,使其體積盡量減小。并對受力比較明顯的部件的材料進行重新審核,保證其能夠滿足強度要求。
3.1.3 對搖動和振擊結(jié)構(gòu)的傳動支撐部件(如軸承等)進行良好的潤滑,有必要的時候,重新進行潤滑方案的選擇。
3.2 實驗方案
本機結(jié)構(gòu)主要由機座、篩與傳動機構(gòu)等部分組成。可配備專用夾具、即可裝夾Φ200 試驗篩,又可裝Φ75、Φ100 套篩,裝夾方便靈活,夾緊牢靠,并能自動停機。
3.2.1 整體結(jié)構(gòu)改造:可試圖將數(shù)值字顯示控制儀安裝在篩振機構(gòu)機械空洞部分,從而減少了整個篩振機的空間體積,并減輕了重量,增加了振篩機的美觀度,更好的符合實驗室對振篩機小而精干的要求。
3.2.2 可對傳動部件的靈活性與穩(wěn)定性方面做必要改進,減少不必要的磨損。
3.2.3 可通過重新選擇振篩機部件的材料,從而提高其使用壽命和性能。
四、 目標、主要特色及工作進度
4.1 目標及主要特色
設計要求是用于實驗室粒度篩分分析的Φ200mm 標準篩振篩機,它是在XSZ—200和XSB—70A型基礎上改進的。是與Φ200mm標準試驗篩配套使用,對物料進行分級篩分的專用設備.一般都是由機座、回轉(zhuǎn)機構(gòu)、振擊機構(gòu)、夾緊機構(gòu).套篩和減速裝置等組成 , 具有搖動和振擊的復合篩分功能。
4.2 畢業(yè)設計(論文)的工作進度
1.收集、查閱相關(guān)文獻資料,外文翻譯(6000實詞以上),撰寫開題報告: 2.28-3.25 4周
2.制定設備工作原理圖: 3.28-4.8 2周
3.標準篩振篩機的總體設計: 4.11-4.22 2周
4.標準篩振篩機夾緊裝置的設計: 4.25-5.6 2周
5.完成裝備圖及主要零件圖: 5.9-5.27 3周
6.撰寫畢業(yè)設計說明書: 5.30-6.24 4周
五、 參考文獻
[1]. 岑軍健,趙菊初. 非標準設備設計手冊( 第 4 冊)[M] . 北京: 國防工業(yè)出版社,1999
[2]. 沈 鴻,周建南. 機械工作手冊(第 10 卷) [M] . 北京: 機械工業(yè)出版社,1996
[3]. 廣西柳州探礦機械廠. XSB - 70B 型Φ200 mm 標準篩振篩機使用說明書[ R]
[4]. 廖念釗等主編. 互換性與技術(shù)測量. 北京:中國計量出版社,2000
[5]. Computer-aided diagnosis (CAD) and image-guided decision support Computerized
.Medical Imaging and Graphics 31 (2007)
[6]. 濮良貴,紀名剛. 機械設計. 北京:高等教育出版社,2001
[7]. 劉鴻文. 材料力學. 北京:高等教育出版社,2004
[8]. 徐敬. 機械設計手冊. 北京:機械工業(yè)出版社,2000
[9]. 王先逵. 機械制造工藝學. 北京:機械工業(yè)出版社,2006
[10]. 卜炎. 機械傳動裝置設計手冊. 北京:機械工業(yè)出版社,1999
[11]. 王昆等主編. 機械設計、機械設計基礎課程設計. 北京:高等教育出版社,1996
[12]. 余夢生,吳宗澤. 機械零部件手冊. 北京:機械工業(yè)出版社,1996
[13].戴少生,繆中同,黃有豐.粉碎工程及設備
畢業(yè)設計(外文翻譯)
題 目:標準篩振篩機的總體及夾緊裝置的設計
系 別 航空工程系
專業(yè)名稱 機械設計制造及其自動化
班級學號 078105332
學生姓名 徐立軒
指導教師 羅海泉
二O一一 年三月
COAL PREPARATION
TABLE 7-14. Effect of Geometry and Concentration of Feed Solids on throughput for a 1/6-in, diam hydro cyclone cleaning 1/4-in
Varying the distance between the bottom of the vortex finder and the hydro cyclone cone bottom. For example, the washed coal ash can be reduced by decreasing the diameter of the vortex finder, decreasing the length of the vortex finder, or increasing the diameter of the underflow orifice. Increasing feed-Solids content increases the specific gravity of separation and, therefore, washed coal yield and ash, which indicates the importance of maintaining a constant feed-solids content to preserve washed coal quality.
Capacity is influenced by cyclone geometry, i.e., the sizes of the overflow, underflow, and inlet openings, and by feed-solids content. The effects of these parameters is given in Table 7- 14.Increasing inlet pressure is a simple method of increasing capacity without changing hydro cyclone geometry, and washed yield and ash are not significantly affected. However, the penalty is increased pumping cost, and degradation of the coal.
Flow sheets
Soon after the hydro cyclone was developed, it became evident that performance was inferior to nearly all other cleaning devices. Consequently, in an effort to improve performance, three two stage circuits, shown in Fig. 7~64, were developed. In the earliest two-stage circuit, called two-stage relearn or TSR, the refuse from a primary hydro cyclone is simply relearned in a secondary hydro cyclone, The overflows from the two hydro cyclones are recombined as the washed coal product, and the underflows from the secondary hydro clone contains the final refuse. In more recent installations, one of the products from the secondary hydro cyclone is recirculated to the feed of the primary hydro cyclone. In the two-stage overflow recirculation circuit, TSOR, the primary or first-stage hydro cyclone is adjusted to produce an acceptable clean coal and the secondary hydro cyclone is adjusted to produce a refuse essentially free of misplaced coal. The overflow from the secondary hydro cyclone, which contains the misplaced coal in the underflows of the primary hydro cyclone, is returned to the feed of the primary hydro cyclone for reprocessing. In the two-stage underflow recirculation circuit, TSUR, and the overflow is relearned in the secondary hydro cyclone. The underflow from the secondary hydro clone is recalculated to the feed of the primary hydro cyclone. The overflow from the secondary hydro cyclone contains the washed coal.
Each of these circuits has advantages that depend upon the size and specific gravity compositions of the feed, as well as the required washed coal quality. The TSOR circuit is more effective in recovering washed coal whereas the TSUR circuit is more effective in rejecting heavy impurity. The TSR circuit is most effective when the specific gravity of separation of the two hydro cyclones is similar. Conversely, the performance of TSOR and TSUR is improved by diverging the specific gravity of separation of the two cyclones. At the present time, the TSOR is the most common circuit. A variation of the TSR circuit has been proposed whereby underflow from the primary cyclone is relearned on a concentrating table rather than a secondary hydro cyclone.
Some plants using jigs to clean the coarse coal utilize hydro cyclones to improve performance on the finer sizes. One method is to relearn the underflow of the washed coal screen, commonly the 1/4-in.material, with hydro cyclones. Another method is to screen the raw coal at about this size and clean the undersize with hydro cyclones.
Hydro cyclones have been used ahead of dense-medium cyclones to remove some of the low specific gravity coal and thereby reduce the amount of material sent to the dense-medium plant. The hydro cyclones are adjusted to separate at a specific gravity of about 1.35 to 1.40. The advantage is that the capacity of the dense-medium cyclone plant can be smaller, thus reducing capital and operating costs.
Hydro cyclone Performance
As mentioned previously, the quality of the washed coal and refuse products can be regulated by changing the diameters of the overflow and underflow orifices. However from a performance standpoint, a ratio of overflow diameter to underflow diameter in a range of about 1.7 to 2 gives the best results. Performance at lower ratios is inferior. Also, the solids content in the feed to primary and secondary hydro cyclones should range from 8 to 15 % (by weight). Outside this range, either above or below, performance is adversely affected.
Separations obtained in a single hydro cyclone and two-stage circuits (TSR) are shown by the distribution curves in Fig. 7-65. The sharpness of separation of the two-stage circuit is significantly superior to that of a single hydro cyclone. Also, the sharpness of separation of the two-stage circuit is not nearly as sharp as the separations characteristic of a dense-medium cyclone. It follows then that hydro cyclones are not applicable for difficult-to-clean coal or separations at low specific gravity unless followed by a more effective relearning process. Also, they are not suitable for friable coal or where the refuse particles are platy. Table 7-15 gives detailed performance data for two-stage (TSR) hydro cyclones. These data indicate that in general the specific gravity of separation increases and the sharpness of separation decreases with decreasing particle size.
Hydro cyclones may be especially applicable for cleaning -30-mesh (0.6- mm) coal if the coal is not amenable to flotation. However, the Majority of US coals are easily cleaned by flotation. But if the coal is not amenable to flotation because of a slime-coating problem or the coal is oxidized, then hydro cyclones may be a viable alternative. Also if fine pyrite is present in the feed, hydro cyclones are reported to be superior to flotation for lowering the sulfur content of the washed coal.
The coarser particles of an easy-to-clean coal with a top size of 1/4 or 3/8 in.(6.3 or 9.5 mm) can be cleaned about as efficiently in a two-stage hydro cyclone circuit as on a concentrating table, but not as efficiently as in a feldspar jig. However, the concentrating table cleans the finer particles much more efficiently than the hydro cyclone. The distribution curves for a two-stage hydro cyclone circuit (TSR) and a concentrating table cleaning a 1/4-in (6.3mm*0) feed are shown in Fig. 7-66. A major advantage of hydro cyclones is that the space requirement is much less than for concentrating tables and jigs, but much more power and water are required. Spiral concentrators are also used to clean-14-mesh (1.2-mm) coal.
A relatively new separator, called the air-spared hydro cyclone, has been developed and can be used to clean opal. It is essentially a porous cylinder without the usual conical section. Feed enters tangentially at the top and spirals downward. Air is introduced through the porous cylinder, and the air bubbles and flotation reagents along with the vortex effect the separation. Coal particles attach to the rising air bubbles and exit the top through a vortex.
選煤
表7-14,給出了影響入料分選密度和粒度的處理量。旋流器直徑為1/4-in.
表7-14
入料%
底流口
直徑,in
溢流口
直徑,in
入料口
直徑,in
處理量
t/h
10.2
0.75
1.50
1.23
1.8
9.8
1.75
3.00
1.23
2.9
9.8
1.75
3.00
3.00
4.5
17.3
1.75
3.00
3.00
8.9
改變旋流器溢流口和底流口的距離。例如,要降低分選精煤的灰分可以減小旋流器溢流口的距離,減小溢流管的長度,或者增大底流口的直徑。增大入料量會降低分選效率,因此,分選精煤的產(chǎn)率和灰分的關(guān)系表明了保證恒定的入料量才能保證洗選精煤的質(zhì)量。
處理量影響著旋流器的幾何尺寸,包括溢流口的尺寸,底流口的尺寸,入料口的尺寸和入料量。這些參數(shù)的影響如表7 – 14。改變?nèi)肓蠅毫κ且粋€改變旋流器參數(shù)的簡單方法,然而對改變精煤的產(chǎn)率和灰分的影響不顯著,況且會增加抽水成本,還會增加煤的泥化現(xiàn)象。
流程圖
隨著旋流器的發(fā)展,很明顯它毫不遜色于其他所有的洗選設備。因此,為了提高性能,兩段分選的旋流器(如圖7-64)被開發(fā)了出來。最早的兩段分選旋流器叫第二段再選或者叫TSR,從第一段旋流器出來的產(chǎn)品只是簡單的在第二段再選,從兩段旋流器溢流口出來的煤被混合當作洗選精煤產(chǎn)品。從第二段旋流器底流出來的物料被視為洗選尾礦作為矸石。最近的有一種設備,一種從旋流器第二段出來的產(chǎn)品被循環(huán)作為第一段的入料。在兩段旋流器的溢流循環(huán),TSOR,這種從旋流器的第一段被作為調(diào)節(jié)產(chǎn)品所要求精煤,第二段作為調(diào)節(jié)尾礦中保證沒有錯配物。從旋流器第二段的溢流出來的物料包含本該進入到第二段旋流器底流的錯配物,所以返回到第一段旋流器進行再次循環(huán)洗選。在兩段旋流器底流循環(huán),TSUR,這種從第一段旋流器的底流出來的物料被作為最終的尾礦矸石,第二段的底流出來的物料再次進入到第一段作為第一段的入料。從第二段溢流出來的產(chǎn)品被作為最終的洗選精煤產(chǎn)品。
上述的其中每個流程都有優(yōu)點,取決于入料的粒度組成,和所要求的精煤產(chǎn)品質(zhì)量。TSOR流程能更有效地回收分選精煤,而TSUR流程更有效地排除重產(chǎn)物。當兩段旋流器分選的比重類似時TSR流程是最有效的流程。相反,TSOR和TSU
的性能取決于兩段旋流器的分流量。在目前,TSOR是應用的最為普遍的一種流程。有人提出一種改進的TSR流程是從第一段主選底流出來的物料被再次分選濃縮代替第二段旋流器分選。
有一些廠用跳汰機分選塊煤,利用旋流器分選細粒的煤。一種方法是用煤用振動篩篩分的篩下物(通常1/4英寸)的煤用旋流器分選,另一種方法是用煤用振動篩篩分出粗粒煤,細粒度的煤用旋流器分選。
旋流器也被運用到重介質(zhì)分選中去分選出一些含煤少的貧礦,以降低選煤廠重介質(zhì)的消耗。旋流器可以調(diào)節(jié)的分選密度大概在1.35~1.40之間。這樣的優(yōu)點是大大的降低了分選過程中所需重介質(zhì)的體積,節(jié)約了資金和運營的成本。
水力旋流器性能
正如上文以前,對洗精煤產(chǎn)品質(zhì)量和垃圾,可通過改變調(diào)節(jié)溢出和下溢口的直徑。但是從性能的角度來看,溢流直徑到底流直徑的比例范圍為約1.7至2為最好,較低的比率性能為低劣產(chǎn)品。此外,在原料中固體物含量,一段和二段水力旋流器應定為8至15%(重量)。此范圍以外,高于或低于,性能將產(chǎn)生不利影響。分離獲得的水力旋流器和一個兩階段的電路(TSR)是由圖所示的分布曲線,兩個階段的電路分離清晰度明顯優(yōu)于單一的水力旋流器,另外,這兩個階段的電路分離清晰度幾乎沒有像重介質(zhì)旋流器特點鮮明,由此得出結(jié)論,水力旋流器應用于難以清潔煤或低比重的適用,除非更,有效的再分選過程。此外,他們沒有合適的煤或者易碎的煤矸石顆粒板狀。
表7-15給出了詳細的兩個階段(TSR)的水力旋流器的性能數(shù)據(jù)。這些數(shù)據(jù)表明,在一般的分離增加,分離小顆粒的清晰度的減少。水力旋流器可能會適合分選- 30目(0.6毫米)的煤,如果煤不浮選。然而,美國多數(shù)煤浮選煤很容易分選通過浮選。但是,如果煤炭,不受外界因為黏涂層問題浮選或煤被氧化,然后水力旋流器可能是一種可行的選擇。另外,如果細粒黃鐵礦是目前的原料,據(jù)報道水力旋流器,對于降低洗精煤的硫含量優(yōu)于浮選。一個易于清潔粗顆粒煤,有1 / 4或3 / 8英寸(6.3或9.5毫米大小的粗顆粒頂部)可以被兩階段水力旋流器有效地清理,作為一個選礦臺,但沒有有效的長石跳臺。但是,集中清理的細小顆粒表比水力旋流器更有效。如圖7-66.所示:
一種相對較新的名為空氣旋流器的分選設備被研制出來并可用于分選蛋白石。它本質(zhì)上是一個沒有通常錐形部分多孔圓筒。入料進入切向頂部并螺旋下降,空氣是透過多孔圓筒,氣泡和浮選劑隨著漩渦影響分選。煤顆粒附著在氣泡上升到漩渦的頂部。
圖 7-56 旋流器典型分布圖
表7-15 旋流器的性能
尺寸,網(wǎng)目(mm)
3*200
(6.3*0.075)
3*200
(6.3*0.075)
3*200
(6.3*0.075)
3*200
(6.3*0.075)
30*200
(0.6*0.075)
30*200
(0.6*0.075)
篩分分析
原煤
93.9
94.8
91.0
95.4
84.4
86.6
精煤
92.2
94.3
88.1
93.1
80.7
85.7
矸石
97.4
97.9
97.8
97
97.5
84.0
灰分含量
原煤
17.5
16.1
29.8
17.9
21.1
16.1
精煤
7.0
10.3
13.1
8.7
9.6
11.8
矸石
50.3
51.4
64.8
64.4
55.4
65.1
洗選出精煤的產(chǎn)率
75.8
86.0
67.7
83.5
74.8
91.9
理論產(chǎn)率
84.7
90.8
75.5
88.2
82.5
93.8
分選效率
89.5
94.7
89.7
94.7
90.7
98.0
-1.30
93.1
97.1
94.5
96.9
96.0
99.2
1.30~1.40
86.0
94.6
88.8
95.5
89.4
98.4
1.40~1.50
68.4
81.2
75.6
88.8
75.8
94.8
1.50~1.60
47.4
56.4
61.8
83.7
59.7
89.5
1.60~1.70
25.1
37.4
40.3
71.9
53.0
79.6
1.70~1.80
13.7
29.8
32.5
62.4
36.9
72.5
+1.80
5.2
14.5
7.0
15.4
12.5
36.7
分選密度
1.54
1.58
1.61
1.88
1.62
1.96
錯配率
78
105
120
123
118
-
可能性偏差
0.12
0.18
0.22
0.24
0.23
-