外文翻譯汽車轉向系統(tǒng)

上傳人:痛*** 文檔編號:45524290 上傳時間:2021-12-07 格式:DOC 頁數(shù):12 大?。?08.50KB
收藏 版權申訴 舉報 下載
外文翻譯汽車轉向系統(tǒng)_第1頁
第1頁 / 共12頁
外文翻譯汽車轉向系統(tǒng)_第2頁
第2頁 / 共12頁
外文翻譯汽車轉向系統(tǒng)_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《外文翻譯汽車轉向系統(tǒng)》由會員分享,可在線閱讀,更多相關《外文翻譯汽車轉向系統(tǒng)(12頁珍藏版)》請在裝配圖網上搜索。

1、附錄A譯文  隨著汽車電子技術的迅猛發(fā)展,人們對汽車轉向操縱性能的要求也日益提高。汽車轉向系統(tǒng)已從傳統(tǒng)機械轉向、液壓助力轉向(Hydraulic Power Steering ,簡稱HPS) 、電控液壓助力轉向( Elect ric Hydraulic PowerSteering , 簡稱EHPS) , 發(fā)展到電動助力轉向系統(tǒng)(Elect ric Power Steering ,簡稱EPS) ,最終還將過渡到線控轉向系統(tǒng)(Steer By Wire ,簡稱SBW)。 機械轉向系統(tǒng)是指以駕駛員的體力作為轉向能源,其中所有傳力件都是機械的,汽車的轉向運動是由駕駛員操縱方向盤,通過轉向器和一系列

2、的桿件傳遞到轉向車輪而實現(xiàn)的。機械轉向系由轉向操縱機構、轉向器和轉向傳動機械3大部分組成。 通常根據機械式轉向器形式可以分為:齒輪齒條式、循環(huán)球式、蝸桿滾輪式、蝸桿指銷式。應用最廣的兩種是齒輪齒條式和循環(huán)球式(用于需要較大的轉向力時) 。在循環(huán)球式轉向器中,輸入轉向圈與輸出的轉向搖臂擺角是成正比的;在齒輪齒條式轉向器中,輸入轉向圈數(shù)與輸出的齒條位移是成正比的。循環(huán)球式轉向器由于是滾動摩擦形式,因而正傳動效率很高,操作方便且使用壽命長,而且承載能力強,故廣泛應用于載貨汽車上。齒輪齒條式轉向器與循環(huán)球式相比,最大特點是剛性大,結構緊湊重量輕,且成本低。由于這種方式容易由車輪將反作用力傳至轉向盤,

3、所以具有對路面狀態(tài)反應靈敏的優(yōu)點,但同時也容易產生打手和擺振等現(xiàn)象,且其承載效率相對較弱,故主要應用于小汽車及輕型貨車上,目前大部分低端轎車采用的就是齒輪齒條式機械轉向系統(tǒng)。 隨著車輛載重的增加以及人們對車輛操縱性能要求的提高,簡單的機械式轉向系統(tǒng)已經無法滿足需要,動力轉向系統(tǒng)應運而生,它能在駕駛員轉動方向盤的同時提供助力,動力轉向系統(tǒng)分為液壓轉向系統(tǒng)和電動轉向系統(tǒng)2 種。其中液壓轉向系統(tǒng)是目前使用最為廣泛的轉向系統(tǒng)。 液壓轉向系統(tǒng)在機械系統(tǒng)的基礎上增加了液壓系統(tǒng),包括液壓泵、V 形帶輪、油管、供油裝置、助力裝置和控制閥。它借助于汽車發(fā)動機的動力驅動液壓泵、空氣壓縮機和發(fā)電機等,以液力、氣

4、力或電力增大駕駛員操縱前輪轉向的力量,使駕駛員可以輕便靈活地操縱汽車轉向,減輕了勞動強度,提高了行駛安全性。 液壓助力轉向系統(tǒng)從發(fā)明到現(xiàn)在已經有了大約半個世紀的歷史,可以說是一種較為完善的系統(tǒng),由于其工作可靠、技術成熟至今仍被廣泛應用。它由液壓泵作為動力源,經油管道控制閥向動力液壓缸供油,通過活塞桿帶動轉向機構動作,可通過改變缸徑及油壓的大小來改變助力的大小,由此達到轉向助力的作用。傳統(tǒng)液壓式動力轉向系統(tǒng)一般按液流的形式可以分為:常流式和常壓式2 種類型,也可根據控制閥形式分為轉閥式和滑閥式。 隨著液壓動力轉向系統(tǒng)在汽車上的日益普及,人們對操作時的輕便性和路感的要求也日益提高,然而液壓動力

5、轉向系統(tǒng)卻存在許多的缺點: ①由于其本身的結構決定了其無法保證車輛在任何工況下轉動轉向盤時,都有較理想的操縱穩(wěn)定性,即無法同時保證低速時的轉向輕便性和高速時的操縱穩(wěn)定性; ②汽車的轉向特性受駕駛員駕駛技術的影響嚴重; ③轉向傳動比固定,使汽車轉向響應特性隨車速、側向加速度等變化而變化,駕駛員必須提前針對汽車轉向特性幅值和相位的變化進行一定的操作補償,從而控制汽車按其意愿行駛。這樣增加了駕駛員的操縱負擔,也使汽車轉向行駛中存在不安全隱患;而此后出現(xiàn)了電控液壓助力系統(tǒng),它在傳統(tǒng)的液壓動力轉向系統(tǒng)的基礎上增加速度傳感器,使汽車能夠隨著車速的變化自動調節(jié)操縱力的大小,在一定程度上緩和了傳統(tǒng)的液壓轉向系

6、統(tǒng)存在的問題。 目前我國生產的商用車和轎車上采用的大多是電控液壓助力轉向系統(tǒng),它是比較成熟和應用廣泛的轉向系統(tǒng)。盡管電控液壓助力裝置從一定程度上緩解了傳統(tǒng)的液壓轉向中輕便性和路感之間的矛盾,然而它還是沒有從根本上解決HPS 系統(tǒng)存在的不足,隨著汽車微電子技術的發(fā)展,汽車燃油節(jié)能的要求以及全球性倡導環(huán)保,其在布置、安裝、密封性、操縱靈敏度、能量消耗、磨損與噪聲等方面的不足已越來越明顯,轉向系統(tǒng)向著電動助力轉向系統(tǒng)發(fā)展。 電動助力轉向系統(tǒng)是現(xiàn)在汽車轉向系統(tǒng)的發(fā)展方向,其工作原理是:EPS 系統(tǒng)的ECU 對來自轉向盤轉矩傳感器和車速傳感器的信號進行分析處理后,控制電機產生適當?shù)闹D矩,協(xié)助駕駛

7、員完成轉向操作。近幾年來,隨著電子技術的發(fā)展,大幅度降低EPS的成本已成為可能,日本的大發(fā)汽車公司、三菱汽車公司、本田汽車公司、美國的Delphi 汽車系統(tǒng)公司、TRW公司及德國的ZF 公司都相繼研制出EPS。Mercedes2Benz 和Siemens Automotive 兩大公司共同投資6500萬英鎊用于開發(fā)EPS ,目標是到2002 年裝車,年產300 萬套,成為全球EPS 制造商。到目前為止,EPS 系統(tǒng)在輕微型轎車、廂式車上得到廣泛的應用,并且每年以300 萬臺的速度發(fā)展。 is the term applied to the collection of components,

8、 linkages, etc. which allow for a vessel ( ship , boat ) or vehicle ( car ) to follow the desired course.轉向是一個專業(yè)術語,適用于采集部件,聯(lián)系等,其中允許一艘(艦船)或汽車(轎車)按照預期的方向行駛. An exception is the case of rail transport by which rail tracks combined together with railroad switches provide the steering function.一個例外的情況是鐵路

9、運輸由路軌組合在一起鐵路道岔提供轉向功能。 Many modern cars use steering mechanisms, where the steering wheel turns the pinion gear; the pinion moves the rack, which is a sort of linear gear which meshes with the pinion, from side to side.許多現(xiàn)代轎車使用齒輪齒條式轉向器,在方向盤末端有轉動齒輪;該齒輪帶動齒條移動,它是一種線性的齒輪緊密配合,從一邊到一邊。這種運動把轉矩通過轉向橫拉桿和一種叫做轉

10、向節(jié)臂的短形臂傳遞給轉向輪的主銷。 mechanism, which is still found on trucks and utility vehicles.以前的設計往往采用循環(huán)球式轉向器,而這種轉向器仍然應用在卡車和多用途車輛。This is a variation on the older and thus steers the wheels.這是一種老式的螺母和齒扇設計,該轉向管柱轉動大螺絲("蝸輪"),它與一個齒扇齒輪嚙合,當蝸輪轉動時,齒扇也隨之轉動,一個安裝在齒扇軸上且與轉向聯(lián)動有關的搖臂帶動轉向節(jié)臂 ,從而使車輪轉動. The recirculating ball ve

11、rsion of this apparatus reduces the considerable friction by placing large ball bearings between the teeth of the worm and those of the screw; at either end of the apparatus the balls exit from between the two pieces into a channel internal to the box which connects them with the other end of the ap

12、paratus, thus they are "recirculated".循環(huán)球式轉向器通過安裝滾珠減少螺母和螺桿之間的摩擦;兩根導管和螺母內的螺旋管狀通道組合成兩條各自獨立的封閉的鋼球“流到”。 The rack and pinion design has the advantages of a large degree of feedback and direct steering "feel"; it also does not normally have any , or slack.齒輪齒條式轉向器設計具有很大程度的反饋和直接轉向"路感";它也通常不會有任何反彈,或呆滯。A d

13、isadvantage is that it is not adjustable, so that when it does wear and develop lash, the only cure is replacement.缺點是,它是不可調的,因此當它磨損唯一的解決辦法更換。 The recirculating ball mechanism has the advantage of a much greater , however, this is no longer an important advantage, leading to the increasing use of

14、rack and pinion on newer cars.循環(huán)球式轉向器的優(yōu)點是機械優(yōu)勢,因此,它被使用在較大較重的車輛,而齒輪齒條式原本僅限于較小和較輕;由于幾乎普遍采用動力轉向系統(tǒng),不過,這已不再是一個重要的優(yōu)勢,導致越來越多地在新型汽車應用齒輪齒條式轉向器。 to account for wear, but it cannot be entirely eliminated or the mechanism begins to wear very rapidly.循環(huán)球式轉向器設計在中心也有明顯的沖擊,或"死點"。凡一分鐘交替方向盤出不來并不移動轉向機構;這是很容易可調螺桿的端部來減少

15、磨損,但它并不能完全消除或機制開始磨損很快。 This design is still in use in trucks and other large vehicles, where rapidity of steering and direct feel are less important than robustness, maintainability, and mechanical advantage.這項設計目前仍在使用中,在卡車和其他大型車輛,也應用于迅速轉向,路感與穩(wěn)健性,可維護性,和機械的優(yōu)勢相比不太重要的場合。 The much smaller degree of feed

16、back with this design can also sometimes be an advantage; drivers of vehicles with rack and pinion steering can have their thumbs broken when a front wheel hits a bump, causing the steering wheel to kick to one side suddenly (leading to driving instructors telling students to keep their thumbs on th

17、e front of the steering wheel, rather than wrapping around the inside of the rim).較小程度的反饋,這樣的設計也有時是一種優(yōu)點;當前輪碰撞時,使用齒輪齒條轉向的司機只有自己的大拇指受傷,造成方向盤揭開一邊突然(因為駕駛教練告訴學生把自己的大拇指在前面的方向盤,而非放在左右的內邊緣). This effect is even stronger with a heavy vehicle like a truck; recirculating ball steering prevents this degree of f

18、eedback, just as it prevents desirable feedback under normal circumstances.這種效果在像卡車一樣的重型汽車更為明顯;循環(huán)球式轉向防止這種程度的反饋,只是因為它可以在正常情況下防止可取反饋。 轉向連鎖連接轉向器和車輪通常符合一個阿克曼轉向幾何的變化,它交代了一個事實:當轉向是,內輪轉過的半徑比外輪小得多,因此適合駕駛的直路,是不適合曲折。 As vehicles have become heavier and switched to front wheel drive , the effort to turn the

19、 steering wheel manually has increased - often to the point where major physical exertion is required.由于車輛已成為較重而改用前輪驅動,為了扭轉方向盤,通常的,主要的是體力。為了解決這一問題,汽車業(yè)發(fā)展的動力轉向系統(tǒng)。 There are two types of power steering systems—hydraulic and electric/electronic.有兩種類型的助力轉向系統(tǒng)-液壓和電氣/電子。 There is also a hydraulic-electric h

20、ybrid system possible.還有一種液壓-電動混合系統(tǒng)。 A hydraulic power steering (HPS) uses hydraulic pressure supplied by an engine-driven pump to assist the motion of turning the steering wheel.液壓助力轉向系統(tǒng)(hps)利用油壓供應的一個發(fā)動機驅動泵,以協(xié)助將方向盤轉轉動。 Electric power steering (EPS) is more efficient than the hydraulic power steeri

21、ng, since the electric power steering motor only needs to provide assist when the steering wheel is turned, whereas the hydraulic pump must run constantly.電動助力轉向系統(tǒng)(EPS)方式,是較有效率的液壓助力轉向系統(tǒng),由于電動助力轉向汽車只需要提供協(xié)助時,方向盤被轉動,而液壓泵必須不斷運行。 In EPS the assist level is easily tunable to the vehicle type, road speed, a

22、nd even driver preference.在EPS的幫助下是很容易調節(jié)車型,最高車速,甚至駕駛的喜好。 An added benefit is the elimination of environmental hazard posed by leakage and disposal of hydraulic power steering fluid.另外一個好處是,通過泄漏和處置動力轉向液消除對環(huán)境構成危險 。 An outgrowth of power steering is speed adjustable steering, where the steering is hea

23、vily assisted at low speed and lightly assisted at high speed.動力轉向的分支是速度可調轉向而轉向是大量輔助以低速行駛,稍微協(xié)助高速。 The auto makers perceive that motorists might need to make large steering inputs while manoeuvering for parking, but not while traveling at high speed.汽車制造商認為,當要停車時駕駛人可能需要做出大量轉向投入,但當時高速行駛時則不然。The first

24、vehicle with this feature was the Citron SM with its Diravi layout, although rather than altering the amount of assistance as in modern power steering systems, it altered the pressure on a centring cam which made the steering wheel try to "spring" back to the straight-ahead position.第一輛有這特點的汽車,是雪鐵龍與

25、其diravi,雖然改變了現(xiàn)代汽車轉向系統(tǒng)資金的投入,但它改變了定心凸輪的壓力,使得方向盤盡力去回到原來的位置。Modern speed-adjustable power steering systems reduce the pressure fed to the ram as the speed increases, giving a more direct feel.現(xiàn)代速度可調式動力轉向系統(tǒng),當速度增長時減少了活塞的壓力 ,給予更直接的感受。This feature is gradually becoming commonplace across all new vehicles.這一

26、特點在所有新車正逐漸成為司空見慣。 四輪轉向(或全輪轉向)是一種系統(tǒng),當高速行駛時能增加車輛穩(wěn)定型,而在低速行駛時可以減小轉彎半徑。 In most four-wheel steering systems, the rear wheels are steered by a computer and actuators.大多數(shù)的四輪轉向系統(tǒng),后輪轉向通過單片機和驅動器實現(xiàn)。 The rear wheels generally cannot turn as far as the Alternatively, several systems, including Delphis Quadras

27、teer and the system in Hondas Prelude line, allow for the rear wheels to be steered in the opposite direction as the front wheels during low speeds.后輪一般不能反過來,有幾個系統(tǒng),包括Delphi的quadrasteer,該系統(tǒng)在本田的生產前線,當前輪低速時,允許后輪在相反方向轉向。This allows the vehicle to turn in a significantly smaller radius — sometimes critic

28、al for large trucks or vehicles with trailers.這使得車輛轉彎半徑較小,有時應用于大型卡車車輛及掛車。 附錄B外文文獻 Along with automobile electronic technology swift and violent development, the people also day by day enhance to the motor turning handling quality request. The motor turning system changed

29、, the hydraulic pressure boost from the traditional machinery changes (Hydraulic Power Steering, is called HPS), the electrically controlled hydraulic pressure boost changes (Elect ric Hydraulic Power Steering, is called EHPS), develops the electrically operated boost steering system (Elect ric Powe

30、r Steering, is called EPS), finally also will transit to the line controls the steering system (Steer By Wire, will be called SBW). The machinery steering system is refers by pilots physical strength achievement changes the energy, in which all power transmission all is mechanical, the automobile c

31、hanges the movement is operates the steering wheel by the pilot, transmits through the diverter and a series of members changes the wheel to realize. The mechanical steering system by changes the control mechanism, the diverter and major part changes the gearing 3 to be composed. Usually may divide

32、 into according to the mechanical diverter form: The gear rack type, follows round the world -like, the worm bearing adjuster hoop type, the worm bearing adjuster refers sells the type. Is the gear rack type and follows using the broadest two kinds round the world -like (uses in needing time big ste

33、ering force).In follows round the world -like in the diverter, the input changes the circle and the output steering arm pivot angle is proportional; In the gear rack type diverter, the input changes the turn and the output rack displacement is proportional. Follows round the world -like the diverter

34、 because is the rolling friction form, thus the transmission efficiency is very high, the ease of operation also the service life are long, moreover bearing capacity, therefore widely applies on the truck. The gear rack type diverter with follows round the world -like compares, the most major charac

35、teristic is the rigidity is big, the structure compact weight is light, also the cost is low. Because this way passes on easily by the wheel the reacting force to the steering wheel, therefore has to the pavement behavior response keen merit, but simultaneously also easy to have phenomena and so on

36、goon and oscillation, also its load bearing efficiency relative weak, therefore mainly applies on the compact car and the pickup truck, at present the majority of low end passenger vehicle uses is the gear rack type machinery steering system. Along with the vehicles carrying capacity increase as

37、well as the people to the vehicles handling quality request enhancement, the simple mechanical type steering system were already unable to meet the needs, the power steering system arise at the historic moment, it could rotate the steering wheel while the pilot to provide the boost, the power steeri

38、ng system divides into the hydraulic pressure steering system and the electrically operated steering system 2kinds.Hydraulic pressure steering system is at present uses the most widespread steering system. The hydraulic pressure steering system increased the hydraulic system in the mechanical syste

39、m foundation, including hydraulic pump, V shape band pulley, drill tubing, feed installment, boost installment and control valve. It with the aid of in the motor car engine power actuation hydraulic pump, the air compressor and the generator and so on, by the fluid strength, the physical strength or

40、 the electric power increases the pilot to operate the strength which the front wheel changes, enables the pilot to be possible nimbly to operate motor turning facilely, reduced the labor intensity, enhanced the travel security. The hydraulic pressure boost steering system from invented already had

41、 about half century history to the present, might say was one kind of more perfect system, because its work reliable, the technology mature still widely is applied until now. It takes the power supply by the hydraulic pump, after oil pipe-line control valves to power hydraulic cylinder feed, through

42、 the connecting rod impetus rotation gear movement, may changes the boost through the change cylinder bore and the flowing tubing head pressure size the size, from this achieved changes the boost the function. The traditional hydraulic pressure type power steering system may divide into generally ac

43、cording to the liquid flow form: Ordinary flow type and atmospheric pressure type 2 kind of types, also may divide into according to the control valve form transfers the valve type and the slide-valve type. Along with hydraulic pressure power steering system on automobile daily popularization, the

44、people to operates when the portability and the road feeling request also day by day enhance, however the hydraulic pressure power steering system has many shortcomings actually: ①Because its itself structure had decided it is unable to guarantee vehicles rotates the steering wheel when any operatin

45、g mode, all has the ideal operation stability, namely is unable simultaneously to guarantee time the low speed changes the portability and the high speed time operation stability;②The automobile changes the characteristic to drive the pilot technical the influence to be serious; ③The steering ratio

46、is fixed, causes the motor turning response characteristic along with changes and so on vehicle speed, transverse acceleration to change, the pilot must aim at the motor turning characteristic peak-to-peak value and the phase change ahead of time carries on certain operation compensation, thus contr

47、ols the automobile according to its wish travel. Like this increased pilots operation burden, also causes in the motor turning travel not to have the security hidden danger; But hereafter appeared the electrically controlled hydraulic booster system, it increases the velocity generator in the tradit

48、ional hydraulic pressure power steering system foundation, enables the automobile along with the vehicle speed change automatic control force size, has to a certain extent relaxed the traditional hydraulic pressure steering system existence question. At present our country produces on the commercia

49、l vehicle and the passenger vehicle uses mostly is the electrically controlled hydraulic pressure boost steering system, it is quite mature and the application widespread steering system. Although the electrically controlled hydraulic servo alleviated the traditional hydraulic pressure from certain

50、degree to change between the portability and the road feeling contradiction, however it did not have fundamentally to solve the HPS system existence insufficiency, along with automobile microelectronic technology development, automobile fuel oil energy conservation request as well as global initiati

51、ve environmental protection, it in aspect and so on arrangement, installment, leak-proof quality, control sensitivity, energy consumption, attrition and noise insufficiencies already more and more obvious, the steering system turned towards the electrically operated boost steering system development

52、. The electrically operated boost steering system is the present motor turning system development direction, its principle of work is: EPS system ECU after comes from the steering wheel torque sensor and the vehicle speed sensor signal carries on analysis processing, controls the electrical machine

53、ry to have the suitable boost torque, assists the pilot to complete changes the operation. In the last few years, along with the electronic technology development, reduces EPS the cost to become large scale possibly, Japan sends the car company, Mitsubishi Car company, this field car company, USs De

54、lphi automobile system company, TRW Corporation and Germanys ZF Corporation greatly all one after another develops EPS.Mercedes2Benz 和Siemens Automotive Two big companies invested 65,000,000 pounds to use in developing EPS, the goal are together load a car to 2002, yearly produce 300 ten thousand se

55、ts, became the global EPS manufacturer. So far, the EPS system in the slight passenger vehicle, on the theater box type vehicle obtains the widespread application, and every year by 300 ten thousand speed development. Steering is the term applied to the collection of components, linkages, etc. whic

56、h allow for a vessel (ship, boat) or vehicle (car) to follow the desired course. An exception is the case of rail transport by which rail tracks combined together with railroad switches provide the steering function. The most conventional steering arrangement is to turn the front wheels using a han

57、d–operated steering wheel which is positioned in front of the driver, via the steering column, which may contain universal joints to allow it to deviate somewhat from a straight line. Other arrangements are sometimes found on different types of vehicles, for example, a tiller or rear–wheel steering.

58、 Tracked vehicles such as tanks usually employ differential steering — that is, the tracks are made to move at different speeds or even in opposite directions to bring about a change of course. Many modern cars use rack and pinion steering mechanisms, where the steering wheel turns the pinion gear;

59、 the pinion moves the rack, which is a sort of linear gear which meshes with the pinion, from side to side. This motion applies steering torque to the kingpins of the steered wheels via tie rods and a short lever arm called the steering arm. Older designs often use the recirculating ball mechanism,

60、 which is still found on trucks and utility vehicles. This is a variation on the older worm and sector design; the steering column turns a large screw (the "worm gear") which meshes with a sector of a gear, causing it to rotate about its axis as the worm gear is turned; an arm attached to the axis o

61、f the sector moves the pitman arm, which is connected to the steering linkage and thus steers the wheels. The recirculating ball version of this apparatus reduces the considerable friction by placing large ball bearings between the teeth of the worm and those of the screw; at either end of the appar

62、atus the balls exit from between the two pieces into a channel internal to the box which connects them with the other end of the apparatus, thus they are "recirculated". The rack and pinion design has the advantages of a large degree of feedback and direct steering "feel"; it also does not normally

63、 have any backlash, or slack. A disadvantage is that it is not adjustable, so that when it does wear and develop lash, the only cure is replacement. The recirculating ball mechanism has the advantage of a much greater mechanical advantage, so that it was found on larger, heavier vehicles while the

64、rack and pinion was originally limited to smaller and lighter ones; due to the almost universal adoption of power steering, however, this is no longer an important advantage, leading to the increasing use of rack and pinion on newer cars. The recirculating ball design also has a perceptible lash, or

65、 "dead spot" on center, where a minute turn of the steering wheel in either direction does not move the steering apparatus; this is easily adjustable via a screw on the end of the steering box to account for wear, but it cannot be entirely eliminated or the mechanism begins to wear very rapidly. Thi

66、s design is still in use in trucks and other large vehicles, where rapidity of steering and direct feel are less important than robustness, maintainability, and mechanical advantage. The much smaller degree of feedback with this design can also sometimes be an advantage; drivers of vehicles with rack and pinion steering can have their thumbs broken when a front wheel hits a bump, causing the steering wheel to kick to one side suddenly (leading to driving instructors telling students to ke

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!