四輥可逆式冷軋機(jī)輥系設(shè)計(jì)(共40頁(yè))

上傳人:風(fēng)*** 文檔編號(hào):56895097 上傳時(shí)間:2022-02-22 格式:DOCX 頁(yè)數(shù):40 大小:2.60MB
收藏 版權(quán)申訴 舉報(bào) 下載
四輥可逆式冷軋機(jī)輥系設(shè)計(jì)(共40頁(yè))_第1頁(yè)
第1頁(yè) / 共40頁(yè)
四輥可逆式冷軋機(jī)輥系設(shè)計(jì)(共40頁(yè))_第2頁(yè)
第2頁(yè) / 共40頁(yè)
四輥可逆式冷軋機(jī)輥系設(shè)計(jì)(共40頁(yè))_第3頁(yè)
第3頁(yè) / 共40頁(yè)

下載文檔到電腦,查找使用更方便

20 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《四輥可逆式冷軋機(jī)輥系設(shè)計(jì)(共40頁(yè))》由會(huì)員分享,可在線閱讀,更多相關(guān)《四輥可逆式冷軋機(jī)輥系設(shè)計(jì)(共40頁(yè))(40頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、精選優(yōu)質(zhì)文檔-----傾情為你奉上 太原科技大學(xué) 畢 業(yè) 設(shè) 計(jì)(論 文) 設(shè)計(jì)(論文)題目:四輥可逆式冷軋機(jī)的輥系設(shè)計(jì) 姓 名 學(xué)院(系) 專(zhuān) 業(yè) _ 年 級(jí) _ 08級(jí) 指導(dǎo)教師 2011年 6月10日 專(zhuān)心---專(zhuān)注---專(zhuān)業(yè) 太原科技大學(xué)畢業(yè)設(shè)計(jì)(論文)任務(wù)書(shū) 學(xué)院(直屬系): 時(shí)間:2011 年

2、 6 月10 日 學(xué) 生 姓 名 指 導(dǎo) 教 師 設(shè)計(jì)(論文)題目 四輥可逆式冷軋機(jī)的輥系設(shè)計(jì) 主要研 究?jī)?nèi)容 1.四輥可逆軋機(jī)選擇計(jì)算。 2.輥系的設(shè)計(jì)與校核計(jì)算。 3.進(jìn)料規(guī)格(4×450)㎜、不銹鋼,成品規(guī)格(0.3×450)㎜, 軋制速度 <120m/min,壓下速度0.076mm/S 。

3、 研究方法 1.運(yùn)用相關(guān)基礎(chǔ)和專(zhuān)業(yè)知識(shí),在查閱相關(guān)中外文獻(xiàn)資料的基礎(chǔ)上,提出合理的設(shè)計(jì)方案,獨(dú)立進(jìn)行畢業(yè)設(shè)計(jì)。 2.設(shè)計(jì)說(shuō)明書(shū)要求內(nèi)容完整、計(jì)算正確、論述簡(jiǎn)潔、文理通順、裝訂整齊,且不少于2萬(wàn)字。 3.設(shè)計(jì)圖紙要求用autoCAD繪制,要能較好地表達(dá)設(shè)計(jì)意圖;圖面應(yīng)布局合理、正確清晰、符合制圖標(biāo)準(zhǔn)及有關(guān)規(guī)定。 主要技術(shù)指標(biāo)(或研究目標(biāo)) 1.設(shè)計(jì)說(shuō)明書(shū):≥30頁(yè) 2.繪制的圖紙:計(jì)算機(jī)CAD 繪圖 (1)設(shè)備裝配圖 (2)相關(guān)零件圖 3.外文參考資料翻譯:相當(dāng)?shù)墓ぷ髁? 教研室 意見(jiàn) 教研室主任(專(zhuān)業(yè)負(fù)責(zé)人

4、)簽字: 年 月 日 說(shuō)明:一式兩份,一份裝訂入學(xué)生畢業(yè)設(shè)計(jì)(論文)內(nèi),一份交學(xué)院(直屬系)。 目 錄 四輥可逆式冷軋機(jī)的輥系設(shè)計(jì) 摘 要 這篇文章主要講述了冷軋機(jī)生產(chǎn)與發(fā)展概述,通過(guò)運(yùn)用已知參數(shù),如鋼板的厚度、寬度、軋制速度和壓下速度等,對(duì)工作輥、支撐輥及相關(guān)尺寸進(jìn)行了計(jì)算和校核,然后選擇合適的軋輥材質(zhì)和軸承,并對(duì)軸承

5、壽命進(jìn)行計(jì)算和校核。 四輥可逆式冷軋機(jī),銜接連鑄后的技術(shù)工藝,減少工藝,可實(shí)現(xiàn)往返可逆軋制。四輥軋機(jī)還能提供較大的軋制壓力,提高軟件的可軋硬度范圍,實(shí)現(xiàn)產(chǎn)品規(guī)格多樣化。 關(guān)鍵詞:四輥可逆式;冷連軋;工作輥 Abstract This article is mainly about the cold rolling mill production and development overview, By using the known parameters, such as plate thickness, width, spee

6、d, rolling speed and pressure, On the work roll, support roll and the related dimensions were calculated and checked, Then select the appropriate material and roller bearings, and bearing life is calculated and checked. Four-high reversing cold rolling mill, continuous casting and after the te

7、chnical process of convergence and reduce the process can be realized from the reversible rolling.Also provide a larger four-high rolling mill rolling pressure, and improve software rolled hardness range, to achieve diversification of product specifications. Key Words:Four-high reversible;Cold ro

8、lling;Work roll 第1章 緒論 1.1 冷軋機(jī)的發(fā)展概況 軋機(jī)是現(xiàn)代鋼廠中最常見(jiàn)的一種冶金設(shè)備。因此,軋機(jī)設(shè)備的好壞對(duì)軋鋼廠的效益有很大的影響。 由于冷軋帶鋼厚度公差要求較高,為增加軋機(jī)壓下裝置的反映速度,采用全液壓壓下裝置、帶鋼厚度自動(dòng)控制裝置,以及采用快速自動(dòng)換輥機(jī)構(gòu),實(shí)現(xiàn)電子計(jì)算機(jī)控制等。冷軋鋼板及帶鋼近年來(lái)得到較大發(fā)展。冷連軋機(jī)末架出口速度可達(dá)到25~41.7m/s。為了提高產(chǎn)量,冷卷卷重已達(dá)到60t。一套冷連軋機(jī)產(chǎn)量可達(dá)到250萬(wàn)t。 冷連軋機(jī)組是決定產(chǎn)物精度機(jī)能及板型的環(huán)節(jié),機(jī)組上采用大量的先輩工藝手藝配備如酸洗——軋制結(jié)合機(jī)組手藝、厚度節(jié)制手藝、動(dòng)態(tài)變

9、規(guī)格手藝、馳力節(jié)制手藝、板型節(jié)制手藝等等。此外,全氫四輥冷軋機(jī)冷連軋板帶鋼軋制(外冶搜索罩式退火手藝、持續(xù)式退火手藝、彩涂手藝的利用也對(duì)提高冷軋產(chǎn)物的機(jī)能精度起滅外主要的做用)。冷軋板帶的出產(chǎn)工序繁多,工藝復(fù)純,產(chǎn)物多樣,其機(jī)組也出格多,出產(chǎn)也最復(fù)純。可以這么說(shuō),今天冷軋出產(chǎn)分析把持了現(xiàn)代冶金、機(jī)械、電氣、化學(xué)、自節(jié)制等學(xué)科的最新成就而成為軋鋼廠外能力最強(qiáng)、效率最高、出產(chǎn)過(guò)程機(jī)械化取自動(dòng)化程度最先輩的工場(chǎng),是軋鋼出產(chǎn)向現(xiàn)代化成長(zhǎng)的先鋒。如酸洗——冷連軋結(jié)合機(jī)組、罩式退火爐機(jī)組、持續(xù)退火機(jī)組、熱鍍鋅機(jī)組、電鍍鋅機(jī)組、電鍍錫機(jī)組、電工鋼機(jī)組、彩涂機(jī)組及精零件組等等。 冷軋的環(huán)節(jié)工序:一為酸洗、二

10、為冷軋、三為熱處置、四為平零。酸洗是為了去除對(duì)冷軋無(wú)害的本料鋼卷概況上的氧化鐵皮;冷軋是出產(chǎn)冷軋板帶鋼的環(huán)節(jié)工序;熱處置正在冷軋工序外無(wú)二個(gè)做用,一是消弭冷軋帶鋼的加工軟化和當(dāng)力,軟化金屬,通過(guò)塑性,以便于進(jìn)一步進(jìn)行冷軋或其它加工。二是改善組織結(jié)構(gòu),發(fā)生所需要的晶粒大小和取向;平零是精零工序外十分主要的工序,它可以或許改善帶鋼的機(jī)能,提高鋼板的成形機(jī)能,提高鋼帶的平曲度及改善鋼板的概況形態(tài)。冷軋板帶鋼的涂鍍手藝則是板帶鋼的概況處置手藝。 冷軋機(jī)工作輥的傳動(dòng)方式有兩種,當(dāng)工作輥直徑較大時(shí),可主傳動(dòng),有較好的咬入條件,對(duì)于變形抗力較大而厚度較小的高碳鋼、不銹鋼及硅鋼等,則采用支承輥傳動(dòng),這樣可顯

11、著地減小工作輥直徑,以降低軋制壓力和提高軋制精度,并可簡(jiǎn)化換輥操作,有的軋機(jī)兩種方式兼有。 1.2 四輥可逆式冷軋機(jī)的發(fā)展 四輥式軋機(jī)是由兩個(gè)較小工作輥和教的的兩個(gè)支承輥組成。較小工作輥可以較少變形區(qū)接觸面積,降低總軋制壓力,支承輥起支撐作用,減少工作輥彎曲并加強(qiáng)軋機(jī)剛度。為使工作輥位置穩(wěn)定,工作輥常向軋制方向偏移少量距離,以防止由于軸承間隙造成軋輥中心線交叉。四輥式軋機(jī)廣泛應(yīng)用于熱軋鋼板和冷軋板帶。四輥式軋機(jī)一般驅(qū)動(dòng)工作輥,支承輥靠摩擦力轉(zhuǎn)動(dòng),僅在冷軋薄帶時(shí)四輥軋機(jī)工作輥較小,驅(qū)動(dòng)支承輥。 現(xiàn)代四輥可逆式冷軋機(jī)的生產(chǎn)技術(shù)發(fā)展,以提高生產(chǎn)力、擴(kuò)大產(chǎn)品品種規(guī)格、提高產(chǎn)品質(zhì)量和提高自動(dòng)化裝

12、備水平為中心。四輥可逆軋機(jī)是近代中厚板軋機(jī)的一種主要型式。它集中了二輥和三輥勞特式軋機(jī)的優(yōu)點(diǎn),既降低了軋制壓力,又大大增加了軋制剛性。因此這種軋機(jī)適合于軋制各種尺寸規(guī)格的中厚板,尤其是較寬、精度和板型要求較高的中厚板。但軋機(jī)造價(jià)較高,故國(guó)內(nèi)有些廠只是作精軋機(jī),以節(jié)省投資。六十年代后,大都采用四輥可逆式軋機(jī)生產(chǎn)寬帶鋼。四輥式冷軋機(jī)由于有較細(xì)的工作輥和剛度較大的支承輥,故可采用較大壓下量,產(chǎn)品厚度為0.2~2.5mm。一般選用四輥式軋機(jī)工作輥直徑與成品厚度之比為1000~2000.四輥式可為單機(jī)架和多機(jī)架兩種形式。六輥式現(xiàn)在已被淘汰,因?yàn)榻Y(jié)構(gòu)笨拙,調(diào)整不便,支承輥與工作輥直徑比不能超過(guò)3,優(yōu)越性比

13、不上四輥式,所以未能廣泛使用。 80 年代末以來(lái),隨著世界小鋼廠的發(fā)展,尤其是薄板坯連鑄連軋技術(shù)的發(fā)展及對(duì) 熱帶深加工的需要,四輥可逆式冷軋機(jī)成為板帶小鋼廠熱帶深加工的主要生產(chǎn)設(shè)備。 其裝置技術(shù)水平不斷發(fā)展提高?,F(xiàn)代串列式冷軋機(jī)及全連續(xù)冷軋機(jī)上的現(xiàn)代化技術(shù), 也用于可逆式冷軋機(jī)上。并且,雙機(jī)架四輥可逆式冷軋機(jī)也得到發(fā)展。現(xiàn)代四輥可逆 式冷軋機(jī)的生產(chǎn)及裝備技術(shù)水平遠(yuǎn)遠(yuǎn)超過(guò)傳統(tǒng)的四輥可逆式冷軋機(jī)。 1.3 冷軋帶鋼生產(chǎn)發(fā)展與新技術(shù) 1.3.1 冷軋帶鋼生產(chǎn)技術(shù)設(shè)備的發(fā)展 (1) 酸洗-冷軋聯(lián)合機(jī)組 推拉式酸洗機(jī)組。從生產(chǎn)規(guī)模及經(jīng)濟(jì)角度考慮,與四輥可逆式冷軋機(jī)工序配套,推拉式酸洗

14、機(jī)組是最佳選擇之一,且能滿(mǎn)足酸洗質(zhì)量要求。與連續(xù)式酸洗機(jī)組比較,推拉式酸洗機(jī)組具有設(shè)備組成簡(jiǎn)單、設(shè)備重量輕、占地面積小、投資省的特點(diǎn),并且操作簡(jiǎn)單,靈活,適合中、低產(chǎn)量的工廠選用。目前這種機(jī)組最大酸洗速度為180~200m/min。機(jī)組最 大設(shè)計(jì)產(chǎn)量為 80~90 萬(wàn)t。 (2)板形控制技術(shù) a.工作輥正負(fù)彎輥技術(shù):在上下工作輥兩端軸承痤內(nèi)設(shè)有8個(gè)彎輥液壓缸,通以高壓油可對(duì)工作輥進(jìn)行正彎曲或負(fù)彎曲,以改變板材橫向公差控制板形。 b.中間輥軸向移動(dòng)技術(shù):中間輥軸向移動(dòng)是六輥軋機(jī)控制板形的關(guān)鍵技術(shù),通過(guò)軸 向移動(dòng)量的設(shè)定與彎輥力的最佳組合可有效地控制中浪、邊浪和兩肋浪。 c.板形儀開(kāi)環(huán)控

15、制板形技術(shù):在機(jī)組的出口側(cè)配置了板形測(cè)量輥、通過(guò)帶材橫向張 力的分布不均檢測(cè)板形,曲線彩屏輸出,操作者可根據(jù)帶材的板形輸出狀況調(diào)節(jié)軋輥橫移量、彎輥力或軋輥分段冷卻狀態(tài),以達(dá)到理想的板形。 (3)全氫罩式退火技術(shù) 因連續(xù)退火爐一次性投資大、產(chǎn)量高,因此四輥可逆式冷軋機(jī)一般選用全氫罩式退火爐,且罩式爐臺(tái)數(shù)量增減較方便。全氫爐與氮、氫氣體混合型罩式爐相比,具有 退火產(chǎn)品質(zhì)量好、能耗低、產(chǎn)量高的優(yōu)點(diǎn)。因此,全氫罩式退火爐是現(xiàn)代四輥可逆式 冷軋機(jī)組的主要退火配套機(jī)組。此外,與現(xiàn)代四輥可逆式冷軋機(jī)配套的平整機(jī)組及剪切機(jī)組,無(wú)論設(shè)備本身,還是電氣自動(dòng)控制技術(shù),都有很大發(fā)展。(4)帶鋼連鑄-冷軋工藝 1.

16、3.2 冷軋窄帶鋼軋機(jī)的技術(shù)特點(diǎn) 高精度冷帶鋼由于要求厚差小、板形良好和表面光潔等特點(diǎn),并且有很多是變形抗力大難軋制的材料,所以軋機(jī)需要有一系列相應(yīng)的高技術(shù)措施來(lái)保證。這些高技術(shù)措施主要包括:先進(jìn)的帶材縱向公差和橫向公差控制技術(shù)和精密的檢測(cè)儀表等等。 (1)先進(jìn)的帶材縱向和橫向公差控制技術(shù) 全液壓壓下(AGC)技術(shù):是控制帶材縱向公差的主要手段。與傳統(tǒng)的蝸輪、蝸桿結(jié)構(gòu)相比,全液壓壓下具有控制厚度公差能力強(qiáng)、精度高、反饋速度快的特點(diǎn)?,F(xiàn)代AGC系統(tǒng)包括位置AGC、壓力AGC、監(jiān)控AGC和張力AGC等環(huán)節(jié),并有軋輥偏心補(bǔ)償和油膜補(bǔ)償?shù)裙δ?,可按工藝要求將軋機(jī)調(diào)節(jié)成超硬特性、硬特性、自

17、然特性和軟特性等四種軋機(jī)剛度,使軋機(jī)既可進(jìn)行恒輥縫軋制,又可進(jìn)行恒壓力軋制。(2))精密的檢測(cè)儀表 檢測(cè)儀表的精度,不僅顯示出帶材的最終厚度和板形指標(biāo)、而且是軋機(jī)自動(dòng)控制的關(guān)鍵所在。這些檢測(cè)儀表包括軋制壓力測(cè)量?jī)x,輥縫測(cè)量?jī)x、X射線(或其它射線)測(cè)厚儀、接觸式測(cè)厚儀、板形測(cè)量?jī)x、張力計(jì)和液壓壓下用的位移傳感器、壓力傳感器等等。 (3) 其它先進(jìn)枝術(shù) 為適應(yīng)薄帶軋制對(duì)小張力控制穩(wěn)定的需要.還配合有卷取機(jī)齒輪換檔技術(shù)和卷取機(jī)雙電機(jī)電磁離合技術(shù)。 現(xiàn)代化軋機(jī)還普遍配有自動(dòng)上卸卷、自動(dòng)對(duì)中、在線矯直、緊急事故處理、乳化液擠干及抽吸、快速換輥等裝置,并采用兩級(jí)計(jì)算機(jī)控制,軋制過(guò)程基本上是在一個(gè)密閉

18、的環(huán)境下進(jìn)行的。 第2章 軋輥 2.1 冷軋軋輥的組成 冷軋輥是冷軋機(jī)的主要部件。軋輥由輥身、輥頸和軸頭三部分組成。輥頸安裝在 軸承中,并通過(guò)軸承座和壓下裝置把軋制力傳給機(jī)架。軸頭和連接軸相連傳遞軋制力矩。工作輥和支撐輥的結(jié)構(gòu)如圖 3.1 所示。 2 1

19、 (a) 工作輥結(jié)構(gòu) (b) 支承輥結(jié)構(gòu) 圖2.1 工作輥和支承輥的結(jié)構(gòu) 2.2 軋輥材質(zhì)的選擇 冷軋過(guò)程中,軋輥表面承受很大的擠壓應(yīng)力和強(qiáng)烈的磨損,因此,冷軋工作輥應(yīng)具有極高而均勻的硬度,一定深度的硬化層,以及良好的耐磨性與抗烈性。降低軋輥硬度,雖然改善抗烈性,但耐磨性降低,因此,必須正確選擇軋輥表面硬度。冷軋輥用鋼均多為高碳合金鋼,如、等,我們這里選工作輥的材質(zhì)為。軋件對(duì)冷軋工作輥巨大的軋制壓力,大部分傳

20、遞給支撐輥上。支撐輥既要能承受很大的彎曲應(yīng)力,還要具有很大的剛性來(lái)限制工作輥的彈性變形,以保證鋼板厚度均勻。軋機(jī)支撐輥的表面肖氏硬度一般為HS45左右。目前為提高板厚精度與延長(zhǎng)軋輥的壽命,支撐輥硬度有提高的趨勢(shì)。支撐輥常用鋼號(hào)為 、及 我們這里選支撐輥材質(zhì)為。 2.3 輥系尺寸的確定 1) 輥身長(zhǎng)度L及直徑D的確定 輥身長(zhǎng)度L應(yīng)大于所軋鋼板的最大寬度 bmax ,即 (2-1) 式中的a視鋼板寬度而定,a=100~400mm。 當(dāng)b=400~1200mm時(shí),a=50~100mm

21、,現(xiàn) bmax =450mm,取 a=100mm, 所以 L =bmax+a=450+100=550mm。 四輥軋機(jī)的輥身L確定后,根據(jù)經(jīng)驗(yàn)數(shù)據(jù)來(lái)確定支承輥直徑,取, 所以 對(duì)于支承輥傳功的四輥軋機(jī),一般取 ,現(xiàn)取 則 2) 軋輥輥頸尺寸和的確定。 使用滾動(dòng)軸承時(shí),由于軸承外徑較大,輥徑尺寸不能過(guò)大,一般近似地取 則 ; ; ; ; ; 3)軸頭尺寸的確定 選擇萬(wàn)向軸頭,工作輥尺寸: , ,

22、 支承輥尺寸: mm mm mm mm mm 2.4 軋輥力能參數(shù)計(jì)算 2.4.1 基本參數(shù) 見(jiàn)圖2.2 圖2.2 變形區(qū)幾何圖形 —軋輥直徑,毫米(mm); —軋輥半徑,毫米(mm); —軋制后軋件高度,毫米(mm); —軋制前軋件高度(或稱(chēng)厚度),毫米(mm); —壓下量(或稱(chēng)絕對(duì)壓下量),毫米(mm); —咬入角,; —咬入?。ń佑|?。┧酵队伴L(zhǎng)度,毫米(mm); 已知mm, mm 軋制速度為v=2.983m/s。取, 則 mm mm 2.4.2 艾克隆德方法計(jì)算軋制

23、時(shí)的平均單位壓力 (1)變形阻力 變形阻力是材料本身抵抗塑性變形的能力,影響變形阻力的因素除材料的化學(xué)成分外,主要是變形條件(變形溫度,變形速度與變形程度)的影響,它與應(yīng)力狀態(tài)無(wú)關(guān)。計(jì)算公式為 (2-2) 式中 t—軋制溫度,℃; C—含碳量,; Mn—含錳量,; Cr—含鉻量,。 由材質(zhì)為鑄鐵,得知 ,, 代入等式(2-2)得 (2)變形速度 相對(duì)變形(變形程度)對(duì)時(shí)間的導(dǎo)數(shù),即單位時(shí)間內(nèi)的相對(duì)變形量稱(chēng)為變形速度,用表示。計(jì)算公式為 (

24、2-3) 式中 —軋制速度,; —軋制前后軋件的高度; —軋輥半徑。 由已知條件得 代入等式(2-3)得: mm/s (3)軋制壓力 軋制總壓力等于單位壓力及單位摩擦力在合力作用方向上的投影沿接觸弧的積分和。由于大多數(shù)情況下金屬作用在軋輥上的總壓力是垂直方向,或著傾斜不大。因此可以近似地認(rèn)為金屬作用在軋件上的總壓力等于其垂直分量,即等于單位壓力及單位摩擦力的垂直分量沿接觸弧的積分。 艾克隆德方法提出了計(jì)算軋制時(shí)的平均單位壓力,公式為 (2-4) 式中 —考慮外摩擦對(duì)單位壓力的影響系數(shù) —軋制材料在靜壓縮

25、時(shí)變形阻力,; —軋件粘性系數(shù); —變形速度, ①其中系數(shù)為 (2-5) 式中 —摩擦系數(shù)。 建議采用下式計(jì)算: 對(duì)鋼軋輥; 對(duì)硬面鑄鐵軋輥,t為軋制溫度; 此處選擇鑄鐵軋輥,可得出 將已知參數(shù)值 , 代入等式(2-5)得 ②軋件黏度系數(shù) (2-6) 式中C—考慮軋制速度對(duì)的影響系數(shù) ,其值見(jiàn)表3.1。 表2.1 軋制速度與系數(shù)的關(guān)系 軋制速度v m/s 系數(shù) 此

26、處,所以系數(shù)。 代入等式(2-6)得: ③平均單位壓力 由已知條件得 ,,, 代入等式(2-4)得 ④軋制力 (2-7) 式中 —接觸面積。 接觸面積 (2-8) 式中 mm 簡(jiǎn)單軋制不考慮寬展,所以 mm 將 , 代入等式(2-8)得 由已知條件 , 代入等式(2-7)得 N 2.4.3 軋輥傳動(dòng)力矩 驅(qū)動(dòng)一個(gè)軋輥的力矩為軋制力矩與軋輥軸承處摩擦力矩之和。計(jì)算公式為

27、 (2-9) (2-10) (2-11) 式中 —軋制力; —軋制力力臂,即合力作用線距兩個(gè)軋輥中心連線的垂直距離; —軋輥軸承處摩擦圓半徑; —軋輥直徑; —軋輥軸頸直徑; —合力作用點(diǎn)的角度; —軋輥軸承摩擦系數(shù)。 選滾動(dòng)軸承: 將mm代入等式(2-11)得 變形區(qū)長(zhǎng)度mm,總壓力作用點(diǎn)

28、在接觸弧上的作用點(diǎn)在接觸弧中心。 簡(jiǎn)單軋制除了軋輥給軋件的力外,沒(méi)有其他外力,所以?xún)蓚€(gè)軋輥對(duì)軋件的法向力,和摩擦力 ,的合力,必然是大小相等,方向相反,且作用在一條直線上,該直線垂直于軋制中心線,軋件才能平衡,所以 mm; 由已知條件得:mm,, N代入等式(2-9)得 2.5 軋輥的強(qiáng)度校核 設(shè)計(jì)軋機(jī)時(shí),通常是按工藝給定的軋制負(fù)荷和軋輥參數(shù)對(duì)軋輥進(jìn)行校核,由于對(duì)影響軋輥強(qiáng)度的各種因素(如溫度應(yīng)力、殘余應(yīng)力、沖擊載荷值等),很難準(zhǔn)確計(jì)算,為此,設(shè)計(jì)時(shí)對(duì)軋輥的彎曲和扭轉(zhuǎn)一般不進(jìn)行疲勞校核,而是將這些因素納入軋輥的安全系數(shù)中(為了保護(hù)軋機(jī)其他重要部件,軋輥的安全系數(shù)是軋機(jī)各部件中

29、最小的)。為防止四輥板帶軋機(jī)軋輥輥面剝落,對(duì)工作輥和支承輥之間的接觸應(yīng)力應(yīng)該做疲勞校驗(yàn)。 四輥軋機(jī),由于有支承輥,給軋輥計(jì)算帶來(lái)了新的特點(diǎn)。首先是工作輥與支承輥之間有彎曲載荷的分配問(wèn)題,其次是工作輥與支承輥之間存在著相當(dāng)大的接觸應(yīng)力。 四輥軋機(jī)的支承輥徑與工作輥徑之比一般在1.5~2.9范圍內(nèi)。顯然,支承輥的抗彎斷面系數(shù)較工作輥大得多,即支承輥有很大的剛性。因此軋制時(shí)的彎曲力矩絕大部分由支承輥承擔(dān),在計(jì)算支承輥時(shí),通常按受全部軋制力的情況考慮。由于四輥軋機(jī)一般是工作輥傳動(dòng),因此對(duì)于支承輥只需計(jì)算輥身中部和輥頸斷面的彎曲應(yīng)力。 圖2.3 四輥軋機(jī)支承輥計(jì)算簡(jiǎn)圖 支承輥的彎曲力矩

30、和彎曲應(yīng)力分布見(jiàn)圖3.2,在輥頸的1—1斷面和2—2斷面上的彎曲應(yīng)力均應(yīng)滿(mǎn)足強(qiáng)度條件,即 (2-12) (2-13) 式中 P—總軋制壓力; —1-1、2-2斷面的直徑; —1-1、2-2到斷面支反力P/2處的距離; —許用彎曲應(yīng)力。 由于在計(jì)算軋輥強(qiáng)度時(shí)未考慮疲勞因素,故軋輥的安全系數(shù)n=5,軋輥的許用應(yīng)力可參考以下數(shù)據(jù): 對(duì)于合金鍛剛軋輥,當(dāng)強(qiáng)度極限~750 時(shí),許用應(yīng)力Rb=14~1

31、5 對(duì)于鑄鐵軋輥,當(dāng)=350~400時(shí),許用應(yīng)力Rb=7~8 輥身中部3-3斷面的彎曲應(yīng)力 (2-14) 式中 —兩個(gè)壓下螺絲的中心距(mm); —以重車(chē)后的最小直徑代入。 將mm、mm,N,mm,mm,mm代入(3-19)、(3-20)、(3-21)得 在計(jì)算時(shí),認(rèn)為支承輥兩個(gè)軸承支反力間的距離 等于兩個(gè)壓下螺絲的中心距,而且把工作輥對(duì)支承輥的壓力簡(jiǎn)化為均布載荷。 由于支承輥承受彎曲力矩,故工作輥只考慮扭轉(zhuǎn)力矩,即只計(jì)算扭轉(zhuǎn)端的扭轉(zhuǎn)應(yīng)力。扭轉(zhuǎn)應(yīng)力

32、 (2-15) 式中 —作用在一個(gè)工作輥上的最大傳動(dòng)力矩; —工作輥傳動(dòng)端的扭轉(zhuǎn)斷面系數(shù)()。 四輥軋機(jī)在工作時(shí),支承輥與工作輥兩圓柱面之間有很大的接觸應(yīng)力,在計(jì)算軋輥時(shí),應(yīng)對(duì)此交變局部應(yīng)力進(jìn)行疲勞強(qiáng)度校驗(yàn)。見(jiàn)圖3.4。 圖2.4 軋輥接觸應(yīng)力與深度的關(guān)系 半徑方向產(chǎn)生的法向正壓力在接觸表面的中部最大,其值可按赫茨方程式求得 (2-16) 式中 —加在接觸表面單位長(zhǎng)度上的負(fù)荷; 、—相

33、互接觸的兩軋輥的半徑; 、 —與軋輥材料有關(guān)的系數(shù)。 , 式中 、、、 —兩軋輥材料的泊松比和彈性模量。 一般取=0.3,則公式(2-15)可簡(jiǎn)化為 (2-17) 將=43,GPa,mm,mm代入(2-16)得 此應(yīng)力雖然很大,但對(duì)軋輥不致產(chǎn)生很大的危險(xiǎn),因此在接觸區(qū),材料的變形近似于三項(xiàng)壓縮狀態(tài),能承受較高的應(yīng)力。 在接觸區(qū)還存在切應(yīng)力,為保證軋輥表面不產(chǎn)生疲勞破壞,應(yīng)小于許用值。 (2-18) 將代入(2-17)得 支承輥輥面硬度為4

34、5~50Hs,所以許用應(yīng)力=61 第3章 軋輥軸承 3.1 軸承的選擇 軋輥軸承分滾動(dòng)軸承和滑動(dòng)軸承兩大類(lèi)。滾動(dòng)軸承包括雙列球面滾子軸承、四列圓錐滾子軸承和多列圓柱滾子軸承?;瑒?dòng)軸承包括液體摩擦軸承和開(kāi)式滑動(dòng)軸承。其中液體摩擦軸承又分為動(dòng)壓軸承、靜壓軸承和靜動(dòng)壓軸承。開(kāi)式滑動(dòng)軸承又分為開(kāi)式金屬瓦軸承和開(kāi)式非金屬瓦軸承。軋輥軸承是軋機(jī)的主要部件之一,和一般用途軸承相比,軋輥軸承有以下一些工作特點(diǎn): (1) 工作負(fù)荷大。通常軋輥軸承的單位壓力比一般用途的軸承高2~5倍,甚至更高。而PU值是普通軸承的3~20倍。 (2) 運(yùn)轉(zhuǎn)速度差別大。高速線材軋機(jī)的速度可達(dá)140m/s以上,

35、而有的軋制速度僅有0.2m/s。 (3) 工作環(huán)境惡劣。熱軋時(shí)有冷卻水和氧化鐵皮飛濺,而且溫度高;冷扎時(shí)的工藝潤(rùn)滑劑與軸承潤(rùn)滑劑容易相混。因此,對(duì)軸承的密封損失有較高的要求。 軋輥軸承是軋鋼工作機(jī)中的重要部件。由于各類(lèi)軋機(jī)的工作條件與情況差別很大,因而必須采用不同類(lèi)型的軸承。軋輥軸承在徑向尺寸受限制的情況下,承受很大的軋制力。因此,軋輥用的軸承都是多列的,此處選四列圓錐滾子軸承。 選工作輥軸承型號(hào)為3810/630,; 選支承輥型號(hào)為3820/1060, 3.2 軸承壽命計(jì)算 計(jì)算軸承壽命要求符合軸承的實(shí)際壽命,必須準(zhǔn)確地確定負(fù)荷。當(dāng)量動(dòng)負(fù)荷與軸承壽命之間的關(guān)系可用下式表示:

36、 (3-1) 其中: c—軸承額定動(dòng)載荷N, p—當(dāng)量動(dòng)負(fù)荷N, n—軸承的轉(zhuǎn)速, ε—壽命指數(shù)(球軸承ε =3,滾子軸承ε =)。 根據(jù)軋制速度,可推算軸承轉(zhuǎn)速: 其中: ——工作輥直徑 ——支承輥直徑 ——工作輥轉(zhuǎn)速 ——支承輥轉(zhuǎn)速 代入數(shù)據(jù)得: 工作輥: 滿(mǎn)足安全條件,設(shè)計(jì)可

37、用。 支承輥: 滿(mǎn)足安全條件,設(shè)計(jì)可用。 3.3 軋輥軸承潤(rùn)滑 工作輥:全部采用脂潤(rùn)滑 支承輥:軸向軸承采用脂潤(rùn)滑 徑向軸承采用油潤(rùn)滑 參考文獻(xiàn) [1] 黃慶學(xué),肖宏,孫斌煜.軋鋼機(jī)械設(shè)計(jì)[M].北京:冶金工業(yè)出版社,2007.6 [2] 張小平,秦建平.軋制理論[M].北京:冶金工業(yè)出版社,2006.11.:172~202. [3] 趙松筠,唐文林.型鋼孔型設(shè)計(jì)(第2版)[M].北京:冶金工業(yè)出版社,2000.4. [5]

38、黎景全.軋制工藝參數(shù)測(cè)試技術(shù)(第2版)[M].北京:冶金工業(yè)出版社,1996. [6] 王海文.軋鋼機(jī)械設(shè)計(jì)[M].北京:機(jī)械工業(yè)出版社,1983. [7] 黃慶學(xué),梁愛(ài)生.高精度板帶軋制技術(shù)[M].北京:冶金工業(yè)出版社,2002. [8] 劉宏民.三維軋制理論及應(yīng)用[M].北京:科學(xué)出版社,1998. [9] 王廷簿.金屬塑性加工學(xué)[M].北京:機(jī)械工業(yè)出版社,1998. [10] 鄒家祥.軋鋼機(jī)現(xiàn)代設(shè)計(jì)理論[M].北京:冶金工業(yè)出版社,1991. [11] 王國(guó)棟.板形控制和板形理論[M].北京:冶金工業(yè)出版社,1986. [12] 梁愛(ài)生,孫斌煜,李玉貴,楊曉明.軋鋼生產(chǎn)新

39、技術(shù)600問(wèn)[M].北京:冶金工業(yè)出版社,2005. [13] 黃華清,軋鋼機(jī)械[M].北京:冶金工業(yè)出版社,1986. 致謝 隨著該畢業(yè)論文的完成,我的大學(xué)生活也將塵埃落定。本論文是在朱琳老師的細(xì)心指導(dǎo)下完成的。從論文的選題、設(shè)計(jì)、數(shù)據(jù)處理直至撰寫(xiě),恩師傾注了大量的心血。在整個(gè)設(shè)計(jì)過(guò)程中,我獲得了獨(dú)立思考和學(xué)習(xí)的能力和發(fā)現(xiàn)問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力。恩師淵博的知識(shí)、嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度、求實(shí)創(chuàng)新的工作作風(fēng)和樂(lè)觀向上的謹(jǐn)慎風(fēng)范,令我肅然起敬,成為比知識(shí)更為重要的財(cái)富。 在設(shè)計(jì)過(guò)程中,通過(guò)運(yùn)用三年來(lái)所學(xué)的知識(shí),老師的指導(dǎo),同

40、學(xué)的幫助和查閱大量的資料,使自己受益匪淺,對(duì)于我這個(gè)即將踏上工作崗位的學(xué)生來(lái)說(shuō),這次設(shè)計(jì)不僅是我的畢業(yè)設(shè)計(jì),它也是我步入社會(huì)參加工作的第一份答卷。 同時(shí)冶金機(jī)械教研室的各位老師們?cè)谖胰甑膶W(xué)習(xí)、生活也中給了我無(wú)微不至的關(guān)懷和鼓勵(lì)。我在學(xué)習(xí)中取得的進(jìn)步和獲得的成果,都離不開(kāi)各位老師的諄諄教誨。在此,我要向辛勤培育我三年的老師們致以最崇高的敬意和最誠(chéng)摯的感謝。 附件1 英文原稿 附錄2 英文翻譯 冷軋對(duì)304不銹鋼結(jié)構(gòu)與性能的影響 摘 要 本文探討了室溫下塑性變形對(duì)冷軋304不銹鋼的拉伸性能的

41、影響。對(duì)其微結(jié)構(gòu),鐵磁性和硬度也進(jìn)行了研究。該材料厚度壓下量估計(jì)高達(dá)50%。結(jié)果表明,馬氏體相變的形成顯然導(dǎo)致了鋼的強(qiáng)度大大加強(qiáng)。拉伸強(qiáng)度,屈服強(qiáng)度和硬度,被發(fā)現(xiàn)隨著冷軋百分比(%CR)增加,有高達(dá)45%的增幅。結(jié)果發(fā)現(xiàn),拉伸強(qiáng)度與維氏硬度比為常數(shù),單位MPa,經(jīng)過(guò)研究冷軋比例約為三。此外,由于硬度的變化,抗拉強(qiáng)度的百分比從0%CR提高到50%。 在45%CR和50%CR之間產(chǎn)生的塑性變形對(duì)試樣鋼的抗拉強(qiáng)度和屈服強(qiáng)度的影響可以忽略。大于45%CR時(shí)對(duì)硬度有輕微的影響。從這樣的結(jié)果中可以得出結(jié)論,304不銹鋼經(jīng)歷了這樣的塑性變形程度的全硬狀態(tài)。 關(guān)鍵詞:奧氏體不銹鋼;冷軋;磁性馬氏體

42、;馬氏體相變 1. 簡(jiǎn)介 眾所周知,奧氏體不銹鋼不能通過(guò)熱處理硬化。另一方面,冷或熱加工(圖紙,軋制,鍛造等)可以使這種不銹鋼硬化。對(duì)于奧氏體不銹鋼,要求更大的塑性變形,高要求的加工壓力和進(jìn)一步的變性材料。這種現(xiàn)象被稱(chēng)為應(yīng)變(或工作)硬化,是由于位錯(cuò)運(yùn)動(dòng)增加與變形的密度增大困難造成的。在常溫和較低溫度下,奧氏體不銹鋼的變形行為是復(fù)雜的。這種可變能力普遍歸咎于與穩(wěn)定度有關(guān)的馬氏體相變。當(dāng)奧氏體不穩(wěn)定時(shí),少部分轉(zhuǎn)變?yōu)轳R氏體,這大大增加了其機(jī)械強(qiáng)度。相比之下,一個(gè)高度穩(wěn)定的奧氏體將限制該合金的應(yīng)變硬化(Lacombe et al., 1993)。形變誘導(dǎo)或應(yīng)變誘發(fā)馬氏體的形成是奧氏體不銹

43、鋼的獨(dú)特功能。朗讀 顯示對(duì)應(yīng)的拉丁字符的拼音 兩種類(lèi)型的馬氏體可以自發(fā)的形成奧氏體不銹鋼。這是體心立方馬氏體和六角密排馬氏體。馬氏體具有鐵磁性,因此,順奧氏體不銹鋼變形后成為鐵磁(Reed, 1962)。朗讀 顯示對(duì)應(yīng)的拉丁字符的拼音 這種熱力學(xué)相比相相對(duì)穩(wěn)定。這種相形式在低碳18 / 8不銹鋼冷加工相的相形式之前。在高變形下,隨著馬氏體相變的增加,先前形成的階段數(shù)量減少。高水平的變形相占主導(dǎo)地位(Rouseauetal.,1970;Mongonon and Thomas,1970;Tavresetal.,2003)。Llewellyn and Murray (1964)研究了室溫下扎

44、制的影響與奧氏體不銹鋼的商業(yè)等級(jí)之間的關(guān)系。證明表明,301型加工硬化率最高,因?yàn)樗滠垜?yīng)變誘發(fā)大量的馬氏體相變時(shí)具有最低的穩(wěn)定形式。相反,316和310類(lèi)型在該審查范圍內(nèi)最穩(wěn)定。因此,這些鋼經(jīng)歷了加工硬化率最低階段。至于304不銹鋼類(lèi)型,它表現(xiàn)出中間的加工硬化率。Brickner (1968)比較了301和304型無(wú)染色鋼的應(yīng)力應(yīng)變曲線。他發(fā)現(xiàn),304型更穩(wěn)定,應(yīng)變硬化遠(yuǎn)遠(yuǎn)不如301不銹鋼。Irvine (1961)發(fā)現(xiàn),高達(dá)35%的馬氏體張緊力并不影響0.2%的實(shí)驗(yàn)應(yīng)力。超過(guò)35%的馬氏體存在前張緊力,試驗(yàn)證明,隨著馬氏體含量的增加,0.2%的影響增大。一些奧氏體不銹鋼的拉伸力隨著一些馬氏

45、體前張緊力的增加,呈線性增加。根據(jù)方程(Pickering, 1976): 拉伸強(qiáng)度 其中Tc為計(jì)算抗拉強(qiáng)度與此有關(guān)的化學(xué)成分,%M是馬氏體的百分比。 Lula (1986)報(bào)告說(shuō),304不銹鋼冷軋已經(jīng)引起了屈服和拉伸強(qiáng)度大幅增加。再冷加工中,屈服和拉伸強(qiáng)度分別發(fā)現(xiàn)以同樣的速度改變。延性在軋制開(kāi)始的時(shí)候急劇減少。在此之后,減少的幅度被認(rèn)為是較低的。按照賴(lài)特的發(fā)現(xiàn),(Roger, 1985) 304不銹鋼維氏硬度在冷軋(高達(dá)25%)的初始階段加倍。對(duì)這種鋼材的進(jìn)一步冷加工(50%)已經(jīng)提出了只有7%的硬度值。 在目前的試驗(yàn)中,對(duì)塑性變形和拉伸性能幾經(jīng)有了一個(gè)廣泛的認(rèn)識(shí),而且美國(guó)鋼鐵學(xué)會(huì)對(duì)

46、拉伸性能對(duì)含有約0.058%C的304不銹鋼硬度的影響的調(diào)查。 2.實(shí)驗(yàn)過(guò)程 在這項(xiàng)工作中所使用的材料(奧氏體型304不銹鋼)的化學(xué)成分如表.1所示。在退火狀態(tài)下,304不銹鋼板的厚度為8毫米,相當(dāng)于一些冷加工的完全退火狀態(tài)。對(duì)鋼板進(jìn)行切片處理為175毫米×60毫米×8毫米,在1100℃下進(jìn)行熱處理90分鐘,然后冰鹽水淬火分解一些碳化物,還有在同等條件下的最初的材料。該解決方案的塑性變形帶是由退火在室溫下冷軋產(chǎn)生的。板塊經(jīng)過(guò)單機(jī)架可逆式軋機(jī)連續(xù)冷軋溫度降低。該產(chǎn)品在軋輥之間不可逆軋制,通過(guò)壓縮使其厚度減少,從而得到合適的冷軋百分比(即5%,10%,……50%)。拉伸試樣通過(guò)線切割進(jìn)

47、行加工,其中是原標(biāo)距長(zhǎng)度和是原始橫截面面積。拉伸測(cè)試是在室溫下用了5毫米/分鐘十字頭速度為200KN全自動(dòng)機(jī)器(Gald-abini Sun 120 type)。三個(gè)試樣為一組進(jìn)行冷軋測(cè)試。 維氏硬度通過(guò)使用60毫米的式樣進(jìn)行了20毫米的數(shù)據(jù)測(cè)量(Albert Gnehm type)。還對(duì)每個(gè)試樣在不同位置的厚度進(jìn)行了顯微硬度測(cè)量。對(duì)馬氏體相變的體積分?jǐn)?shù)決心用測(cè)量拉力試驗(yàn)之前和之后的鐵素體含量(Ficherscope)的設(shè)備。對(duì)微觀結(jié)構(gòu)的調(diào)查,用光學(xué)顯微鏡(Olympus BX60m)和掃描電子顯微鏡(JEOL.JSM-5610LV)。 3.結(jié)果與討論 張力試驗(yàn)共進(jìn)行了33個(gè)樣本

48、。這些樣本(包括未變形試樣)的11種應(yīng)力應(yīng)變結(jié)果顯示在圖. 1。對(duì)于選擇11例的標(biāo)準(zhǔn)是根據(jù)斷裂方面的標(biāo)距長(zhǎng)度的中心位置。期間選擇的所有拉伸試驗(yàn)試樣斷裂幾乎都在標(biāo)距長(zhǎng)度的中心。朗讀 顯示對(duì)應(yīng)的拉丁字符的拼音 圖. 1清楚地表明了軋制變形對(duì)304不銹鋼應(yīng)力應(yīng)變曲線的影響。塑性變形對(duì)不銹鋼的加強(qiáng)所起的作用是顯而易見(jiàn)的。冷軋對(duì)屈服強(qiáng)度,抗拉強(qiáng)度和延展性的影響百分比如圖. 2所示。 圖.1 變形和未變形的樣本的應(yīng)力應(yīng)變曲線 表.1 304不銹鋼在本實(shí)驗(yàn)中使用的化學(xué)成分 元素 wt.% C 0.058 Mn 2.000 Cr 18.700 Si 0.50

49、0 Ni 8.000 S 0.023 P 0.026 Fe Balance 表.2 平均收益率和拉伸強(qiáng)度和硬度%的冷軋304不銹鋼變化 0 258 579 188 0.44 3.08 5 447 649 208 0.69 3.12 10 570 758 251 0.75 3.02 15 622 794 278 0.78 2.86 20 743 884 305 0.84 2.90 25 827 945 330 0.87 2.86

50、 30 926 1000 336 0.93 2.98 35 1009 1058 350 0.95 3.02 40 1093 1147 385 0.95 2.98 45 1261 1279 407 0.98 3.14 50 1260 1285 419 0.98 3.07 圖.2 冷軋對(duì)304不銹鋼拉伸性能的影響。 圖.3 冷軋對(duì)304不銹鋼維氏硬度的影響。 圖.2指出,冷軋以相同的速度大幅增加了304不銹鋼的屈服和拉伸強(qiáng)度。兩條曲線圖.2所示。平整約45%CR。這種停滯不前可能表明,冷軋對(duì)

51、45至50%CR之間的鋼的屈服強(qiáng)度和拉伸強(qiáng)度的影響可以忽略。這一結(jié)論與以前的結(jié)果不符。(Llewellyn and Murray, 1964; Lula, 1986)。圖.2還表明,由于冷軋百分比的增加,屈服強(qiáng)度與拉伸強(qiáng)度之間的距離越來(lái)越窄,即屈服強(qiáng)度/抗拉強(qiáng)度從冷軋開(kāi)始的0.69增加到45%CR的0.98。見(jiàn)表—2。延性的延伸率按如下路徑代表相反的強(qiáng)度。這種冷軋鋼的延展性解決方案,退火試樣比45%CR試樣大約高7倍。 冷軋百分比對(duì)維氏硬度的影響見(jiàn)圖. 3。圖中的每個(gè)點(diǎn)代表沿軋制方向的軋制平面平均值為10的讀數(shù)。以同樣的趨勢(shì)觀察,硬度是衡量垂直于軋制方向(即在橫向方向)的厚度的標(biāo)準(zhǔn)

52、。這種結(jié)果與凱恩等人取得的結(jié)果矛盾(2004年)。他們發(fā)現(xiàn),對(duì)304不銹鋼冷軋樣品來(lái)說(shuō),其表面硬度值比截面區(qū)域高。然而,他們發(fā)現(xiàn)通過(guò)冷軋,這兩個(gè)面的硬度值均增加。 值得一提的是,在目前的研究中,以MPa為單位的平均拉伸強(qiáng)度與平均維氏硬度的比率被發(fā)現(xiàn)有三中測(cè)試結(jié)果,見(jiàn)圖. 4。此外,數(shù)據(jù)顯示,拉伸強(qiáng)度百分比從0%CR提高到50%CR,與硬度的相同。即 從以上結(jié)果,可以認(rèn)為,抗拉強(qiáng)度和屈服強(qiáng)度和硬度變化的原因,冷軋百分比可能是一個(gè)主要因素,而且?jiàn)W氏體不銹鋼冷變形形成馬氏體。 圖.4 抗拉強(qiáng)度和維氏硬度之間的關(guān)系。 圖. 5 冷軋和馬氏體含量對(duì)30

53、4不銹鋼軋制張力的影響。 對(duì)于冷加工對(duì)馬氏體不銹鋼的形成已經(jīng)進(jìn)行了許多的研究。見(jiàn)例如(Peguetetal,2007; Garciaetal,2000;Amitava Mitraetal,2004)。關(guān)于馬氏體量可以引入相同類(lèi)型的不銹鋼,并獲得等量的塑性變形,曾有過(guò)矛盾的文獻(xiàn)。然而,據(jù)報(bào)道,形成馬氏體的數(shù)量強(qiáng)烈依賴(lài)于溫度和性質(zhì),還有形變速率(Bressanelliand,Moskowitz,1966)。 圖. 6 光學(xué)顯微鏡(400 ×)冷軋后對(duì)304不銹鋼 于:(a)10%,(b)40%,和(c)50%的厚度減少。 考慮到兩項(xiàng)材料混合定律,用下列熟悉的方程式來(lái)描述(Hua

54、ng et al., 1989): 其中1和V1是馬氏體的強(qiáng)度和體積分?jǐn)?shù)。2和V2非奧氏體轉(zhuǎn)變的強(qiáng)度和體積分?jǐn)?shù)。根據(jù)這個(gè)公式,奧氏體向馬氏體的逐步轉(zhuǎn)變一定會(huì)增加不銹鋼合金的強(qiáng)度。這同意Davies and Magee (1971)的報(bào)告說(shuō),馬氏體的結(jié)構(gòu)和組織與奧氏體和馬氏體之間的相對(duì)強(qiáng)度有關(guān)。此外,使用上述混合物中的相關(guān)定律可知,隨著馬氏體含量的增加,力學(xué)性能提高,似乎是合理的,如果我們比較圖. 5(這表明冷軋對(duì)馬氏體的形成和前后張力測(cè)試的影響)與圖. 2。 人們可以假設(shè),在拉伸試驗(yàn)中,屈服和抗拉強(qiáng)度增幅也關(guān)系到馬氏體的比例增長(zhǎng)。微觀結(jié)構(gòu)分析表

55、明,高達(dá)約10%CR(即變形的初始階段),不銹鋼冷軋效應(yīng)導(dǎo)致粗大奧氏體晶粒內(nèi)形成小群磁性馬氏體,見(jiàn)圖. 6a。在這個(gè)階段,前期形成的少量馬氏體,由于冷軋,這可能不會(huì)對(duì)合金的拉伸性能有影響。然而,在這個(gè)階段觀察抗拉強(qiáng)度和屈服強(qiáng)度的增加,主要是由于張力引起的塑性變形。隨著進(jìn)一步的變形,即在中間階段(CR≥10%),馬氏體的晶核形成和長(zhǎng)大。在奧氏體晶體破壞的情況下馬氏體的體積分?jǐn)?shù)增加,晶界有一部分產(chǎn)生錯(cuò)位,見(jiàn)圖. 6b。由于這種后期的結(jié)果,屈服強(qiáng)度和抗拉強(qiáng)度的增加幾乎與冷軋呈線性關(guān)系。 圖. 5表明,鋼中含有的馬氏體總量,實(shí)際上是實(shí)驗(yàn)前馬氏體和(按冷軋成形)在拉伸試驗(yàn)過(guò)程中產(chǎn)生的馬氏體含量的總和。

56、在拉伸試驗(yàn)過(guò)程中形成的馬氏體的比例可視為常數(shù)。其值達(dá)10%左右,這可根據(jù)圖. 5的結(jié)果確定。這個(gè)常量不斷增加,不論試驗(yàn)前冷軋馬氏體的比例高達(dá)40%CR。然而,在較低的比例下(高達(dá)約20%CR),由于張力引起的塑性變形比冷軋產(chǎn)生的馬氏體多的多。當(dāng)冷軋比例增加超過(guò)40%,由張力產(chǎn)生的馬氏體量不再是常數(shù),會(huì)隨著CR%的降低而降低。因此,通過(guò)對(duì)≥45%冷軋?zhí)幚淼?04不銹鋼進(jìn)行觀察,張力試驗(yàn)對(duì)馬氏體型轉(zhuǎn)變的變形影響不大(見(jiàn)圖. 5)。以及對(duì)馬氏體形成的凈影響基本和冷軋一致。 圖.7 304不銹鋼板的掃描電鏡切片在顯微鏡縱向滾動(dòng)的方向顯 示顯微

57、組織演變的連續(xù)階段:(a)0%和(b)40%的厚度減少。 在這個(gè)階段,馬氏體含量率的急劇變化被發(fā)現(xiàn)和304不銹鋼強(qiáng)度的大幅增加一樣。此外,該材料嚴(yán)重變形,可能會(huì)造成奧氏體相和馬氏體相環(huán)環(huán)相扣,從而使兩相晶界消失了,見(jiàn)圖. 6c。這個(gè)階段的鋼的特點(diǎn)是以全硬狀態(tài)描繪出屈服強(qiáng)度和極限抗拉強(qiáng)度曲線如圖.2所示。冷軋的嚴(yán)重性也可以由圖中. 7的SEM顯微照片看到。這清楚地表明,晶粒沿軋制方向被高度拉長(zhǎng)。 當(dāng)冷軋?jiān)?5至50%之間時(shí)304不銹鋼產(chǎn)生的全硬態(tài)現(xiàn)象的原因可能是冷軋或拉伸試驗(yàn)中產(chǎn)生的馬氏體相變。如果由于拉伸試驗(yàn)形成的馬氏體的比例,被假定為常數(shù),試樣鋼的強(qiáng)度和硬度隨著CR%增加。當(dāng)304不

58、銹鋼冷軋到約45%時(shí),馬氏體體積分?jǐn)?shù)高到足以防止由于張力變化形成新的馬氏體。因此,這種鋼已經(jīng)達(dá)到飽和階段,盡管觀察到先前馬氏體的比例大幅度增加,但沒(méi)有額外的強(qiáng)度。以前的調(diào)查工作(Ravi Kumar et al, 2004)顯示,通過(guò)冷軋304不銹鋼產(chǎn)生的高變形量(90%CR)使馬氏體體積分?jǐn)?shù)可能高達(dá)56%。在這個(gè)變形量下,奧氏體相變由主要階段變?yōu)榇我A段。然而,為了確認(rèn)正在處理的304不銹鋼的這一結(jié)論,冷軋應(yīng)該高于50%CR。 4.結(jié)論 (1)調(diào)查發(fā)現(xiàn),304不銹鋼試樣的屈服和拉伸強(qiáng)度以同樣的速度隨著CR%的增加而逐漸增加。屈服強(qiáng)度和拉伸強(qiáng)度之比的增加與冷軋CR%和高度的增加一致。

59、 (2)平均拉伸強(qiáng)度與維氏硬度的比率范圍在2.86和3.14之間。 (3)軋制馬氏體量隨著CR%增加,拉伸試驗(yàn)過(guò)程中形成的馬氏體量被證明與增加到40%CR無(wú)關(guān)。 (4)在冷軋低比例下(高達(dá)約20%),馬氏體總量多數(shù)被認(rèn)為是由于拉伸實(shí)驗(yàn),而在較高的比例下(>25% CR),實(shí)驗(yàn)前馬氏體量被發(fā)現(xiàn)占主導(dǎo)地位。 (5)當(dāng)304不銹鋼經(jīng)歷了實(shí)驗(yàn)前馬氏體后,可以通過(guò)拉伸負(fù)荷引入大量的馬氏體。這個(gè)百分比會(huì)影響結(jié)果,應(yīng)該予以考慮??紤]到馬氏體的作用不容忽視,最好是事先引入馬氏體(在目前的研究中發(fā)現(xiàn)約45%)臨界值,以通過(guò)機(jī)械測(cè)試限制新馬氏體的形成。因此,對(duì)鋼材性能的凈影響主要是由于前馬氏體。

60、 致謝 首先,作者要衷心感謝利比亞高等教育部以博士獎(jiǎng)學(xué)金的方式給予支持。我們還要對(duì)工業(yè)研究中心的laalam碩士表示感謝。感謝利比亞首都的黎波政府在本工作中的實(shí)驗(yàn)部分給予的熱情幫助。 參考文獻(xiàn) Amitava Mitra, P.K., Srivastava, P.K., Bhattacharya, D.K., Jiles, D.C.,2004. Ferromagnetic properties of deformation-induced martensite t

61、ransformation in AISI 304 stainless steel. Metall. Trans. 35A, 599. Bressanelli, J.P., Moskowitz, A., 1966. Effect of strain rate, temperature and composition on tensile properties of metastable austenitic stainless steels. Trans. ASM 59, 223 Brickner, K.G., 1968. Stainless Steels for Room and

62、Cryogenic Temperatures in Selection of Stainless Steels. American Society for Metals, Metals Park, Ohio, p. 24. Davies, R.G., Magee, C.L., 1971. Metall. Trans. 2, 1939. Garcia, C., Martin, F., De Tiedra, P., Heredero, J.A., Aparicio, M.L.,2000. Effect of prior cold work on intergranular and tr

63、ansgranular corrosion in type 304 stainless steel:quantitative discrimination by image analysis. Corrosion 56,Huang, G.L., Matlock, D.K., Krauss, G., 1989. Martensite formation, strain rate sensitivity, and deformation behaviour of type 304 stainless steels sheet. Metall. Trans. 20A, 1239. Irvine,

64、K.J., 1961. J. Iron Steel Inst. 199, 153. Kain, V., Chandra, K., Adhe, K.N., De, P.K., 2004. Effect of cold work on low-temperature sensitization behaviour of austenitic stainless steels. J. Nucl. Mater. 334, 115. Lacombe, P., Baroux, B., Beranger, G. (Eds.), 1993. Stainless Steels. Les Editi

65、ons de Pysiques Les Ultis, p. 42. Llewellyn, D.T., Murray, J.D., 1964. Proc. Conf. Metallurgical Developments in High Alloy Steels. The Iron and Steel Institute, Scarborough, United kingdom, p. 197. Lula, R.A., 1986. Stainless Steel. American Society for Metals,Metals Park, Ohio, p. 68. Mo

66、ngonon, P., Thomas, L.G., 1970. Structure and properties of thermal-mechanically treated 304 stainless steel. Metall. Trans. 1, 1587. Peguet, L., Malki, B., Baroux, B., 2007. In?uence of cold working on the pitting corrosion resistance of stainless steels. Cor. Sci. 49,1933. Pickering, F.B., 1976. Int. Met. Rev. 21, 227. Ravi Kumar, B., Singh, A.K., Samars Das, Bhattacharya, D.K., 2004. Cold rolling texture in AISI 304 stainless steel. Mater. Sci. A364, 132. Reed, R.P., 1962. The sp

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!