車(chē)床手柄座(831015)加工工藝及關(guān)鍵工序工裝設(shè)計(jì)【鉆φ14孔】【說(shuō)明書(shū)+CAD】
車(chē)床手柄座(831015)加工工藝及關(guān)鍵工序工裝設(shè)計(jì)【鉆φ14孔】【說(shuō)明書(shū)+CAD】,鉆φ14孔,說(shuō)明書(shū)+CAD,車(chē)床手柄座(831015)加工工藝及關(guān)鍵工序工裝設(shè)計(jì)【鉆φ14孔】【說(shuō)明書(shū)+CAD】,車(chē)床,手柄,831015,加工,工藝,關(guān)鍵,工序,工裝,設(shè)計(jì),14,說(shuō)明書(shū),CAD
南京理工大學(xué)泰州科技學(xué)院
畢業(yè)設(shè)計(jì)(論文)開(kāi)題報(bào)告
學(xué) 生 姓 名:
陳游
學(xué) 號(hào):
05010113
專(zhuān) 業(yè):
機(jī)械工程及自動(dòng)化
設(shè)計(jì)(論文)題目:
車(chē)床手柄座加工工藝及關(guān)鍵工序
工裝設(shè)計(jì)
指 導(dǎo) 教 師:
王栓虎
年 月 日
開(kāi)題報(bào)告填寫(xiě)要求
1.開(kāi)題報(bào)告(含“文獻(xiàn)綜述”)作為畢業(yè)設(shè)計(jì)(論文)答辯委員會(huì)對(duì)學(xué)生答辯資格審查的依據(jù)材料之一。此報(bào)告應(yīng)在指導(dǎo)教師指導(dǎo)下,由學(xué)生在畢業(yè)設(shè)計(jì)(論文)工作前期內(nèi)完成,經(jīng)指導(dǎo)教師簽署意見(jiàn)及所在專(zhuān)業(yè)審查后生效;
2.開(kāi)題報(bào)告內(nèi)容必須用黑墨水筆工整書(shū)寫(xiě)或按教務(wù)處統(tǒng)一設(shè)計(jì)的電子文檔標(biāo)準(zhǔn)格式(可從教務(wù)處網(wǎng)頁(yè)上下載)打印,禁止打印在其它紙上后剪貼,完成后應(yīng)及時(shí)交給指導(dǎo)教師簽署意見(jiàn);
3.“文獻(xiàn)綜述”應(yīng)按論文的格式成文,并直接書(shū)寫(xiě)(或打?。┰诒鹃_(kāi)題報(bào)告第一欄目?jī)?nèi),學(xué)生寫(xiě)文獻(xiàn)綜述的參考文獻(xiàn)應(yīng)不少于15篇科技論文的信息量,一般一本參考書(shū)最多相當(dāng)于三篇科技論文的信息量(不包括辭典、手冊(cè));
4.有關(guān)年月日等日期的填寫(xiě),應(yīng)當(dāng)按照國(guó)標(biāo)GB/T 7408—94《數(shù)據(jù)元和交換格式、信息交換、日期和時(shí)間表示法》規(guī)定的要求,一律用阿拉伯?dāng)?shù)字書(shū)寫(xiě)。如“2009年3月15日”或“2009-03-15”。
畢 業(yè) 設(shè) 計(jì)(論 文)開(kāi) 題 報(bào) 告
1.結(jié)合畢業(yè)設(shè)計(jì)(論文)課題情況,根據(jù)所查閱的文獻(xiàn)資料,每人撰寫(xiě)
2000字左右的文獻(xiàn)綜述:
文 獻(xiàn) 綜 述
摘要:
本文介紹的是機(jī)械加工的現(xiàn)狀和發(fā)展趨勢(shì),以及加工工藝的應(yīng)用和特點(diǎn), 夾具在加工過(guò)程中的應(yīng)用。
關(guān)鍵詞 工序 工藝 夾具
我所做的是CA6140車(chē)床手柄座加工工藝及關(guān)鍵工序工裝設(shè)計(jì),工藝規(guī)程在加工中起了重要作用,夾具的設(shè)計(jì)也對(duì)加工零件的加工過(guò)程起了重要意義。
1 國(guó)內(nèi)機(jī)械制造業(yè)的現(xiàn)狀
曾有人在網(wǎng)上發(fā)起“中國(guó)的機(jī)械業(yè)落后歐美國(guó)家多少年”的討論,很多人認(rèn)為“至少30年的差距是有的”。
當(dāng)前,中國(guó)機(jī)械制造業(yè)正處于歷史上難得的發(fā)展機(jī)遇期,機(jī)械制造業(yè)持續(xù)六年高速發(fā)展。固定資產(chǎn)投資和出口的快速增長(zhǎng)是中國(guó)機(jī)械工業(yè)高速增長(zhǎng)的兩大動(dòng)力?,F(xiàn)在,很多因素的出現(xiàn)都在預(yù)示著中國(guó)整個(gè)機(jī)械制造業(yè)的發(fā)展要出現(xiàn)一個(gè)拐點(diǎn)。
現(xiàn)在,中國(guó)機(jī)械制造業(yè)正處于歷史上難得的發(fā)展機(jī)遇期,機(jī)械制造業(yè)持續(xù)六年高速發(fā)展。固定資產(chǎn)投資和出口的快速增長(zhǎng)是中國(guó)機(jī)械工業(yè)高速增長(zhǎng)的兩大動(dòng)力?,F(xiàn)在,很多因素的出現(xiàn)都在預(yù)示著中國(guó)整個(gè)機(jī)械制造業(yè)的發(fā)展要出現(xiàn)一個(gè)拐點(diǎn)。
2 機(jī)械制造業(yè)的發(fā)展前景
制造技術(shù)是制造業(yè)發(fā)展的主體技術(shù)
制造技術(shù)是制造業(yè)為國(guó)民經(jīng)濟(jì)建設(shè)和人民生活生產(chǎn)各種必需物質(zhì)所使用的一切技術(shù)的總稱,是將原材料和其他生產(chǎn)要素集聚合理地轉(zhuǎn)化為可直接使用的成品和技術(shù)服務(wù)的技術(shù)群。傳統(tǒng)的機(jī)械制造技術(shù)不斷吸收計(jì)算機(jī)、信息、自動(dòng)化、新材料、新能源和現(xiàn)代系統(tǒng)管理技術(shù)和最新成果,將其綜合運(yùn)用于產(chǎn)品的研究與開(kāi)發(fā)、設(shè)計(jì)、生產(chǎn)、管理和市場(chǎng)開(kāi)拓、取得顯著的社會(huì)經(jīng)濟(jì)效益,從而形成了現(xiàn)代的先進(jìn)制造技術(shù)。不同科學(xué)之間的交叉融合將產(chǎn)生新的科學(xué)聚集,經(jīng)濟(jì)的發(fā)展和社會(huì)的進(jìn)步對(duì)科學(xué)技術(shù)產(chǎn)生新的要求和期望,這種聚集和期望稱為科學(xué)前沿??茖W(xué)前沿可理解為已解決和為解決的科學(xué)問(wèn)題之間的界域??茖W(xué)前沿具有明顯的時(shí)域、領(lǐng)域和動(dòng)態(tài)特性。隨著科技的發(fā)展,昨天的科學(xué)前沿今天可能已成為過(guò)去,而原來(lái)認(rèn)為不能解決的科學(xué)問(wèn)題現(xiàn)在已成為可能。
加工工藝的選擇及應(yīng)用
眾所周知,產(chǎn)品精度或是工裝夾具精度的高低在很大程度上取決于加工工藝的科學(xué)合理性,正確合理的工藝在產(chǎn)品及工裝夾具制造過(guò)程中起著舉足輕重的作用,所以要制造高精度的產(chǎn)品或工裝夾具必須采用正確合理的工藝來(lái)保證。
3 機(jī)械加工工藝規(guī)程概述
機(jī)械加工工藝規(guī)程是規(guī)定零件制造工藝過(guò)程和操作方法等的工藝方法。它是根據(jù)加工對(duì)象的具體情況和實(shí)際的生產(chǎn)條件,采用合理的加工方法和過(guò)程,按規(guī)定的形式制訂的。
工藝規(guī)程是指生產(chǎn)的主要技術(shù)文件。在制訂工藝規(guī)程時(shí),首先要確保科學(xué)性與合理性,并在生產(chǎn)實(shí)踐中不斷改進(jìn)和完善,而在生產(chǎn)中,則必須嚴(yán)格地執(zhí)行既定的工藝規(guī)程,這是產(chǎn)品質(zhì)量、生產(chǎn)效率和經(jīng)濟(jì)效益的保證。
工藝規(guī)程是生產(chǎn)組織和管理工作的基本依據(jù)。由工藝規(guī)程所涉及的內(nèi)容可見(jiàn),產(chǎn)品投產(chǎn)前原材料及毛坯的供應(yīng),通用工藝裝備的準(zhǔn)備。機(jī)床負(fù)荷的調(diào)整,專(zhuān)用工藝裝備的設(shè)計(jì)和制造,作業(yè)計(jì)劃的編排,勞動(dòng)力的組織以及生產(chǎn)成本的核算等,都是以工藝規(guī)程作為基本依據(jù)的。
在新建或擴(kuò)建工廠或車(chē)間時(shí),只有根據(jù)生產(chǎn)綱領(lǐng)和工藝規(guī)程才能正確地確定生產(chǎn)所需的機(jī)床和其他設(shè)備的種類(lèi)、規(guī)格和數(shù)量,車(chē)間的面積,機(jī)床的布置,生產(chǎn)工人的工種、等級(jí)和數(shù)量以及輔助部門(mén)的安排等。因此,工藝規(guī)程也是工廠基礎(chǔ)建設(shè)的基本資料。
4 機(jī)床夾具設(shè)計(jì)的作用及要求
夾具是卡緊工件用的。比如機(jī)床加工時(shí),主軸有幾千轉(zhuǎn)的轉(zhuǎn)速,工件必須要固定好,否則工件飛出傷人后果嚴(yán)重??ň咴O(shè)計(jì)要合理,即卡緊可靠,又要定位準(zhǔn)確,較少誤差,并保護(hù)好已加工好的表面。才能保證工件質(zhì)量。夾具是機(jī)械加工不可缺少的部件,在機(jī)床技術(shù)向高速、高效、精密、復(fù)合、智能、環(huán)保方向發(fā)展的帶動(dòng)下,夾具技術(shù)正朝著高精、高效、模塊、組合、通用、經(jīng)濟(jì)方向發(fā)展。為保證工件的加工要求,必須使工件在機(jī)床上處于準(zhǔn)確的位置,夾具就是用來(lái)實(shí)現(xiàn)這一要求的。
4.1夾具的作用
為了保證加工精度應(yīng)采用夾具安裝,可以準(zhǔn)確地確定工件與機(jī)床、刀具之間的相互位置,工件的位置精度由夾具保證,不受工人技術(shù)水平的影響,其加工精度高而且穩(wěn)定。 提高生產(chǎn)率、降低成本 用夾具裝夾工件,無(wú)需找正便能使工件迅速地定位和夾緊,顯著地減少了輔助工時(shí)。
4.2夾具的要求
(1) 保證工件加工的各項(xiàng)技術(shù)要求
要求正確確定定位方案、夾緊方案,正確確定刀具的導(dǎo)向方式,合理制定夾具的技術(shù)要求,必要時(shí)要進(jìn)行誤差分析與計(jì)算。
(2) 具有較高的生產(chǎn)效率和較低的制造成本
為提高生產(chǎn)效率,應(yīng)盡量采用多件夾緊、聯(lián)動(dòng)夾緊等高效夾具,但結(jié)構(gòu)應(yīng)盡量簡(jiǎn)單,造價(jià)要低廉。
(3) 盡量選用標(biāo)準(zhǔn)化零部件
盡量選用標(biāo)準(zhǔn)夾具元件和標(biāo)準(zhǔn)件,這樣可以縮短夾具的設(shè)計(jì)制造周期,提高夾具設(shè)計(jì)質(zhì)量和降低夾具制造成本。
(4) 夾具操作方便安全、省力
為便于操作,操作手柄一般應(yīng)放在右邊或前面;為便于夾緊工件,操縱夾緊件的手柄或扳手在操作范圍內(nèi)應(yīng)有足夠的活動(dòng)空間;為減輕工人勞動(dòng)強(qiáng)度,在條件允許的情況下,應(yīng)盡量采用氣動(dòng)、液壓等機(jī)械化夾緊裝置。
(5) 夾具應(yīng)具有良好的結(jié)構(gòu)工藝性
所設(shè)計(jì)的夾具應(yīng)便于制造、檢驗(yàn)、裝配、調(diào)整和維修。
5 總結(jié)
通過(guò)上網(wǎng)查閱相關(guān)資料,對(duì)車(chē)床手柄座加工工藝的編制和車(chē)夾具設(shè)計(jì)的理解,讓我明白了機(jī)械制造加工工藝的編制對(duì)機(jī)械產(chǎn)品的制造是相當(dāng)重要的,直接影響著機(jī)械產(chǎn)品的加工質(zhì)量和生產(chǎn)效益。
參 考 文 獻(xiàn)
[1]吳恒文.機(jī)械制造概論[M].重慶:重慶大學(xué)出版社,1993
[2]趙月望.機(jī)械制造技術(shù)實(shí)踐[M].北京:機(jī)械工業(yè)出版社,1993
[3]鞏秀長(zhǎng).機(jī)床夾具設(shè)計(jì)原理[M].濟(jì)南:山東大學(xué)出版社,1993
[4]謝紀(jì)坊.機(jī)械制造概論[M].重慶:航空工業(yè)出版社,1990
[5]張萬(wàn)昌.機(jī)械制造實(shí)習(xí)[M].北京:高等教育出版社,1991
[6]張力真.金屬工藝學(xué)實(shí)習(xí)教材[M].北京:高等教育出版社,1991
[7]李慶余 張佳.機(jī)械制造裝備設(shè)計(jì)[M].機(jī)械工業(yè)出版社,2003
[8]吳國(guó)華.金屬切削機(jī)床[M].北京:機(jī)械工業(yè)出版社,1999
[9]顧維邦.金屬切削機(jī)床概論[M].北京:機(jī)械工業(yè)出版社,1991
[10] 趙汝嘉. 計(jì)算機(jī)輔助工藝設(shè)計(jì)[M].北京:機(jī)械工業(yè)出版社,1995
[11] 王小慧. 尺寸設(shè)計(jì)理論及應(yīng)用[M].北京;國(guó)防工業(yè)出版社,2004
[12]馮辛安.機(jī)械制造裝備設(shè)計(jì)[M].北京:機(jī)械工業(yè)出版社,2002
[13]陸劍中,孫家寧.金屬切削原理與刀具[M].北京:機(jī)械工業(yè)出版社,1998
[14]宋殷.機(jī)床夾具設(shè)計(jì)[M].開(kāi)封:河南科學(xué)技術(shù)出版社,1985
[15]王先奎.機(jī)械制造工藝學(xué)[M].北京:機(jī)械工業(yè)出版社,1995
畢 業(yè) 設(shè) 計(jì)(論 文)開(kāi) 題 報(bào) 告
2.本課題要研究或解決的問(wèn)題和擬采用的研究手段(途徑):
通過(guò)對(duì)機(jī)床的夾具設(shè)計(jì),可以有效的培養(yǎng)我們的綜合應(yīng)用機(jī)械制造知識(shí),并根據(jù)工程實(shí)際要求,進(jìn)行問(wèn)題的分析解決,從而提高獨(dú)立工作的能力。
1 要研究的問(wèn)題
1)了解CA6140機(jī)床的特點(diǎn)
根據(jù)通用機(jī)床的特點(diǎn),了解普通機(jī)床的傳動(dòng)方式以及普通組合機(jī)床所要求的技術(shù)參數(shù),進(jìn)而分析CA6140機(jī)床的結(jié)構(gòu)特點(diǎn)。
2)根據(jù)生產(chǎn)專(zhuān)用零件進(jìn)行零件結(jié)構(gòu)工藝性分析
根據(jù)零件制造的工藝路線,進(jìn)行零件結(jié)構(gòu)工藝性分析,找出合適的定位基準(zhǔn)。
3)了解機(jī)床的夾具特點(diǎn)
查閱書(shū)籍資料,分析普通機(jī)床夾具的結(jié)構(gòu)特點(diǎn),針對(duì)生產(chǎn)的專(zhuān)用零件的表面特點(diǎn)和技術(shù)要求,設(shè)計(jì)合適的加工機(jī)床夾具結(jié)構(gòu)。
4)選材
設(shè)計(jì)中對(duì)材料的選擇應(yīng)該考慮成本,并且能保證零件設(shè)計(jì)的準(zhǔn)確性,同時(shí)還要對(duì)零件在各種情況下的切削力范圍、承載能力等進(jìn)行計(jì)算,最終達(dá)到所設(shè)計(jì)的零件的使用要求。
2 研究的手段
1)查找相關(guān)的資料和書(shū)籍,為設(shè)計(jì)尋找依據(jù)。
通過(guò)書(shū)籍和網(wǎng)絡(luò)查找最新的夾具設(shè)計(jì)的發(fā)展動(dòng)向,盡量在保證原來(lái)參數(shù)的基礎(chǔ)上,采用最新的一些結(jié)構(gòu),這樣才能使設(shè)計(jì)具有實(shí)用性和創(chuàng)新性。
2)了解一般代表性機(jī)床夾具的設(shè)計(jì)
了解銑床的夾具設(shè)計(jì)和鏜床的夾具設(shè)計(jì),鏜銑組合機(jī)床的夾具是鏜床和銑床的夾具集合體,所以清楚鏜床和銑床的夾具設(shè)計(jì)對(duì)加工機(jī)床手柄座的夾具設(shè)計(jì)是很重要的。
3)合理的設(shè)計(jì)夾具的結(jié)構(gòu)使之滿足經(jīng)濟(jì)性,生產(chǎn)率,加工質(zhì)量的要求。
機(jī)械制造中一個(gè)很重要的指標(biāo)就是生產(chǎn)成本的經(jīng)濟(jì)性,在很大程度上決定了該產(chǎn)品的研制和銷(xiāo)售以及運(yùn)用情況,因此在設(shè)計(jì)機(jī)構(gòu)時(shí)要考慮該機(jī)構(gòu)的科學(xué)性、規(guī)范性、結(jié)構(gòu)的通用性、部件的標(biāo)準(zhǔn)性和零件的可換性,這樣設(shè)計(jì)出來(lái)的機(jī)構(gòu)才具有實(shí)用性和可推廣性。
4)用相關(guān)的繪圖軟件畫(huà)出零件圖和裝配圖。
用AutoCAD繪出零件圖和裝配圖。同時(shí)對(duì)照課題任務(wù)的內(nèi)容和要求,對(duì)具體參數(shù)進(jìn)行設(shè)計(jì)和計(jì)算,選擇合適的結(jié)構(gòu)和部件,手工畫(huà)出重要部件或者結(jié)構(gòu)的視圖,同時(shí)通過(guò)指導(dǎo)老師的指導(dǎo)對(duì)每一個(gè)可執(zhí)行的方案進(jìn)行最后的分析和確認(rèn),最后寫(xiě)設(shè)計(jì)說(shuō)明書(shū)。
畢 業(yè) 設(shè) 計(jì)(論 文)開(kāi) 題 報(bào) 告
指導(dǎo)教師意見(jiàn):
1.對(duì)“文獻(xiàn)綜述”的評(píng)語(yǔ):
2.對(duì)本課題的深度、廣度及工作量的意見(jiàn)和對(duì)設(shè)計(jì)(論文)結(jié)果的預(yù)測(cè):
指導(dǎo)教師:
年 月 日
所在專(zhuān)業(yè)審查意見(jiàn):
負(fù)責(zé)人:
年 月 日
機(jī)械加工工藝過(guò)程卡片
零件號(hào)
零件名稱
CA6140車(chē)床手柄座
工序號(hào)
工序名稱
設(shè)備
夾具
刀具
量具
工時(shí)(min)
名稱
型號(hào)
名稱
規(guī)格
名稱
規(guī)格
名稱
規(guī)格
Ⅰ
銑,半精銑凸臺(tái)端面
立式銑床
X51
專(zhuān)用夾具
高速鋼端銑刀
25
Ⅱ
鉆,擴(kuò),鉸內(nèi)孔
立式鉆床
Z535
專(zhuān)用夾具
高速鋼錐柄麻花鉆擴(kuò)孔鉆鉸刀
游標(biāo)卡尺
Ⅲ
鉆,粗鉸,精鉸孔
立式鉆床
Z525
專(zhuān)用夾具
高速鋼錐柄麻花鉆,鉸刀
游標(biāo)卡尺
Ⅳ
鉆,鉸φ13mm孔
立式鉆床
Z525
專(zhuān)用夾具
麻花鉆頭
Ⅴ
鉆φ8.5mm底孔
立式鉆床
Z525
專(zhuān)用夾具
Ⅵ
鉆粗鉸精鉸孔
立式鉆床
Z525
專(zhuān)用夾具
高速鋼錐柄麻花鉆,鉸刀
卡盤(pán)
Ⅶ
鉆圓錐孔
立式鉆床
Z525
專(zhuān)用夾具
高速鋼麻花鉆
Ⅷ
鉆槽底通孔
立式鉆床
Z525
高速鋼麻花鉆
Ⅸ
拉鍵槽6H9mm
專(zhuān)用夾具
Ⅹ
鉆底孔,攻螺紋M10mm
立式鉆床
Z525
專(zhuān)用夾具
高速鋼錐柄麻花鉆,絲錐
卡盤(pán)
Ⅺ
終檢
Ⅻ
ⅩⅢ
南京理工大學(xué)泰州科技學(xué)院
畢業(yè)設(shè)計(jì)(論文)外文資料翻譯
系 部: 機(jī)械工程系
專(zhuān) 業(yè): 機(jī)械工程及自動(dòng)化
姓 名: 陳游
學(xué) 號(hào): 05010113
(用外文寫(xiě))
外文出處: http://www.mapeng.net
附 件: 1.外文資料翻譯譯文;2.外文原文。
指導(dǎo)教師評(píng)語(yǔ):
簽名:
年 月 日
注:請(qǐng)將該封面與附件裝訂成冊(cè)。
附件1:外文資料翻譯譯文
車(chē)床與銑削加工
車(chē)床
用與車(chē)外圓、端面和鏜孔等加工的機(jī)床叫車(chē)床。車(chē)削很少在其他種類(lèi)的機(jī)床上進(jìn)行,某些機(jī)床不能像車(chē)床那樣方便地進(jìn)行車(chē)削加工。由于車(chē)床除了用于車(chē)外圓外還能用于鏜孔、車(chē)端面、鉆孔和鉸孔,車(chē)床的多功能性可以使工件在一次定位安裝中完成多種加工。這就是在生產(chǎn)中普遍使用各種車(chē)床比其他種類(lèi)的機(jī)床都要多的原因。
很早就已經(jīng)有了車(chē)床?,F(xiàn)代車(chē)床可以追溯到大約17世紀(jì),那時(shí)亨利·莫德斯利發(fā)明了一種具有絲杠的車(chē)床。這種車(chē)床可以控制工具的機(jī)械進(jìn)給。聰明的英國(guó)人還發(fā)明了一種把主軸和絲杠相連接的變速裝置,這樣就可以切削螺紋。
車(chē)床的主要部件:床身、主軸箱組件、尾架組件、拖板組件、變速齒輪箱、絲杠和光杠床身是車(chē)床的基礎(chǔ)件。它通常是由經(jīng)過(guò)正火處理的灰鑄鐵或者球墨鑄鐵制成,它是一個(gè)堅(jiān)固的剛性框架,所有其他主要部件都安裝在床身上。通常在床身上面有內(nèi)外兩組平行的導(dǎo)軌。一些制造廠生產(chǎn)的四個(gè)條導(dǎo)軌都采用倒“V”形,而另一些制造廠則將倒“V”形導(dǎo)軌和平面導(dǎo)軌相結(jié)合。由于其他的部件要安裝在導(dǎo)軌上或在導(dǎo)軌上移動(dòng),導(dǎo)軌要經(jīng)過(guò)精密加工,以保證其裝配精度。同樣地,在操作中應(yīng)該小心,以避免損傷導(dǎo)軌。導(dǎo)軌上的任何誤差,常常會(huì)使整個(gè)機(jī)床的精度破壞。大多數(shù)現(xiàn)代車(chē)床的導(dǎo)軌要進(jìn)行表面淬火處理,以減小磨損和擦傷,具有更大的耐磨性。主軸箱安裝在床身一端內(nèi)導(dǎo)軌的固定位置上。它提供動(dòng)力,使工件在各種速度下旋轉(zhuǎn)。它基本上由一個(gè)安裝在精密軸承中的空心主軸和一系列變速齒輪,通過(guò)變速齒輪,主軸可以在許多種轉(zhuǎn)速下旋轉(zhuǎn)。大多數(shù)車(chē)床有8—18種轉(zhuǎn)速,一般按等比級(jí)數(shù)排列。在現(xiàn)代車(chē)床上只需扳動(dòng)2~4個(gè)手柄,就能得到全部擋位的轉(zhuǎn)速。目前發(fā)展的趨勢(shì)是通過(guò)電氣的或機(jī)械的裝置進(jìn)行無(wú)級(jí)變速。
由于車(chē)床的精度在很大程度上取決于主軸,因此主軸的結(jié)構(gòu)尺寸較大,通常安裝在緊密配合的重型圓錐滾子軸承或球軸承中。主軸中有一個(gè)貫穿全長(zhǎng)的通孔。主軸孔的大小是車(chē)床的一個(gè)重要尺寸,因?yàn)楫?dāng)工件通過(guò)主軸孔供料時(shí),它確定了能夠加工棒料毛坯的最大外徑尺寸。
主軸的內(nèi)端從主軸箱中凸出,其上可以安裝多種卡盤(pán)、花盤(pán)和擋塊。而小型的車(chē)床常帶有螺紋截面供安裝卡盤(pán)之用。很多大車(chē)床使用偏心夾或鍵動(dòng)圓錐軸頭。這些附件組成了一個(gè)大直徑的圓錐體,以保證對(duì)卡盤(pán)進(jìn)行精確地裝配,并且不用旋轉(zhuǎn)這些笨重的器件就可以鎖定或松開(kāi)卡盤(pán)和花盤(pán)。
主軸由電動(dòng)機(jī)經(jīng)V帶或無(wú)聲鏈裝置提供動(dòng)力。大多數(shù)現(xiàn)代車(chē)床都裝有5—15馬力的電動(dòng)機(jī),為硬質(zhì)合金和金屬陶瓷合金刀具提供足夠的動(dòng)力,進(jìn)行高速切削。
尾座組件主要由三部分組成。底座與床身的內(nèi)側(cè)導(dǎo)軌配合,并可以在導(dǎo)軌上做縱向移動(dòng),底座上有一個(gè)可以使整個(gè)尾座組件夾緊的裝置。尾座安裝在底座上,可以沿鍵槽在底座上橫向移動(dòng),使尾座與主軸箱中的主軸對(duì)正并為切削圓錐體提供方便。尾座組件的第三部分是尾座套筒,它是一個(gè)直徑通常在2~3英寸之間的鋼制空心圓柱軸。通過(guò)手輪和螺桿,尾座套筒可以在尾座體中縱向移入和移出幾英寸?;顒?dòng)套筒的開(kāi)口一端具有莫氏錐度,可以用于安裝頂尖或其他刀具。通常在活動(dòng)套筒的外表面刻有幾英寸長(zhǎng)的刻度,以控制尾座的前后移動(dòng)。鎖定裝置可以使套筒在所需要的位置上夾緊。
拖板組件用于安裝和移動(dòng)切削工具。拖板是一個(gè)相對(duì)平滑釣H形鑄件,安裝在床身外側(cè)導(dǎo)軌上,并可在上面移動(dòng)。大拖板上有橫向?qū)к?,使橫向拖板可以安裝在上面,并通過(guò)絲杠使其運(yùn)動(dòng),絲杠由一個(gè)小手柄和刻度盤(pán)控制。橫拖板可以帶動(dòng)刀具垂直于工件的旋轉(zhuǎn)軸線切削。
銑削加工
銑削是機(jī)械加工的一個(gè)基礎(chǔ)方法。在這一加工過(guò)程中,當(dāng)工件沿垂直于旋轉(zhuǎn)刀具軸線方向進(jìn)給時(shí),在工件上去除切屑從而逐漸地銑出表面。有時(shí)候,工件是固定的,而刀具處于進(jìn)給狀態(tài)。在大多數(shù)情況下,使用多齒刀具,金屬切削量大,只需一次銑削就可以獲得所期望的表面。在銑削加工中使用的刀具稱做銑刀。它通常是一個(gè)繞軸線旋轉(zhuǎn)并且周邊帶有同間距齒的圓柱體,銑刀齒間歇性接觸并切削工件。在某些情況下,銑刀上的刀齒會(huì)高出圓柱體的一端或兩端。
由于銑削切削金屬速度很快,并且能產(chǎn)生良好的表面光潔度,故特別適合大規(guī)模生產(chǎn)加工。為了實(shí)現(xiàn)這一目的,已經(jīng)制造出了質(zhì)量一流的銑床。并且在機(jī)修車(chē)間和工具模具加工中也已經(jīng)廣泛地使用了非常精確的多功能通用的銑床。車(chē)間里擁有一臺(tái)銑床和一臺(tái)普通車(chē)床就能加工出具有適合尺寸的各種產(chǎn)品。
銑削操作類(lèi)型:銑削操作可以分成兩大種類(lèi),每一類(lèi)又有多種類(lèi)型。
1.圓周銑削在圓周銑削中,使用的銑刀刀齒固定在刀體的圓周面上,工件銑削表面與旋轉(zhuǎn)刀具軸線平行,從而加工表面。使用這種方法可以加工出平面和成型表面,加工中表面橫截面與刀具的軸向外輪廓相一致。這種加工過(guò)程常被稱為平面銑削。
2.端面銑削銑削平面與刀具的軸線垂直,被加工平面是刀具位于周邊和端面的齒綜合作用形成的。刀具周邊齒完成銑削的主要任務(wù),而端面齒用于精銑。
圓周銑削和端面銑削的基本概念,圓周銑削通常使用臥式銑床,而端銑削則既可在臥式銑床又可以在立式銑床上進(jìn)行。
銑削面的形成:銑削時(shí)可以采用兩種完全不同的方法。應(yīng)注意的是,在逆向銑削時(shí),銑刀旋轉(zhuǎn)方向與工件進(jìn)給方向相反,而在順銑時(shí)銑刀旋轉(zhuǎn)與工件進(jìn)給方向相同。在逆銑過(guò)程中,當(dāng)銑刀齒剛切人工件時(shí),切屑是非常薄的,然后漸漸增厚,在刀齒離開(kāi)工件的地方,切屑最厚。在兩種銑削方法中,切屑的形成是不同的,逆銑過(guò)程中,刀具有推動(dòng)使工件從工作臺(tái)提升的趨勢(shì),這種作用有助于消除銑床工作臺(tái)進(jìn)給螺桿和螺母間的間隙,從而形成平穩(wěn)的切削。然而,這種作用也有造成工件與夾緊裝置之間的松動(dòng)的趨勢(shì),這時(shí)應(yīng)施加更大的夾緊力。此外,銑削表面的平整度主要取決于切削刃的鋒利程度。
順銑時(shí),最大切屑厚度產(chǎn)生于靠近刀具與工件接觸點(diǎn)處。由于相對(duì)運(yùn)動(dòng)把工件拉向銑刀,如果采用順銑法,要消除工作臺(tái)進(jìn)給時(shí)螺桿可能產(chǎn)生的松動(dòng)。因此,對(duì)于不能用于順銑的銑床,應(yīng)不采用順銑方法。因?yàn)樵阢姷督Y(jié)束切削時(shí),處于切線方向的被切材料發(fā)生屈服,所以與逆銑相比,順銑的被加工表面沒(méi)有什么切痕。順銑的另一個(gè)優(yōu)勢(shì)是切削力趨于將工件壓緊在工作臺(tái)上,因此對(duì)工件的夾緊力可以小于逆銑。這一優(yōu)勢(shì)可以用于銑削較薄的工件或進(jìn)行強(qiáng)力切削。順銑的弱點(diǎn)是銑刀齒剛一切削每片鐵屑時(shí),刀齒會(huì)撞擊工件的表面。如果工件表面堅(jiān)硬,像鑄件,就會(huì)使刀齒迅速地變鈍。
銑刀
銑刀分類(lèi)有多種方法,一種方法是根據(jù)刀具后角將銑刀分為兩大類(lèi):
1.仿形銑刀每個(gè)刀齒在切削刃的背面磨了一個(gè)很小的棱面形成后角,切削刃可以是直線或曲線的。
2.凸輪形后角銑刀每個(gè)齒的橫截面在切削刃的背面呈偏心曲線狀,以產(chǎn)生后角。偏心后角的各面與切削刃平行,具有切削刃的相同形狀。這種類(lèi)型的銑刀僅需磨削齒的前刀面就可以變得鋒利,只要切削刃的外形保持不變,銑刀的另一種分類(lèi)方法是根據(jù)銑刀安裝的方法進(jìn)行分類(lèi)。心軸銑刀帶有一個(gè)中心孔以使銑刀安裝在心軸上。帶柄銑刀有一錐柄或直柄軸,含錐形軸柄的銑刀可以直接安裝在銑床的主軸上,而直柄軸的銑刀則是夾持在卡盤(pán)里。平面銑刀通常用螺栓固定在刀軸的末端上。
根據(jù)這種分類(lèi)方法,通用型的銑刀可分類(lèi)如下:
心軸銑刀:圓柱形銑刀,角度銑刀,側(cè)刃銑刀,嵌齒銑刀,錯(cuò)齒銑刀,凸輪形后角銑刀,開(kāi)槽銑刀,高速切削刀。
帶柄銑刀:端面銑刀,T形槽銑刀,整體式銑刀,半圓鍵座銑刀,套式銑刀,高速切削刀,空心銑刀。
銑刀的類(lèi)型圓柱形銑刀是在圓周上有直的或螺旋形的齒的圓柱形或盤(pán)形銑刀。它們可以用來(lái)銑削平面,這種銑削稱做平面銑削。螺旋形的銑刀上的每個(gè)齒是逐漸地接觸工件,在給定的時(shí)間內(nèi),一般有多齒進(jìn)行銑削,這樣可以減少震動(dòng),獲得一個(gè)較平滑的表面。因此,與直齒銑刀相比,這種類(lèi)型的銑刀,通常使用得更多。
側(cè)刃銑刀的齒除了在圓柱刀體的一端或兩端向徑向延伸之外,與圓柱形銑刀是相似的。側(cè)刃銑刀的刀齒既可以是直線的,也可以是螺旋形的,這種銑刀一般較窄小,具有盤(pán)形的形狀。在跨式銑削加工中,常常將兩個(gè)或更多的側(cè)刃銑刀同時(shí)相間地安裝在一個(gè)刀桿上同步并行切削。
雙聯(lián)槽銑刀是由兩個(gè)側(cè)刃銑刀組成,但是在銑槽時(shí),作為一組銑刀進(jìn)行操作。在兩個(gè)銑刀之間添加一些薄墊片,以調(diào)整之間的間距。
錯(cuò)齒銑刀是較薄的圓柱形銑刀,刀上有相互交錯(cuò)的刀齒,相鄰刀齒具有相反的螺旋角。這種銑刀經(jīng)研磨后僅用于周銑,在每個(gè)齒突出的一邊,留有供切屑排出的縫隙。這種類(lèi)型的銑刀可用于高速切削,在銑削深槽時(shí)可以發(fā)揮獨(dú)特的作用。
開(kāi)槽銑刀是一種薄型的圓柱形銑刀,厚度一般為1/32—3/16英寸。這種銑刀的側(cè)面呈盤(pán)狀,有間隙,可以防止粘連。與圓柱形銑刀相比,這種類(lèi)型的銑刀每英寸直徑上的齒數(shù)更多,通常用于銑削較深的、狹窄的槽,并可用于切割加工。
附件2:外文原文(復(fù)印件)
LATHE AND MILLING
The basic machines that are designed primarily to do turning, facing and boring are called lathes. Very little turning is done on other types of machine tools, and none can do it with equal facility. Because lathe can do boring, facing, drilling, and reaming in addition to turning, their versatility permits several operations to be performed with a single setup of the workpiece. These accounts for the fact that lathes of various types are more widely used in manufacturing than any other machine tool.
Lathes in various forms have existed for more than long long age. Modem lathes date from about 1797, when Henry Maudsley developed one with a lea&crew. It provided controlled, mechanical feed of the tool. This ingenious Englishman also developed a changegear system that could connect the motions of the spindle and lea&crew and thus enable threads to be cut.Lathe Construction. The essential components of a lathe are depicted in the block diagram.
These are the bed, headstock assembly, tailstock assembly, carriage assembly, quick-change gear box, and the lea&crew and feed rod.The bed is the backbone of a lathe. It usually is made of well-normalized or aged gray or nodular cast iron and provides a heavy, rigid frame on which all the other basic components are mounted. Two sets of parallel, longitudinal ways, inner and outer, are contained on the bed, usually on the upper side. Some makers use an inverted V-shape for all four ways, whereas others utilize one inverted V and one flat way in one or both sets. Because several
other components are mounted and/or move on the ways they must be made with precision to assure accuracy of alignment. Similarly, proper precaution should be taken in operating a lathe to assure that the ways are not damaged. Any inaccuracy in them usually means that the accuracy of the entire lathe is destroyed. The ways on most modem lathes are surface
hardened to offer greater resistance to wear and abrasion.
The headstock is mounted in a fixed position on the inner ways at one end of the lathe bed. It provides a powered means of rotating the work at various speeds. It consists, essentially, of a hollow spindle, mounted in accurate bearings? And a set of transmission gears similar to a truck transmission through which the spindle can be rotated at a number of speeds. Most lathes provide from eight to eighteen speeds, usually in a geometric ratio, and on modem lathes all the speeds can be obtained merely by moving from two to four levers.
An increasing trend is to provide a continuously variable speed range through electrical or mechanical drives.
Because the accuracy of a lathe is greatly dependent on the spindle, it is of heavy construction and mounted in heavy bearings, usually preloaded tapered roller or ball types, a longitudinal hole extends through the spindle so that long bar stock can be fed through it. The size of this hole is an important size dimension of a lathe because it determines
the maximum size of bar stock that can be machined when the material must be fed through the spinale.
The inner end of the spindle protrudes from the gear box and contains a means for mounting various types of chucks, face plates, and dog plates on it. Whereas small lathes often employ a threaded section to which the chucks are screwed, most large lathes utilize either cam-lock or key-drive taper noses. These provide a large-diameter taper that assures the
accurate alignment of the chuck, and a mechanism that permits the chuck or face plate to be locked or unlocked in position without the necessity of having to rotate these heavy
attachments.
Power is supplied to the spindle by means of an electric motor through a V-belt or silent-chain drive. Most modem lathes have motors of from 5 to15 horsepower to provide adequate power for carbide and ceramic tools at their high cutting speeds.The tailstock assembly consists, essentially, of three parts. A lower casting fits on the inner ways of the bed and can slide longitudinally thereon, with a means for clamping the entire assembly in any desired location. An upper casting fits on the lower one and can be moved transversely upon it on some type of keyed ways. This transverse motion pemfits aligning the tailstock and headstock spindles and provides a method of tuming tapers. The third major component of the assembly is the tailstock quill. This is a hollow steel cylinder, usually about 2 to sinches in diameter, that can be moved several inches longitudinally in and out of the upper casting by means of a handwheel and screw. The open end of the quill hole terminates in a morse. Taper in which a lathe center, or various tools such as drills, can be held. A graduated scale, several inches in length, usually is engraved on the outside of the quill to aid in controlling its motion in and out of the
upper casting. A locking device permits clamping the quill in any desired position.
The carriage assembly provides the means for mounting and moving cutting tools. The carriage is a reianvely fiat H-shaped casting that rests and moves on the outer set of ways on the bed. The transverse bar of the carriage contains ways on which the cross slide is mounted and can be moved by means of a feed screw that is controlled by a small handwheel and a
graduated dial. Through the cross slide a means is provided for moving the lathe tool in the direction normal to the axis of rotation of the work.On most lathes the tool post actually is mounted on a compound rest. This consists of a base, which is mounted on the cross slide so that it can be pivoted about a vertical axis, and an .upper casting. The upper casting is mounted on ways on this base .so that it can be moved back and forth and controlled by means of a short lead screw operated by a handwheel and a calibrated dial.
Manual and powered motion for the carriage, and powered motion for the cross slide, is provided by mechanisms within the apron,attached to the front of the carriage. Manual
movement of the carriage along the bed is effected by turning a handwheel on the front of
the apron, which is geared to a pinion on the back side. This pinion engages a rack that is attached beneath the upper front edge of the bed in an inverted position.
MILLING
Milling is a basic machining process in which the surface is generated by the progressive formation and removal of chips of material from the workpiece as it is fed to a rotating cutter in a direction perpendicular to the axis of the cutter. In some cases the workpiece is stationary and the cutter is fed to the work. In most instances a multiple-tooth cutter is used so that the metal removal rate is high, and frequently the desired surface is obtained in a single pass of the work.
The tool used in milling is known as a milling cutter. It usually consists of a cylindrical body which rotates on its axis and contains equally spaced peripheral teeth that intermittently engage and cut the workpiece. 1 In some cases the teeth extend part way across one or both Ends of the cylinder.
Because the milling principle provides rapid metal removal and can produce good surface finish, it is particularly well-suited for mass-production work, and excellent milling machines have been developed for this purpose. However, very accurate and versatile milling Machines of a general-purpose nature also have been developed that are widely used in jobshop and tool and die work. A shop that is equipped with a milling machine and an engine lathe can machine almost any type of product of suitable size.
Types of Milling Operations. Milling operations can be classified into two broad categories, each of which has several variations:
1. In peripheral milling a surface is generated by teeth located in the periphery of the cutter body; the surface is parallel with the axis of rotation of the cutter. Both flat and formed surfaces can be produced by this method. The cross section of the resulting surface corresponds to the axial contour of the cutter. This procedure often is called slab milling.
2. In face milling the generated flat surface is at right angles to the cutter axis and is the combined result of the actions of the portions of the teeth located on both the periphery and the face of the cutter. 2 The major portion of the cutting is done by the peripheral portions of the teeth with the face portions providing a finishing action.
The basic concepts of peripheral and face milling are illustrated in Fig. 16-1. Peripheral milling operations usually are performed on machines having horizontal spindles, whereas face milling is done on both horizontal- and vertical-spindle machines.
Surface Generation in Mimng. Surfaces can be generated in milling by two distinctly different methods depicted in Fig. 16-2. Note that in up milling the cutter rotates againsi the direction of feed the workpiece, whereas in down milling the rotation is in the same direction as the feed. As shown in Fig. 16-2, the method of chip formation is quite different in the two cases. In up milling the c hip is very thin at the beginning, where the tooth first contacts the work, and increases in thickness, becoming a maximum where the tooth leaves the work. The cutter tends to push the work along and lift it upward from Tool-work relationshios in peripheral and face milling the table. This action tends to eliminate any effect of looseness in the feed screw and nut of the milling machine table and results in a smooth cut. However, the action also tends to loosen the work from the clamping device so that greater clamping forcers must be employed. In addition, the smoothness of the generated surface depends greatly on the sharpness of the cutting edges.
In down milling, maximum chip thickness cecum close to the point at which the tooth contacts the work. Because the relative motion tends to pull the workpiece into the cutter, all possibility of looseness in the table feed screw must be eliminated if down milling is to be used. It should never be attempted on machines that are not designed for this type of milling. Inasmush as the material yields in approximately a tangential direction at the end of the tooth engagement, there is much less tendency for the machined surface to show tooth marks than when up milling is used. Another considerable advantage of down milling is that the cutting force tends to hold the work against the machine table, permitting lower clamping force to be employed. 3 This is particularly advantageous when milling thin workpiece or when taking heavy cuts.
Sometimes a disadvantage of down milling is that the cutter teeth strike against the surface of the work at the beginning of each chip. When the workpiece has a hard surface, such as castings do, this may cause the teeth to dull rapidly.
Milling Cutters. Milling cutters can be classified several ways. One method is to group them into two broad classes, based on tooth relief, as follows:
1. Profile-cutters have relief provided on each tooth by grinding a small land back of the cutting edge. The cutting edge may be straight or curved.
2. In form or cam-reheved cutters the cross section of each tooth is an eccentric curve behind the cutting edge, thus providing relief. All sections of the eccentric relief, parallel with the cutting edge, must have the same contour as the cutting edge. Cutters of this type are sharpened by grinding only the face of the teeth, with the contour of the cutting edge thus remaining unchanged.
Another useful method of classification is according to the method of mounting the cutter. Arbor cutters are those that have a center hole so they can be mounted on an arbor. Shank cutters have either tapered or straight integral shank. Those with tapered shanks can be mounted directly in the milling machine spindle, whereas straight-shank cutters are held in a chuck. Facing cutters usually are bolted to the end of a stub arbor.
The common types of milling cutters, classified by this system are as follows:
Types of Milling Cutters. Hain milling cutters are cylindrical or disk-shaped, having straight or helical teeth on the periphery. They are used for milling flat surfaces. This type of operation is called plai n or slab milling. Each tooth in a helical cutter engages the work gradually, and usually more than one tooth cuts at a given time. This reduces shock and chattering tendencies and promotes a smoother surface. Consequently, this type of cutter usually is preferred over one with straight teeth.
Side milling cutters are similar to plain milling cutters except that the teeth extend radially part way across one or both ends of the cylinder toward the :center. The teeth may be either straight or helical. Frequently these cutters are relatively narrow, being disklike in shape. Two or more side milling cutters often are spaced on an arbor to make simultaneous, parallel cuts, in an operation called straddle milling.
Interlocking slotting cutters consist of two cutters similar to side mills, but made to operate as a unit for milling slots. The two cutters are adjusted to the desired width by inserting shims between them.
Staggered-tooth milling cutters are narrow cylindrical cutters having staggered teeth, and with alternate teeth having opposite helix angles. They are ground to cut only on the periphery, but each tooth also has chip clearance ground on the protruding side. These cutters have a free cutting action that makes them particnlarly effective in milling deep slots.
收藏