機(jī)器人筑砌磚墻專(zhuān)用泥漿泵設(shè)計(jì)【三維PROE】【11張cad圖紙+說(shuō)明書(shū)完整資料】
喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請(qǐng)放心下載,,有疑問(wèn)咨詢(xún)QQ:414951605或者1304139763 ======================== 喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請(qǐng)放心下載,,有疑問(wèn)咨詢(xún)QQ:414951605或者1304139763 ========================
機(jī)器人筑砌磚墻專(zhuān)用泥漿泵設(shè)計(jì) 學(xué)生姓名:1泥漿泵 前 言1.1課題的背景及研究意義常規(guī)泥漿泵的主要作用是利用沖洗液(統(tǒng)稱(chēng)泥漿)使井筒內(nèi)外的循環(huán),沖洗井底,冷卻鉆頭,并把巖屑攜帶到地面。本課題設(shè)計(jì)的是機(jī)器人筑砌磚墻專(zhuān)用泥漿泵設(shè)計(jì),用來(lái)筑砌磚墻用的專(zhuān)用泵。1.2 泥漿泵的現(xiàn)狀與趨勢(shì)分析 國(guó)內(nèi)生產(chǎn)泵的企業(yè)主要有:寶雞石油機(jī)械廠、蘭州石油機(jī)械廠等,但由于各自產(chǎn)品為多年前開(kāi)發(fā),結(jié)構(gòu)不盡合理,難以滿足現(xiàn)代工藝要求。目前,三缸單作用往復(fù)式泵存在以下主要問(wèn)題。(1)泵質(zhì)量大,難以適應(yīng)現(xiàn)代輕便鉆機(jī)的要求,制約著鉆機(jī)的移運(yùn)性。(2)沖程短,沖次高泵在不適合的沖次范圍內(nèi)工作,致使液力端壽命短。(3)泵壓偏低,不能完全滿足現(xiàn)代工藝的需要。(4)結(jié)構(gòu)不合理,部分強(qiáng)度冗余,部分剛度不足,可靠性低,難以滿足鉆機(jī)高可靠性要求。(5)缸套壽命短,難以滿足鉆機(jī)高效率要求。俄羅斯三缸單作用泵的結(jié)構(gòu)特點(diǎn):俄羅斯三缸泵的液力端,閥箱采用I形直通式和L形,閥箱的吸入閥和排出閥不是分體結(jié)構(gòu),而是一體式液力模塊。L形閥箱又有吸入閥在前、排出閥在后的常規(guī)型和吸入閥在后、排出閥在前的變L形結(jié)構(gòu)。美國(guó)泵大量采用三缸單作用泵,其結(jié)構(gòu)特點(diǎn):泵的液力端、閥箱采用L型,閥箱的吸入閥和排出閥為分體結(jié)構(gòu),吸入閥采用螺紋壓緊,其殼體與閥箱螺紋連接,球形吸入空氣包。泵機(jī)座多為焊接結(jié)構(gòu),小齒輪用鍵固定在傳動(dòng)軸上,大齒輪套安裝在曲軸上。曲軸采用直軸與偏心輪一起鑄造的結(jié)構(gòu)??偟膩?lái)說(shuō),國(guó)外三缸泵易損件的使用壽命較低。與先進(jìn)水平相比,尚有不小差距。然而,由于其三缸泵多數(shù)運(yùn)轉(zhuǎn)速度較小(如額定速度為135r/min的泵,經(jīng)常以70-80r/min運(yùn)轉(zhuǎn)),而且傳動(dòng)可以調(diào)速,因此,泵的功效發(fā)揮較好。結(jié)果表明,曲柄錯(cuò)角120的三缸泵比其他曲柄錯(cuò)角的多缸泵都有利;三缸以上的泵由于結(jié)構(gòu)復(fù)雜,維修困難和易磨損而難以廣泛應(yīng)用。近年相繼開(kāi)始研制出5缸、7缸斜盤(pán)型軸向柱塞泵、雙缸單作用液壓泵等新型泵,但由于維修不便及使用壽命等因素限制了其推廣應(yīng)用。所以目前國(guó)內(nèi)外泵的主要形式仍為三缸單作用往復(fù)泵。2 泥漿泵結(jié)構(gòu)設(shè)計(jì)2.1 動(dòng)力結(jié)構(gòu) 動(dòng)力端主要包括:主軸、被動(dòng)軸、齒輪副、連桿、十字頭和中間拉桿等幾部分。泥漿泵動(dòng)力端又因其主軸對(duì)連桿相互位置的不同而分為兩大類(lèi):有曲柄軸的結(jié)構(gòu)和有偏心輪結(jié)構(gòu)。2.1.1 有曲柄軸的結(jié)構(gòu) 在此結(jié)構(gòu)中,曲柄軸上使用鍵裝著可拆卸的曲柄。人字齒或斜齒的圓柱齒輪副,位于兩主軸承之間。圖3.1泵示意圖2.2 動(dòng)力端軸承的選用和壽命計(jì)算查閱資料,確定泥漿泵動(dòng)力端的總體結(jié)構(gòu),進(jìn)行運(yùn)動(dòng)和動(dòng)力計(jì)算。結(jié)構(gòu)如圖3.2所示:圖2.2 泥漿泵動(dòng)力的總體結(jié)構(gòu)連桿大端都選用大直徑的短圓柱滾子軸承。連桿小端則有兩種設(shè)計(jì)。多數(shù)泵采用圖2.3所示的設(shè)計(jì),十字頭銷(xiāo)固定在十字頭上,連桿小端通過(guò)一個(gè)雙列長(zhǎng)圓柱滾子軸承在銷(xiāo)上擺動(dòng)。我國(guó)和羅馬尼亞的部分泵采用圖2.3的設(shè)計(jì),連桿小端與銷(xiāo)的中段用鍵固定在一起,銷(xiāo)的兩端通過(guò)一對(duì)短圓柱滾子軸承裝在十字頭體的兩側(cè)上。1.連桿小端2.鍵3.十字頭4.介桿5.十字頭銷(xiāo)圖2.4連桿小端與十字頭的裝配關(guān)系2.3 連桿、十字頭和導(dǎo)板圖2.6是常見(jiàn)的三缸泵連桿設(shè)計(jì)。連桿有兩種方法制造:一種是鑄造的,另一種是用厚鋼板做毛坯。這兩種連桿的大、小端都是封閉環(huán)。大小端之間的部分稱(chēng)為桿身。大、小端的中心距稱(chēng)為連桿長(zhǎng)度,與值有關(guān);而大、小端的直徑?jīng)Q定于軸承的選用,故泵連桿的尺寸基本上決定于結(jié)構(gòu)設(shè)計(jì)。圖2.6 材料為ZG35CrMo三缸泵的連桿圖2.7 型泵的十字頭傳動(dòng)軸的受力圖被動(dòng)軸的結(jié)構(gòu)設(shè)計(jì)圖2.5傳動(dòng)端的密封和潤(rùn)滑裝置 傳動(dòng)端的密封和潤(rùn)滑裝置的可靠性對(duì)傳動(dòng)端零部件的壽命有著重大的意義,幾種介桿密封裝置2.6 泥漿泵的主要作用及工作機(jī)構(gòu)往復(fù)泵屬容積式泵。它的主要工作機(jī)構(gòu)(如圖3.8)是往復(fù)運(yùn)動(dòng)的活塞(或柱塞)和自動(dòng)開(kāi)、閉的吸入、排出閥。處于活塞-介質(zhì)作用面和吸入、排出閥之間的空間稱(chēng)為液缸。2.7 泥漿泵泵殼的總體方案結(jié)構(gòu)設(shè)計(jì)泥漿泵泵殼歸納起來(lái)主要有以下部分組成:即前板部分、側(cè)板部分、軸承座、軸承壓蓋、頂板、底座部分、油盒部分、側(cè)蓋板、油管、油池等幾大部分構(gòu)成。泥漿泵三維展示缸體齒輪主體機(jī)架部分缸體謝謝觀賞!
熱泵的應(yīng)用
1熱泵在工業(yè)上的應(yīng)用
1)系統(tǒng)
目前,在工業(yè)領(lǐng)域當(dāng)中只有較少的熱泵得到運(yùn)用。但,隨著環(huán)境要求的逐步的提高,工業(yè)熱泵變成一種可以用來(lái)減少散發(fā),提高效率以及在制冷過(guò)程中限制地下水過(guò)多使用的重要的技術(shù)。
在總的工業(yè)流程中,能效的提高是通過(guò)綜合處理由熱力狀態(tài)來(lái)完成的。因此,為了確保熱泵在工業(yè)中的充分利用,這就需要合理、全面的處理。擠壓分析是綜合處理中的一種重要的方法,這種技術(shù)能表現(xiàn)出處理熱的趨勢(shì)和鑒定熱回收的可行性,可行性包括改善熱交換網(wǎng)絡(luò)和熱泵。擠壓式分析對(duì)大型復(fù)雜的綜合控制過(guò)程是特別有效的,并且是一種一個(gè)挑選適合的熱泵的機(jī)會(huì)。
在工業(yè)應(yīng)用上,熱泵已經(jīng)在運(yùn)行能源的形式、型號(hào)、控制條件、熱源和應(yīng)用方式上等許多方面都發(fā)生了很大的變化。熱泵各個(gè)組成部分通常是為了一個(gè)特殊的應(yīng)用而設(shè)計(jì)的,因此熱泵也是獨(dú)特的。
工業(yè)熱泵的主要形式有:
? 機(jī)械蒸汽壓縮系統(tǒng)(MVRs),可分為開(kāi)式和半開(kāi)式熱泵系統(tǒng)。在開(kāi)式系統(tǒng)中,來(lái)自工業(yè)過(guò)程的蒸汽被壓縮到高溫高壓,并且在同樣的過(guò)程中冷凝放熱。在半開(kāi)式系統(tǒng)中,來(lái)自壓縮蒸汽的熱量被傳遞到一個(gè)熱交換機(jī)中。因?yàn)闇p少一個(gè)或兩個(gè)熱交換機(jī)(蒸發(fā)器和/或冷凝器)只能得到很小的溫升,但是MVR系統(tǒng)卻有較高的性能,性能系數(shù)(COPs)可達(dá)10~30。通用的MVR系統(tǒng)的工作熱源溫度在70~80oC,釋放的熱量在110~150 oC,在特定情況下能達(dá)到200 oC。水是最普通的“工作流體”(即壓縮過(guò)程蒸汽),雖然在另一些過(guò)程蒸汽也被用,特別是在化學(xué)工業(yè)中最為明顯。
? 閉式循環(huán)壓縮熱泵在熱泵技術(shù)這一部分介紹。當(dāng)前提供的最大工作流體溫度為120 oC。
? 吸收式熱泵在工業(yè)上沒(méi)有得到廣泛的應(yīng)用,但是一些專(zhuān)家已經(jīng)意識(shí)到從廢棄的焚化植物中取得熱量,尤其是在瑞典和丹麥。當(dāng)前水/溴化鋰系統(tǒng)工作部分的輸出溫度能達(dá)到100oC并且有65oC的溫升。有代表性的COP范圍是1.2~1.4。最近研制出的先進(jìn)的吸收式熱泵系統(tǒng)具有更高的輸出溫度(達(dá)到260oC)和更高的溫升。
? 熱交換器(Ⅱ型)和吸收式熱泵的組成部分和工作原理是一樣的,都通過(guò)熱交換器,實(shí)質(zhì)上不需要外部的驅(qū)動(dòng)能。中間溫度(即在要求的標(biāo)準(zhǔn)和環(huán)境標(biāo)準(zhǔn)之間)的廢熱可以用來(lái)提供給蒸發(fā)器和發(fā)生器。有用的高溫?zé)嵩谖掌髦蟹懦觥.?dāng)前所有的系統(tǒng)都能夠用水和溴化鋰來(lái)作為工質(zhì)。這些傳熱裝置能達(dá)到一個(gè)150 oC的傳遞溫度,50 oC的溫升。在這些條件下的COP的范圍在0.45~0.48之間。
? 布雷頓熱泵循環(huán)可以在許多過(guò)程中的蒸汽中回收溶劑。載有空氣的溶劑先被壓縮然后釋放。空氣通過(guò)發(fā)生器得以冷卻,溶劑被冷凝和被回收。然后再把溶劑在渦輪機(jī)里膨脹(傳統(tǒng)的制冷,冷凝和溶劑回收的綜合),使渦輪機(jī)驅(qū)動(dòng)壓縮機(jī)。
2)應(yīng)用
工業(yè)熱泵主要用于:
? 空間加熱;
? 過(guò)程處理的供熱和制冷;
? 用業(yè)洗滌、公共衛(wèi)生、清潔用的水加熱;
? 蒸汽生產(chǎn);
? 干燥/除濕;
? 蒸發(fā);
? 蒸餾;
? 濃縮。
當(dāng)在干燥、蒸發(fā)、蒸餾過(guò)程中使用熱泵時(shí),熱量可以在此過(guò)程中被循環(huán)利用。而在空間加熱,過(guò)程加熱和蒸汽生成的熱能,在20~100 oC之間的熱源被熱泵利用。
在工業(yè)中大部分廢熱物是冷水、流出物、冷凝物、濕氣和來(lái)自冷藏車(chē)間的冷凝熱。由于提供的廢熱的波動(dòng),必須用較大的儲(chǔ)藏箱去儲(chǔ)藏這些熱量,才能確保熱泵的穩(wěn)定運(yùn)行。
? 空間加熱:
熱泵能利用傳統(tǒng)的熱源來(lái)給溫室和工業(yè)建筑供熱,或者也可以重新利用那些不能被直接利用的工業(yè)廢熱,并且提供一個(gè)低于中間溫度的熱,直接或間接地用于空間加熱。這種方式主要被閉式壓縮電熱泵運(yùn)用。
? 過(guò)程處理的供熱和制冷:
許多工業(yè)需要保持一個(gè)40~90oC的處理水,并且為了滿足洗滌、公共衛(wèi)生和清潔要求,常有一個(gè)即制冷又供熱的綜合的系統(tǒng)的一部分。這種情況下,主要采用閉式壓縮電熱泵。但是也有少量的吸收式熱泵和熱交換器被采用。
? 蒸汽生產(chǎn):
因?yàn)檎羝恢苯佑迷诠I(yè)過(guò)程中,和用于熱分配器,所以工業(yè)消耗大量的100~200oC的溫度范圍的低、中和高壓蒸汽。當(dāng)前,高溫?zé)岜媚苌a(chǎn)高達(dá)150oC的蒸汽(一個(gè)標(biāo)準(zhǔn)的熱泵能達(dá)到300oC)。在此情況下開(kāi)式和半開(kāi)式MVR系統(tǒng)。閉式壓縮熱泵,串聯(lián)系統(tǒng)和一些熱交換器都可以應(yīng)用其中。
? 干燥處理:
熱泵被廣泛應(yīng)用在低溫和適溫(最大100oC)的工業(yè)蒸餾和干燥過(guò)程中。主要的應(yīng)用有紙漿和紙張的干燥,各種食品生產(chǎn),木制品和木料。對(duì)溫度敏感的產(chǎn)品的干燥也有應(yīng)用。熱泵干燥通常能提高干燥產(chǎn)品的質(zhì)量。因?yàn)楦稍锸窃陂]式系統(tǒng)中執(zhí)行的,從干燥食物等中散發(fā)的氣味大大減少。應(yīng)用于干燥處理的主要有閉式壓縮熱泵和MVR系統(tǒng)。
? 蒸發(fā)和蒸餾過(guò)程:
蒸發(fā)和蒸餾是能量集中的過(guò)程,因此在化工和食品加工中,大多數(shù)熱泵被安裝在這些過(guò)程中。在蒸發(fā)過(guò)程中,渣滓是主要的產(chǎn)品,而在蒸餾過(guò)程中蒸汽是主要的產(chǎn)品。絕大多數(shù)系統(tǒng)是開(kāi)式或半開(kāi)式MVRs,但是閉式壓縮熱泵也可以運(yùn)用其中。低溫升使得有6~30的COPs范圍的高性能。
2熱泵在住宅和商業(yè)建筑中的應(yīng)用
1)作用
為建筑提供熱量和制冷的熱泵按照它們的操作原則可以分為以下四種主要的類(lèi)型:
? 僅僅供熱的熱泵,提供熱空氣和/或者是熱水。
? 既供熱又供冷的熱泵,既提供熱空氣又提供冷水。
最普通類(lèi)型的熱泵是可逆的空氣-空氣熱泵,它既可以用來(lái)供熱又能用于制冷。用在商業(yè)、政府機(jī)關(guān)的建筑中的大型熱泵采用冷熱分配的水循環(huán),因此它們能同時(shí)供熱和制冷。
? 混合式熱泵,提供熱空氣、冷水、熱水,并且同時(shí)重新獲得耗盡的熱空氣。
熱水可以通過(guò)換熱器加熱,或者通過(guò)換熱器和冷凝器加熱。當(dāng)只需要熱水,不需要熱空氣和冷水時(shí),可以使用換熱器和冷凝器來(lái)進(jìn)行加熱。
? 熱泵的的水加熱器,充分的對(duì)水加熱。
熱泵通常直接從環(huán)境中提取空氣來(lái)作為熱源,但是也能作為排氣熱泵,或者在空氣-空氣熱泵和水-空氣熱泵的換熱器中。
在住宅房間的應(yīng)用中,熱泵可以采用可逆的空氣-空氣熱泵(無(wú)管或分散式)。熱泵也能整體的用于壓力-空氣管道系統(tǒng)或者屋面供熱或散熱器(中央系統(tǒng))。
在商業(yè)、公共機(jī)構(gòu)建筑中,熱泵系統(tǒng)是從一個(gè)中央系統(tǒng)連接到空氣管道或水系統(tǒng),或者是一個(gè)多區(qū)域的系統(tǒng),復(fù)合式的熱泵是把熱泵單元放置在不同的地方,單獨(dú)進(jìn)行空氣調(diào)節(jié)。在大建筑物中用的是水循環(huán)熱泵系統(tǒng),它包括一個(gè)封閉的水循環(huán),復(fù)合式熱泵連接到環(huán)路中去制冷或制熱,和一個(gè)冷卻塔和一個(gè)輔助的熱源。
熱泵在住宅和商業(yè)建筑中用到的不同的熱源將在熱源這一部分介紹。下面這一段介紹用在建筑中的供熱,制冷的型式。
2)冷熱分配系統(tǒng)
在日本和美國(guó),熱泵已經(jīng)形成了成熟的市場(chǎng),而在這成熟的熱泵市場(chǎng)中,空氣是最普通的交換介質(zhì)??諝饽鼙恢苯铀腿敕块g或者通過(guò)一個(gè)壓力管道系統(tǒng)。一個(gè)空氣系統(tǒng)的輸出溫度通常在30-50oC之間.
分水系統(tǒng)主要用在歐洲,加拿大和美國(guó)東北部地區(qū)。傳統(tǒng)的散熱器型式的系統(tǒng)要求的高溫通常在60-90 oC.現(xiàn)在的低溫散熱器和對(duì)流式散熱器設(shè)計(jì)的最大控制溫度在45-55 oC,30-45 oC用在屋面供熱。表格1概述了各種冷熱分配系統(tǒng)的溫度要求。
表格 1: 各種冷熱分配系統(tǒng)的傳熱溫度.
應(yīng)用
溫度范圍?(°C)
空氣分配
熱空氣
30 - 50
屋面供熱; 低溫 (普通)
30 - 45
水系統(tǒng)
散熱器
45 - 55
高溫 (傳統(tǒng)的) 散熱器
60 - 90
區(qū)域供熱 –高溫水
70 - 100
區(qū)域供熱
區(qū)域供熱 –高溫水、蒸汽
100 - 180
冷卻空氣
10 - 15
Space cooling
冷卻水
5 - 15
區(qū)域供冷
5 - 8
熱泵對(duì)熱源和熱的要求的溫度相差較小的時(shí)候,熱泵的效率高,因此熱空氣熱泵的熱分配溫度也盡可能的與熱源保持同樣低的溫度。
表格2:一個(gè)水-水熱泵的COP值怎樣隨熱泵的供、回水溫度而改變的。
熱水系統(tǒng) (供、回水溫度)
COP
傳統(tǒng)散熱器 (60/50°C)
2.5
屋面供熱(35/30°C)
4.0
普通散熱器 (45/35°C)
3.5
外文原文
The Applications of Heat pumps
1.Heat pumps in industry
1). Systems
Relatively few heat pumps are currently installed in industry. However, as environmental regulations become stricter, industrial heat pumps can become an important technology to reduce emissions, improve efficiency, and limit the use of ground water for cooling
To ensure the sound application of heat pumps in industry, processes should be optimised and integrated. Through process integration improved energy efficiency is achieved by thermodynamically optimising total industrial processes. An important instrument for process integration is pinch analysis, a technology to characterise process heat streams and identify possibilities for heat recovery. Such possibilities may include improved heat exchanger networks, cogeneration and heat pumps. Pinch analysis is especially powerful for large, complex processes with multiple operations, and is an excellent instrument to identify sound heat pump opportunities.
Industrial applications show a great variation in the type of drive energy, heat pump size, operating conditions, heat sources and the type of application. The heat pump units are generally designed for a specific application, and are therefore unique.
The major types of industrial heat pumps are:
o Mechanical vapour recompression systems (MVRs), classified as open or semi-open heat pumps. In open systems, vapour from an industrial process is compressed to a higher pressure and thus a higher temperature, and condensed in the same process giving off heat. In semi-open systems, heat
from the recompressed vapour is transferred to the process via a heat exchanger. Because one or two heat exchangers are eliminated (evaporator and/or condenser) and the temperature lift is generally small, the performance of MVR systems is high, with typical coefficients of performance (COPs) of 10 to 30. Current MVR systems work with heat-source temperatures from 70-80℃, and deliver heat between 110 and 150℃, in some cases up to 200℃. Water is the most common 'working fluid' (i.e. recompressed process vapour), although other process vapours are also used, notably in the (petro-) chemical industry.
o Closed-cycle compression heat pumps are described in the section Heat pump technology . Currently applied working fluids limit the maximum output temperature to 120℃.
o Absorption heat pumps (Type I) are not widely used in industrial applications. Some have been realised to recover heat from refuse incineration plants, notably in Sweden and Denmark. Current systems with water/lithium bromide as working pair achieve an output temperature of 100℃ and a temperature lift of 65℃. The COP typically ranges from 1.2 to 1.4. The new generation of advanced absorption heat pump systems will have higher output temperatures (up to 260℃) and higher temperature lifts.
o Heat transformers (Type II) have the same main components and working principle as absorption heat pumps. With a heat transformer waste heat can be upgraded, virtually without the use of external drive energy. Waste heat of a medium temperature (i.e. between the demand level and the environmental level) is supplied to the evaporator and generator. Useful heat of a higher temperature is given off in the absorber. All current systems use water and lithium bromide as working pair. These heat transformers can achieve a delivery temperatures up to 150℃, typically with a lift of 50℃. COPs under these conditions range from 0.45 to 0.48.
o Reverse Brayton-cycle heat pumps recover solvents from gases in many processes. Solvent loaden air is compressed, and then expanded. The air cools through the expansion, and the solvents condense and are recovered. Further expansion (with the associated additional cooling, condensation and solvent recovery) takes place in a turbine, which drives the compressor.
2). Applications
Industrial heat pumps are mainly used for:
o space heating;
o heating and cooling of process streams;
o water heating for washing, sanitation and cleaning;
o steam production;
o drying/dehumidification;
o evaporation;
o distillation;
o concentration.
When heat pumps are used in drying, evaporation and distillation processes, heat is recycled within the process. For space heating, heating of process streams and steam production, heat pumps utilise (waste) heat sources between 20℃ and 100℃.
The most common waste heat streams in industry are cooling water, effluent, condensate, moisture, and condenser heat from refrigeration plants. Because of the fluctuation in waste heat supply, it can be necessary to use large storage tanks for accumulation to ensure stable operation of the heat pump.
o Space heating:
Heat pumps can utilise conventional heat sources for heating of greenhouses and industrial buildings, or they can recover industrial waste heat that could
not be used directly, and provide a low- to medium temperature heat that can be utilised internally or externally for space heating. Mainly electric closed-cycle compression heat pumps are used.
o Process water heating and cooling:
Many industries need warm process water in the temperature range from 40-90℃, and often have a significant hot water demand in the same temperature range for washing, sanitation and cleaning purposes. This can be met by heat pumps. Heat pumps can also be a part of an integrated system that provides both cooling and heating. Mainly electric closed-cycle compression heat pumps are installed, but a few absorption heat pumps and heat transformers are also in use.
o Steam production:
Industry consumes vast amounts of low-, medium- and high-pressure steam in the temperature range from 100-200℃. Steam is used directly in industrial processes, and for heat distribution. Current high temperature heat pumps can produce steam up to 150℃ (a heat pump prototype has achieved 300℃). Both open and semi-open MVR systems, closed-cycle compression heat pumps, cascade (combination) systems and a few heat transformers are in operation.
o Drying process:
Heat pumps are used extensively in industrial dehumidification and drying processes at low and moderate temperatures (maximum 100℃). The main applications are drying of pulp and paper, various food products wood and lumber. Drying of temperature-sensitive products is also interesting. Heat pump dryers generally have high performance (COP 5-7), and often improve the quality of the dried products as compared with traditional drying methods. Because the drying is executed in a closed system, odours from the drying of food products etc. are reduced. Both closed-cycle
compression heat pumps and MVR systems are used.
o Evaporation and distillation processes:
Evaporation and distillation are energy-intensive processes, and most heat pumps are installed in these processes in the chemical and food industries. In evaporation processes the residue is the main product, while the vapour (distillate) is the main product in distillation processes. Most systems are open or semi-open MVRs, but closed-cycle compression heat pumps are also applied. Small temperature lifts result in high performance with COPs ranging from 6 to 30.
2.Heat pumps in residential and commercial buildings
1).Functions
Heat pumps for heating and cooling buildings can be divided into four main categories depending on their operational function:
o Heating-only heat pumps, providing space heating and/or water heating.
o Heating and cooling heat pumps, providing both space heating and cooling.
The most common type is the reversible air-to-air heat pump, which either operates in heating or cooling mode. Large heat pumps in commercial/institutional buildings use water loops (hydronic) for heat and cold distribution, so they can provide heating and cooling simultaneously.
o Integrated heat pump systems, providing space heating, cooling, water heating and sometimes exhaust air heat recovery.
Water heating can be by desuperheating only, or by desuperheating and
condenser heating. The latter permits water heating when no space heating or cooling is required.
o Heat pump water heaters, fully dedicated to water heating.
They often use air from the immediate surroundings as heat source, but can also be exhaust-air heat pumps, or desuperheaters on air-to-air and water-to-air heat pumps. Heat pumps can be both monovalent and bivalent, where monovalent heat pumps meet the annual heating and cooling demand alone, while bivalent heat pumps are sized for 20-60% of the maximum heat load and meet around 50-95% of the annual heating demand (in a European residence). The peak load is met by an auxiliary heating system, often a gas or oil boiler. In larger buildings the heat pump may be used in tandem with a cogeneration system (CHP).
In residential applications room heat pumps can be reversible air-to-air heat pumps (ductless packaged or split type units). The heat pump can also be integrated in a forced-air duct system or a hydronic heat distribution system with floor heating or radiators (central system).
In commercial/institutional buildings the heat pump system can be a central installation connected to an air duct or hydronic system, or a multi-zone system where multiple heat pump units are placed in different zones of the building to provide individual space conditioning. Efficient in large buildings is the water-loop heat pump system, which involves a closed water loop with multiple heat pumps linked to the loop to provide heating and cooling, with a cooling tower and auxiliary heat source as backup.
The different heat sources that can be used for heat pumps in residential and commercial buildings are described in the section Heat sources. The next paragraph describes the types of heat and cold distribution systems that can be used in buildings.
2). Heat and cold distribution systems
Air is the most common distribution medium in the mature heat pump markets of Japan and the United States. The air is either passed directly into a room by the space-conditioning unit, or distributed through a forced-air ducted system. The output temperature of an air distribution system is usually in the range of 30-50°C.
Water distribution systems (hydronic systems) are predominantly used in Europe, Canada and the north eastern part of the United States. Conventional radiator systems require high distribution temperatures, typically 60-90°C. Today's low temperature radiators and convectors are designed for a maximum operating temperature of 45-55°C, while 30-45°C is typical for floor heating systems. Table 1 summarises typical temperature requirements for various heat and cold distribution systems.
Table 1: Typical delivery temperatures for various heat and cold distribution systems.
Application
Supply temperature range?(°C)
Air distribution
Air heating
30 - 50
Floor heating; low temperature (modern)
30 - 45
Hydronic systems
radiators
45 - 55
High temperature (conventional) radiators
60 - 90
District heating - hot water
70 - 100
District heating
District heating - hot water/steam
100 - 180
Cooled air
10 - 15
Space cooling
Chilled water
5 - 15
District cooling
5 - 8
Because a heat pump operates most effectively when the temperature difference between the heat source and heat sink (distribution system) is small, the heat distribution temperature for space heating heat pumps should be kept as low as possible during the heating season.
Table 2 shows typical COPs for a water-to-water heat pump operating in various heat distribution systems. The temperature of the heat source is 5°C, and the heat pump Carnot efficiency is 50%.
Table 2: Example of how the COP of a water-to-water heat pump varies with the distribution/return temperature.
Heat distribution system (supply/return temperature)
COP
Conventional radiators (60/50°C)
2.5
Floor heating (35/30°C)
4.0
Modern radiators (45/35°C)
3.5
收藏