購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
Industrial Robots
Definition
“A robot is a reprogrammable,multifunctional machine designed to manipulate materials,parts,tools,or specialized devices,through variable programmed motions for the performance of a variety of tasks.”
--Robotics Industries Association “A robot is an automatic device that performs functions normally ascribed to humans or a machine inf orm of a human.”
--Websters Dictionary
The industrial robot is used in the manufacturing environment to increase productivity . It can be used to do routine and tedious assembly line jobs , or it can perform jobs that might be hazardous to do routine and tedious assembly line jobs , or it can perform jobs that might be hazardous to the human worker . For example , one of the first industrial robots was used to replace the nuclear fuel rods in nuclear power plants . A human doing this job might be exposed to harmful amounts of radiation . The industrial robot can also operate on the assembly line , putting together small components , such as placing electronic components on a printed circuit board . Thus , the human worker can be relieved of the routine operation of this tedious task . Robots can also be programmed to defuse bombs , to serve the handicapped , and to perform functions in numerous applications in our society .
The robot can be thought of as a machine that will move an end-of-arm tool , sensor , and gripper to a preprogrammed location . When the robot arrives at this location , it will perform some sort of task . This task could be welding , sealing , machine loading , machine unloading , or a host of assembly jobs . Generally , this work can be accomplished without the involvement of a human being , except for programming and for turning the system on and off .
The basic terminology of robotic systems is introduced in the following :
1. A robot is a reprogrammable , multifunctional manipulator designed to move parts , materials , tools , or special devices through variable programmed motions for the performance of a variety of different task . This basic definition leads to other definitions , presented in the following paragraphs , that give a complete picture of a robotic system .
2. Preprogrammed locations are paths that the robot must follow to accomplish work . At some of these locations , the robot will stop and perform some operation , such as assembly of parts , spray painting , or welding . These preprogrammed locations are stored in the robot’s memory and are recalled later for continuous operation . Furthermore , these preprogrammed locations , as well as other program data , can be changed later as the work requirements change . Thus , with regard to this programming feature , an industrial robot is very much like a computer , where data can be stored and later recalled and edited .
3. The manipulator is the arm of the robot . It allows the robot to bend , reach , and twist . This movement is provided by the manipulator’s axes , also called the degrees of freedom of the robot . A robot can have from 3 to 16 axes . The term degrees of freedom of freedom will always relate to the number of axes found on a robot .
4. The tooling and grippers are not part of the robotic system itself ; rather , they are attachments that fit on the end of the robot’s arm . These attachments connected to the end of the robot’s arm allow the robot to lift parts , spot-weld , paint , arc-weld , drill , deburr , and do a variety of tasks , depending on what is required of the robot .
5. The robotic system can also control the work cell of the operating robot . the work cell of the robot is the total environment in which the robot must perform its task . Included within this cell may be the controller , the robot manipulator , a work table , safety features , or a conveyor . All the equipment that is required in order for the robot to do its job is included in the work cell . In addition , signals from outside devices can communicate with the robot in order to tell the robot when it should assemble parts , pick up parts , or unload parts to a conveyor .
The robotic system has three basic components : the manipulator , the controller ,
and the power source .
A . Manipulator
The manipulator , which does the physical work of the robotic system , consists of two sections : the mechanical section and the attached appendage . The manipulator also has a base to which the appendages are attached . Fig.1 illustrates the connection of the base and the appendage of a robot .
The base of the manipulator is usually fixed to the floor of the work area . Sometimes , though , the base may be movable . In this case , the base is attached to either a rail or a track , allowing the manipulator to be moved from one location to another .
As mentioned previously , the appendage extends from the base of the robot . The appendage is the arm of the robot . It can be either a straight , movable arm or a jointed arm . the jointed arm is also known as an articulated arm .
The appendages of the robot manipulator give the manipulator its various axes of motion . These axes are attached to a fixed base , which , in turn , is secured to a mounting . This mounting ensures that the manipulator will remain in one location。
At the end of the arm , a wrist is connected . The wrist is made up of additional axes and a wrist flange . The wrist flange allows the robot user to connect different tooling to the wrist for different jobs .
The manipulator’s axes allow it to perform work within a certain area . This area is called the work cell of the robot , and its size corresponds to the size of the manipulator . Fig.2 illustrates the work cell of a typical assembly robot . As the robot’s physical size increases , the size of the work cell must also increase .
The movement of the manipulator is controlled by actuators , or drive systems . The actuators , or drive system , allows the various axes to move within the work cell . The drive system can use electric , hydraulic , or pneumatic power . The energy developed by the drive system is converted to mechanical power by various mechanical drive systems .The drive systems are coupled through mechanical linkages .These linkages, in turn , drive the different axes of the robot . The
mechanical linkages may be composed of chains , gears ,and ball screws.
B. Controller
The controller in the robotic system is the heart of the operation. The controller stores preprogrammed information for later recall, control peripheral devices, and communicates with computers within the plant for constant updates in production
The controllers is used to control the robot manipulator’s movements as well as to control peripheral components within the work cell. The user can program the movements of the manipulator into the controller through the use of a hand-held teach pendent. This information is stored in the memory of the controller for later recall. The controller stores all program data of the robotic system. It can store several different programs, and any of these programs can be edited.
The controller is also required to communicate with peripheral equipment within the work cell. For example, the controller has an input line that identifies when a machining operation is completed. When the machine cycle is completed, the input line turns on, telling the controller to position the manipulator so that it can pick up the finished part. Then, a new part is picked up by the manipulator and placed into the machine. Next, the controller signals the machine to start operation.
The controller can be made from mechanically operated drums that step through a sequence of events. This type of controller operates with a very simple robotic system.The controller can send electric signals over communication lines that allow it to talk with the various axes of manipulator. This two-way communication between the robot manipulator and the controller maintains a constant update of the location and the operation of the system. The controller also controls any tooling placed on the end of the robot’s wrist.
The controller also has the job of communicating with the different plant computers . The communication link establishes the robot as part of a computer-assisted
manufacturing (CAM) system.
As the basic definition stated , the robot is a reprogrammable , multifunctional manipulator . Therefore , the controller must contain some type of memory storage . The microprocessor-based systems operate in conjunction with solid-state memory devices . These memory devices may be magnetic bubbles , random-access memory , floppy disks , or magnetic tape . Each memory storage device stores program information for later recall or for editing .
C. Sensors
Measure robot configuration/condition and its environment send such information to robor controller as electronic signals (e.g.,arm position,presencs of toxic gas ).
D. User interfance
This is the part for the user to operate a robot,i.e.,the control panel.
E. Manipulator base
A robot may work in a fixed base,or in a mobile base,that is ,it can move about by employing wheels or legs.
F. Power supply
The power supply is the unit that supplies power to the controller and the manipulator . Two types of power are delivered to the robotic system . One type of power is the AC power for operation of the controller . The other type of power is used for driving the various axes of the manipulator . For example , if the robot manipulator id controlled by hydraulic or pneumatic manipulator drives , control signals are sent to these devices , causing motion of the robot .
For each robotic system , power is required to operate the manipulator . This power can be developed from either a hydraulic power source , a pneumatic power source , or an electric power source , These power sources are part of the total components of the robotic work cell .
工業(yè)機器人
定義
“機器人是一種可重復(fù)編程和多功能的機器,它是用于操縱材料、部件、工具或者特殊化的裝置,通過多樣的已編程的動作以適用于各種任務(wù)?!?
--機器人工業(yè)協(xié)會“機器人是一種執(zhí)行功能取決于人類或者接受人類指令的自動機器?!?
--韋氏詞典
工業(yè)機器人用于增加生產(chǎn)力的生產(chǎn)環(huán)境當(dāng)中。它被用于常規(guī)而繁瑣的裝配線上,或者用于常規(guī)繁瑣的工作,或者它能夠執(zhí)行對人類有害的工作。例如,初代機器人之一在核電站被用來取代核燃料桿。人做這份工作可能會受到大量有害的輻射。工業(yè)機器人同樣能夠工作于裝配線上,把小的部件組裝到一起,例如把電子部件放到印刷電路板上。因此,人類對于常規(guī)而又繁瑣的工作能夠松一口氣。機器人同樣能夠用于排除炸彈,服務(wù)殘疾人,能夠在眾多社會工作中服務(wù)。
機器人能夠看做是一種能夠通過手臂末端工具,傳感器,夾持器到達(dá)預(yù)先安排好的位置。當(dāng)機器人到達(dá)這個位置時,它會執(zhí)行一些任務(wù)。任務(wù)可能是焊接,密封,裝載機械,卸載機械,或者裝配操作??偟膩碚f,這種工作能夠在沒有人類參與的情況下完成,除了編程和開關(guān)系統(tǒng)。
基本的機器人屬于介紹如下:
1.機器人是一種可重復(fù)編程和多功能的機器,它是用于操縱材料、部件、工具或者特殊化的裝置,通過多樣的已編程的動作以適用于各種任務(wù)?;镜亩x引申出其他含義,體現(xiàn)在下列語句中,對于機器人系統(tǒng)進(jìn)行了完整的描述。
2.預(yù)先定好的位置是機器人完成任務(wù)所必須經(jīng)過的位置。其中某些位置,機器人會停下來進(jìn)行一些操作,比如裝配部件,噴漆,或者焊接。這些預(yù)置的位置存儲在機器人的記憶芯片中而且能夠在后續(xù)的操作中被招用。此外,這些預(yù)置的位置和其他程序數(shù)據(jù)能夠隨著工作需要的改變而改變。因此,考慮到程序特點,工業(yè)機器人和電腦在某些地方很相似,比如數(shù)據(jù)能夠存儲并且之后能夠被招用和編輯。
3.機械手是機器人的手臂。它能夠讓機器人彎曲,伸展,扭轉(zhuǎn)。這些移動取決于機械手的軸,同樣被稱作機器人的自由度。一個機器人能夠擁有三到十六個軸。預(yù)期的自由度大小總是和機器人中軸的數(shù)量相關(guān)。
4.工裝夾具不是機器人系統(tǒng)的一部分,相反的,他們是適應(yīng)機器人手臂終端的附件。和機器人手臂終端相聯(lián)系的附件允許機器人搬運部件,點焊,噴漆,電弧焊接,鉆,去毛刺,完成大量的工作,取決于機器人的需要。
5.機器人系統(tǒng)同樣能夠控制工作機器人的工作單元。機器人的工作單元是機器人必須執(zhí)行任務(wù)的總環(huán)境。包括控制單元,機械手,工作臺,安全功能,或者輸送機。為了機器人工作所要求的所有裝備都包含于工作單元中。除此之外,外部裝置發(fā)出的信號能夠和機器人進(jìn)行交流,為了告訴機器人合適應(yīng)該裝配部件,提起部件,或者將部件置于運輸機上。
機器人系統(tǒng)包含三個部分:機械手,控制器,能量源。
A.機械手
機械手,就是執(zhí)行機器人系統(tǒng)機械運動工作的部分,包括兩個部分:機械部分和附件。機械手同樣是附件的基礎(chǔ)。圖一例舉了基礎(chǔ)和機器人附件的聯(lián)系。
機械手的基礎(chǔ)通常固定在工作部分的機架上,有時候,然而,這個基礎(chǔ)可能是可動的。在這種情況下,基礎(chǔ)是固定于一個軌道上,允許機械手從一個地方移動到另外一個地方。
正如前面所提到的,附件是從機器人的基礎(chǔ)上開始延生的。附件是機器人的手臂,其可能是筆直的,可移動的手臂或者鉸接臂。鉸接臂同樣被認(rèn)為是鉸接桿。
機器人手臂的附屬肢體給了機械手多種移動軸。這些軸和固定板接觸,反過來,就是固定安裝的。這個安裝保證了機械手會保持在一個地方。
在手臂末端是鉸鏈連接。這個鉸鏈由一個附加軸和一個手腕凸緣組成。手腕凸緣允許機器人的使用者針對于不同的工作而連接不同的工具。
機械手的軸允許其在確定的地方工作。這個地方成為工作單元,其大小和機械手的大小相適應(yīng)。圖二例舉了典型裝配機器人的工作單元。隨著機器人尺寸的增加,工作單元的尺寸同樣要增加。
機械手的移動是被執(zhí)行器或者驅(qū)動系統(tǒng)控制。執(zhí)行器或者驅(qū)動系統(tǒng)允許多種軸在工作單元移動。驅(qū)動系統(tǒng)能夠使用電力,液壓,或者氣動能。驅(qū)動系統(tǒng)的能量通過大量機械驅(qū)動系統(tǒng)轉(zhuǎn)換為機械能。驅(qū)動系統(tǒng)通過機械連接耦合。這些連接反過來驅(qū)動了機器人身上的軸。這些機械連接由鏈條,齒輪,和滾珠絲桿組成。
B.控制部分
控制器是機器人系統(tǒng)的操作核心??刂破鞔鎯α祟A(yù)置信息,用于后面使用,控制外圍設(shè)備,和能夠在產(chǎn)品中快速更新的計算機交流。
控制器被用于控制機器人機械手臂的移動和控制處于工作單元的外圍設(shè)備。使用者能夠通過使用手持式遙控器來操控機械手臂的移動。這些信息為了后續(xù)使用而被存儲在控制器當(dāng)中??刂破鞔鎯α藱C器人系統(tǒng)的所有操作數(shù)據(jù)。它能存儲不用的程序,其中的任何程序能夠被編輯。
控制器同樣要和處于工作單元的外圍設(shè)備交流。例如,控制器有一個輸入線,這個輸入線能夠區(qū)分機械操作是否完成。當(dāng)機械周期完成后,輸入線開啟,告訴控制器定位機械手,所以它能抓起加工完成的零件。然后,一個新的零件機械手抓起放入機器中。接下來,控制器發(fā)出信號讓機器開始工作。由控制器由機械鼓組成,通過系列的操作步驟。這種控制器是在一個簡單的機械系統(tǒng)下工作的。控制器能夠通過交流線發(fā)送電信號然后讓其與機械手上的軸交互。這種在機器人手臂和控制器的雙面交流使其保持了快速的位置和系統(tǒng)操作更新??刂破魍瑯幽軌蚩刂迫魏沃劣跈C器人手臂末端的工具。
控制器具有能夠和任何位置計算器交流的能力。這種交流鏈建立了機器人作為計算機輔助的一部分。
制造系統(tǒng)
基本的定義說明,機器人是一種多功能,可反復(fù)編程的機械手。因此,控制器必須包含一定種類的存儲元件。微機系統(tǒng)和固態(tài)存貯裝置在處理上相結(jié)合。這種記憶裝置可能是磁泡,隨機存儲器,軟盤,或者磁帶。每個記憶存儲裝置存放了可用于后續(xù)使用編輯的程序信息。
C.傳感器
確保機器人配置/條件和其環(huán)境信號作為電信號輸送至機器人控制器。
D.用戶接口
這是使用者操作機器人的部分,控制面板。
E.機械手的基礎(chǔ)
一個機器人可能會工作在一個固定的基礎(chǔ)后者一個移動的基礎(chǔ),它能通過采用輪子或者腿來移動。
F.能量供應(yīng)
能量供應(yīng)是給控制器和機械手臂提供能量的部分。兩種能量被分送至機器人系統(tǒng)。一種能量是用于控制器運作的交流電。另一種能量是用于驅(qū)動機械手臂中各個軸部。例如,如果機器人手臂采用液壓或氣動機械手驅(qū)動器ID控制,控制信號被發(fā)送至這些裝置,產(chǎn)生機器人的移動。
對于每個機器人系統(tǒng),能量對于驅(qū)動機械手是必要的。這些能量可能來自于液壓能,氣壓能,或者電能,這些能量資源是機器人工作單元總的部件的一部分。