購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。帶三維備注的都有三維源文件,由于部分三維子文件較多,店主做了壓縮打包,都可以保證打開的,三維預(yù)覽圖都是店主用電腦打開后截圖的,具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:1304139763===========題目最后備注XX系列,只是店主整理分類,與內(nèi)容無關(guān),請忽視
風(fēng)力發(fā)電中的自我激勵與諧波
1.介紹
傳統(tǒng)的風(fēng)力渦輪機通常安裝的是感應(yīng)發(fā)電機,因為它廉價,耐用,而且只需要很少的維護。然而,電感應(yīng)發(fā)電機需要的無功功率通常通過電容器補償來得到。因為輸出功率各不相同,所以電容補償必須隨之調(diào)整。風(fēng)力發(fā)電機組的電力網(wǎng)絡(luò)中,相互的電容補償作用是導(dǎo)致輸出電流中產(chǎn)生自我激勵和高次諧波的一個重要原因。這篇文章探討產(chǎn)生這些現(xiàn)象的原因,并對如何控制或消除這些現(xiàn)象提出一些方法。
現(xiàn)在大部份風(fēng)力發(fā)電機的性能是非常可靠的,并且維修簡單,費用低。一臺感應(yīng)發(fā)電機在正常工作期間始終需要得到無功功率。使用最普遍的無功功率補償是電容器補償,因為它是靜態(tài)的, 而且成本低。不同型號的電容器可以提供不同的電容補償。
雖然無功的動力補償可能對風(fēng)輪機總的操作有利,但是我們必須確保補償是恰當(dāng)?shù)?,并且不影響控制。自我激勵和諧波是電容器補償?shù)膬蓚€重要部分也是這篇文章的主題。
2.動力系統(tǒng)網(wǎng)絡(luò)描述
如圖1所示描述的這個系統(tǒng)。動力系統(tǒng)的部件分析包括如下內(nèi)容:
? 連接風(fēng)機各部分的總線和輸入線路。
? 一臺安裝在襯墊上的變壓器
? 連結(jié)在變壓器低電壓的電容器
? 一臺電感應(yīng)發(fā)電機
圖1. 系統(tǒng)各部件圖
對于自我激勵,我們關(guān)注的是在渦輪上的電容補償。對于諧波分析,我們用圖表來表示整個網(wǎng)絡(luò)。
3.自我激勵
3.1感應(yīng)發(fā)電機的自我激勵。
自激是在感應(yīng)發(fā)電機和電容器補償之中負電荷和磁性浸透交互作用的一個結(jié)果。自我激勵過程這部分是在一臺離柵欄的電感應(yīng)發(fā)電機里進行研究的,知道極限和自激操作的邊界將會幫助我們?nèi)ダ没蛘弑苊庾约ぁ?
在固定速度的風(fēng)輪機中應(yīng)用最普遍的是固定電容器無功的動力補償方法。只有一臺電感應(yīng)發(fā)電機是不能得到它自己需要的無功動力的,它要求來自電網(wǎng)正常操作的無功動力,并且柵欄口接電感應(yīng)發(fā)電機的電壓和頻率。
安全是自我激勵的一個潛在問題。因為發(fā)電機可以產(chǎn)生電壓,它可能傷害檢查或者修理這臺發(fā)電機的人員。另一個潛在的問題是發(fā)電機的工作電壓和頻率可能變化。因此,在自我激勵期間連接在發(fā)電機上的易損設(shè)備可能在過高或過低的電壓和頻率下被損壞。盡管這是自我激勵過程中電感應(yīng)發(fā)電機的缺點,然而一些人把這種方式應(yīng)用于動態(tài)的剎車系統(tǒng)中,幫助在柵欄損失的緊急情況時控制轉(zhuǎn)子速度。因此,適當(dāng)?shù)倪x擇電容和電阻器可以在柵欄損失和機械剎車故障期間控制風(fēng)輪機速度。
3.2 穩(wěn)態(tài)表現(xiàn)。
穩(wěn)態(tài)分析中關(guān)鍵是理解哪些條件對自我激勵有增強或削弱作用。如上面解釋的那樣,自我激勵可能是一件好事情也可能是一件壞事情,這取決于我們遇到什么樣的形勢。圖2為一個電容器補償電感應(yīng)發(fā)電機。如上所述,自我激勵操作要求必須保持完全的無功平衡。
++=0 (1)
=電容器節(jié)點的有效輸入
=磁化部分的有效輸入
=轉(zhuǎn)子節(jié)點的有效輸入
方程式1的實部和虛步可以被擴展為方程式2 和3。
(2)
圖2.自我激勵方式下的等效電路
圖3. 典型的磁化特性
(3)
=阻抗
=滲漏電感
=轉(zhuǎn)子阻抗
=轉(zhuǎn)子滲漏電感
= 阻抗
S =操作損失
=操作頻率
=終端負載電阻
C =電容器補償
自我激勵的一個重要方面是電感應(yīng)發(fā)電機的磁化特性。圖3所示為一臺典型的勵磁電感發(fā)電機和輸出電流之間的關(guān)系;這圖由實驗得來反映了發(fā)電機的特性。
圖5為電感應(yīng)發(fā)電機的終端電壓受電容和負載電阻變化的影響而變化的示意圖。如圖5所示,負載電阻不影響終端電壓, 特別是在發(fā)電機轉(zhuǎn)速很高時,但是電容對發(fā)電機的輸出電壓有顯著影響。一個大的電容在轉(zhuǎn)子轉(zhuǎn)動過程中產(chǎn)生較少的電容變化,而較小的電容在轉(zhuǎn)子轉(zhuǎn)動過程會產(chǎn)生很大的電容變化。如圖6所示,對規(guī)定的電容來說,改變負載電阻的有效值能調(diào)節(jié)力矩速度。
自我激勵這個概念可以被利用在渦輪機上,如上所述,當(dāng)它失去對柵欄連接時可以提供動態(tài)剎車從而防止飛車現(xiàn)象發(fā)生。只要正確選擇電容和負載電阻使其與渦輪機輸出電源相匹配,就能在一定的風(fēng)速范圍內(nèi)來調(diào)節(jié)阻抗。
3.3 動態(tài)反應(yīng)。
這部分可以在自我激勵過程中檢查瞬時的變化。對于這次模擬來說我們選擇3.8毫法電容和1.0歐的負載電阻。驅(qū)動力矩的常量被調(diào)整為4500納米。但是,空氣動力學(xué)的風(fēng)輪機特性控制系統(tǒng)不包括在這個模擬中,我們關(guān)注的是自我激勵的過程。因此,我們重視方程式電的方面。
圖7顯示連續(xù)時間內(nèi)轉(zhuǎn)子速度和輸出功率的關(guān)系。在這種情況下,電感應(yīng)發(fā)電機由靜止啟動,速度逐漸增加,直到達到它自身的額定速度。最初連接?xùn)艡谠陂_始的t = 3.1秒s,柵欄被斷開,電感應(yīng)發(fā)電機進入自我激勵方式。在t = 6.375 s時,發(fā)電機被再接通到柵欄,終止自我激勵。在自我激勵期間轉(zhuǎn)子速度逐漸增加,但是,最后發(fā)電機力矩達到4500牛米,并且轉(zhuǎn)子速度變?yōu)榉€(wěn)定。當(dāng)發(fā)電機沒有同步而被再接通到柵欄時,在發(fā)電機的力矩會突然發(fā)生簡短的瞬間變化。這種情況一旦發(fā)生,轉(zhuǎn)子速度會與柵欄之前有相同的速度。
圖8(a)顯示每個時期電壓的狀況。它顯示最初電壓與被連結(jié)柵欄后的電壓相同。如圖7所示,在自我激勵方式下3.1 s
0,Q>0。 (c)圖解法表示p>0,Q<0。
從圖10中我們可以看出當(dāng)電容器C被改變時,電路將產(chǎn)生不同頻率的共振。此時兩諧波一定會產(chǎn)生諧波電流, 原因可能是諧波源磁飽和或者是在對電容進行補償時電路產(chǎn)生共振。
4.3 動態(tài)模擬。
現(xiàn)在分析在變壓器里如何產(chǎn)生諧波。在大多數(shù)實用的風(fēng)輪機中,變壓器是安裝在一個襯墊上再與風(fēng)力發(fā)電機連接在一起的。當(dāng)變壓器飽和時,磁路的非線性特性產(chǎn)生一個非正弦電流。
圖11(a)描述一臺變壓器的每階段的等效電路。變壓器的鐵芯損失通常被表示為等效抵抗,類似于磁化電杭。在這項研究中,變壓器的鐵損非常小,所以被忽略。磁化了的磁鏈中電壓和頻率成正比:
= 磁化的電壓
= 磁鏈
= 基礎(chǔ)頻率
通過公式7可以發(fā)現(xiàn)變壓器的磁鏈。磁鏈和勵磁電感之間存在上述關(guān)系是因為磁化電流是非線性的。當(dāng)磁化電流很低的時,磁化電流也隨著改變,但是最終達到飽和時,開始非線性的特性; 這時進一步增加磁化電流會產(chǎn)生更小的流聯(lián)系。在飽和區(qū),如圖12所示,由于非線性的磁化電感,將產(chǎn)生非正弦的輸出電流。
圖12 一臺變壓器在低負荷狀態(tài)下的輸出電壓和電流
有兩種運行方式能引起飽和。第一種方式是當(dāng)變壓器在很高的電壓電平操作時。這里舉的例子中操作變壓器負載很小。因此,在暴露于高電壓的磁化分部將生產(chǎn)較大的磁化電流。能引起高飽和的第二種運行方式是變壓器操作領(lǐng)先功率因數(shù)。
交叉磁化電抗的電壓可以表示:
=+ j=線路阻抗連接變壓器電壓
= + j =初級繞組阻抗變壓器
== =主要的電阻和變壓器的次級繞組
== =主要的滲漏電抗和變壓器的次級繞組
= 電壓
=初級繞組電流
=線電抗
=線電阻
在這個例子中,我們對簡單的情況通過圖11(b)和11(c)進行分析,并且利用一些插圖簡化等效電路。圖11(a)描述的是一個理想變壓器的泄漏阻抗。在圖11(a)中,實際功率P與無功功率是相互聯(lián)系的。當(dāng)p > 0 ,q < 0 時,< ,當(dāng) P > 0, q > 0時 ,< 。
文章來自:
北京信息科技大學(xué)校園網(wǎng)-圖書館藏-電子期刊-美國機械工程師學(xué)會電子期刊全文數(shù)據(jù)庫
作者和文獻出處:
E. Muljadi , C. P. Butterfield
National Renewable Energy Laboratory, Golden, Colorado 80401
H. Romanowitz
Oak Creek Energy Systems Inc.,Mojave, California 93501
R. Yinger
Southern California Edison,Rosemead, California 91770
32