購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預覽,有不明白之處,可咨詢QQ:12401814
機械設計課程設計說明書
課程名稱:
題目名稱:
學 院:
專業(yè)班級:
學 號:
姓 名:
指導教師:
第一章
1.1機械設計課程設計任務書
1.1.1 設計題目:鏈式運輸機減速器
1.1 .2題目數(shù)據(jù):
原始數(shù)據(jù)
題 號
F1
曳引鏈拉力F(N)
7000
曳引鏈速度v(m/s)
0.2
曳引鏈鏈輪齒數(shù)Z
10
曳引鏈節(jié)距P(mm)
100
工作班制
三班
1.1.3運輸機工作條件:
1.1.4設計內(nèi)容:
1.1.5設計成果要求 自己根據(jù)任務書填寫
1.2機構(gòu)運動簡圖:
1.電動機2.聯(lián)軸器3.蝸桿減速器4.鏈傳動5.鏈式運輸機
第二章 運動學計算
2.1傳動裝置的運動和動力參數(shù)計算:
2.1.1選擇電動機的類型:
按工作要求和條件選取Y系列三相籠型異步電動機,全封閉自扇冷式結(jié)構(gòu),電壓380V。
2.1.2選擇電動機容量:
工作機所需的功率:
=7000*0.20/1000 kw
=1.4 kWw
從電動機到工作機輸送帶間的總效率為:
η=η1η23η3η4
式中,,,,,分別是聯(lián)軸器、軸承、蝸桿傳動、滾子鏈(開式)的傳動效率。查《機械手冊》有=0.99,=0.98,=0.80,=0.90
所以==0.67。
故所需電動機功率
2.1.3確定電動機轉(zhuǎn)速:
鏈輪的輸出轉(zhuǎn)速為。
查表傳動比合理范圍,蝸桿傳動的傳動比,鏈傳動的傳動比,則總傳動比的合理范圍是。
故電動機轉(zhuǎn)速的可選范圍是:
。
符合這一范圍的同步轉(zhuǎn)速有750 ,1000 ,1500 根據(jù)容量和轉(zhuǎn)速,由《機械設計基礎課程設計》(P269))查出有三種適用的電動機型號,因此有三種傳動比方案,入下表1所示:
表1
方案
電動機型號
額定功率
電動機轉(zhuǎn)速(r/min)
電動機重量
總傳動比
同步轉(zhuǎn)速
滿載轉(zhuǎn)速
1
Y100L-4
3
1500
1420
380
109.23
2
Y132S-6
3
1000
960
630
73.85
3
Y132M-8
3
750
710
790
54.62
設計中常選用同步轉(zhuǎn)速為1000或1500r/min的電動機,如無特殊要求,一般不選用轉(zhuǎn)速為750的電動機,故初選轉(zhuǎn)速為1000r/min的電動機,則方案2比較合適,因此選定電動機信號為Y132S-6,其主要性能參數(shù)如下表2所示:
表2
型號
額定功率/kW
滿載情況
/A
/N·m
/N·m
轉(zhuǎn)速r/min
電流/A
效率
/%
功率因素
Y132S-6
3
1000
6.8
82.5
0.81
7.0
2.0
2.0
2.2 計算傳動裝置的總傳動比并分配傳動比:
2.2.1 計算總傳動比
因為選用的電動機型號是Y132S-6,滿載轉(zhuǎn)速為,故總傳動比是
2.2.2 各傳動部件傳動比的分配
查《機械設計課程設計》表2-3,知鏈傳動的傳動比是2~4,蝸桿減速器推薦的傳動比范圍是7~40,所以
式中,,分別是鏈傳動、減速器的傳動比。
鏈傳動的傳動比由其齒數(shù)決定:
根據(jù)《機械設計》(第八版)可知,為了減少動載荷,小鏈輪的齒數(shù),故?。粸榱瞬话l(fā)生脫鏈,不宜過大,又因為鏈節(jié)通常是偶數(shù),則最好為奇數(shù),由鏈輪齒數(shù)優(yōu)先序列選擇,所以
蝸桿減速器,
2.3計算傳動裝置各軸的運動和動力參數(shù)
2.3.1各軸轉(zhuǎn)速:
蝸桿軸
蝸輪軸
大輪軸
2.3.2 各軸輸入功率:
蝸桿軸
蝸輪軸
大輪軸
2.3.3各軸轉(zhuǎn)矩:
電動機輸出
蝸桿軸
蝸輪軸
大鏈輪軸
2.3.4 傳動裝置各軸的運動和動力參數(shù)
軸名
功率P/kw
轉(zhuǎn)矩T/(N·m)
轉(zhuǎn)速n/(r/min)
傳動比
效率
電機軸
2.09
20.79
960
1
0.99
蝸桿軸
2.028
20.17
960
35.09
0.77
蝸輪
1.59
554.99
27.36
2.28
0.97
大鏈輪軸
1.40
1144.26
11.999
第三章 傳動零件的設計計算
3.1 鏈輪傳動的設計計算:
3.1.1選擇鏈輪齒數(shù):
前面已經(jīng)選取了小鏈輪齒數(shù),大鏈輪的齒數(shù)為。
3.1.2確定當量的單排鏈的計算功率:
P
式中:——工況系數(shù)
——主動鏈輪齒數(shù)系數(shù)
——多排鏈系數(shù),雙排鏈時=1.75,三排鏈時=2.5
——傳動的功率,kW
查《機械設計》(第八版)表9-6得,=1.1, =1.1, 單排鏈=1.0,所以
3.1.3選擇鏈條型號和及其主要參數(shù)計算:
根據(jù)及主動鏈輪轉(zhuǎn)速,查《機械設計手冊》可選用48A—1型號。該型號滾子鏈規(guī)格和主要參數(shù)如下表:
ISO
鏈號
節(jié)距P
滾子直徑d1 max
內(nèi)鏈節(jié)圓寬b1 min
銷軸直徑d2 max
排距Pt
內(nèi)鏈板高度h2 max
抗拒載荷
單排min
雙排min
mm
Kw
20A
31.75
19.05
18.9
9.54
30.18
35.76
86.7
173.5
3.1.4計算鏈節(jié)數(shù)和中心距
初選中心距
取。則相應的鏈節(jié)數(shù)為
取鏈長節(jié)數(shù)節(jié)。
鏈傳動的最大中心距為:
式中:為中心距計算系數(shù),由,查《機械設計手冊》(第八版)表9-7得。
所以,鏈傳動的最大中心距為
3.1.5計算鏈速v,確定潤滑方式:
式中——是小鏈輪的轉(zhuǎn)速,根據(jù)鏈速和鏈20A計手冊》可知應采用油池潤滑或飛濺潤滑。
3.1.6計算鏈傳動作用在軸上的壓軸力:
式中:——有效圓周力,N
——壓軸力系數(shù),水平傳動=1.15,垂直傳動=1.05。
有效圓周力為
所以,壓軸力
3.1.7滾子鏈鏈輪的設計:
(1)鏈輪的基本參數(shù)及主要尺寸
由于選用單排鏈結(jié)構(gòu),因此鏈輪的基本參數(shù)是配用鏈條的節(jié)距p,套筒的最大外徑d1、排距pt及齒數(shù)z,則
,,pt =35.76,
分度圓直徑
齒頂圓直徑
齒根圓直徑
齒高
最大軸凸緣直徑
齒寬
齒側(cè)倒角
齒側(cè)半徑
齒全寬
(2)鏈輪的材料
材料應能保證輪齒具有足夠的強度和耐磨性,用15號鋼,齒面多經(jīng)滲碳、淬火、回火的熱處理。工作時,小鏈輪輪齒參與嚙合的次數(shù)比大鏈輪多,磨損、沖擊較嚴重,所以小鏈輪的材料選用20號鋼,進行正火熱處理,齒面硬度較高。
3.3 蝸桿傳動的設計計算:
3.3.1選擇蝸桿傳動類型:
根據(jù)GB/T10085—1988的推薦,采用漸開線蝸桿(ZI)。
3.3.2選擇材料:
考慮到該蝸桿傳動功率不大,速度只是中等,故蝸桿用45鋼;因希望效率高些,耐磨性好些,故蝸桿螺旋齒面要求淬火,硬度為45—55HRC。蝸輪用鑄錫磷青銅ZCuSn10P1,金屬模鑄造。為了節(jié)約貴重的有色金屬,僅齒圈用青銅制造,而輪芯用灰鑄鐵HT100制造。
3.3.3按齒面接觸疲勞強度進行設計:
根據(jù)閉式蝸桿傳動的設計準則,先按齒面接觸疲勞強度進行設計,再校核齒根彎曲疲勞強度。
由公式有:傳動中心距
(1) 作用在蝸輪上的轉(zhuǎn)矩:
(2) 確定載荷系數(shù)K:
因工作載荷較穩(wěn)定,查《機械設計》(第八版)可取使用系數(shù)=1;齒向載荷分布系數(shù)=1;由于轉(zhuǎn)速不高,沖擊不大,可取動載系數(shù)=1.05;則
(3) 確定彈性影響系數(shù)
因選用的是鑄錫磷青銅蝸輪和鋼蝸桿相配,故=。
(4) 確定接觸系數(shù)
先假設蝸桿分度圓直徑和傳動中心距的比值,查圖11-18有=3.1。
(5) 確定許用接觸應力
根據(jù)蝸輪材料為鑄錫磷青銅ZCuSn10P1,金屬模鑄造,蝸桿螺旋齒面硬度大于45HRC,可查《設計手冊》得蝸輪的基本許用應力=268MPa。
壽命
應力循環(huán)次數(shù)
壽命系數(shù)
則
(6) 計算中心距
取中心距160mm,因為i=35.09,故從《機械設計》(第八版)表11-2中取模數(shù)m=8mm,蝸桿分度圓直徑。這時,查圖11-18的接觸系數(shù)=2.75,由于,故以上計算結(jié)果可用。
3.3.4蝸桿與蝸輪的主要參數(shù)與幾何尺寸()
(1)蝸桿:
蝸桿頭數(shù);
軸向齒距;
直徑系數(shù)q=10;
齒頂圓直徑;
齒根圓直徑;
分度圓導程角;
蝸桿軸向齒厚:
(2)蝸輪:
因為變位系數(shù):,
所以變位后渦輪齒數(shù): ;
驗算傳動比: ,
這時傳動比誤差: ,是允許的。
蝸輪分度圓直徑:
蝸輪喉圓直徑 :
蝸輪齒根圓直徑:
蝸輪咽喉母圓半徑:
3.3.5校核齒根彎曲疲勞強度:
當量齒數(shù)
根據(jù),,查《機械設計》(第八版)圖11-19可得齒形系數(shù)。
螺旋角系數(shù)
許用彎曲應力
查表得由ZCuSn10P1制造的蝸輪的基本許用彎曲應力。
壽命系數(shù)
所以,彎曲強度是滿足的。
3.3.6 驗算效率:
嚙合效率:
已知;;與相對滑動速度有關。
查表11-18得、;代入式中得,所以上述計算不用重算。
3.3.7校核蝸輪的齒面接觸強度:
蝸輪圓周速度為
對于青銅或鑄鐵蝸輪與鋼蝸桿配對時材料彈性系數(shù) Ze=160
查《機械設計》(第八版)表11-5使用系數(shù)(間隙工作);
齒向載荷分布系數(shù)=1;
動載系數(shù)
[,]
載荷系數(shù) ==1×1×1=1(載荷平穩(wěn))
蝸輪實際轉(zhuǎn)矩:
滑動速度影響系數(shù),查表得
許用接觸應力=223.512MPa,
校核蝸輪輪齒接觸疲勞強度
〈 =223.512MPa
即齒面強度夠。
3.3.8 熱平衡校核,初步估計散熱面積A
估算箱體的散熱面積
其中,P為蝸桿傳遞功率,為蝸桿傳遞效率,為箱體的表面?zhèn)鳠嵯禂?shù),取15W/(m2·K) 為油的工作溫度,取65度, 為周圍空氣溫度,取20度。
3.3.9 精度等級公差和表面粗糙度的確定:
考慮到所設計的蝸桿傳動是動力傳動,屬于用機械減速器。從GB/T10089-1988圓柱蝸桿,蝸輪精度中選擇8級精度,側(cè)隙種類為f,標注為8f GB/T10089-1988。
蝸桿與軸做成一體,即蝸桿軸。蝸輪采用輪箍式,與鑄造鐵心采用H7/S6配合,并加臺肩和螺釘固定(螺釘選用6個)。
第四章 軸的設計計算及校核
4.1 蝸輪軸的設計計算:
4.1.1軸的材料的選擇,確定許用應力:
考慮到減速器為普通中用途中小功率減速傳動裝置,軸主要傳遞蝸輪的轉(zhuǎn)矩。選用45號鋼, [σb]=600MPa [σb-1]1=55MPa
4.1.2 按扭轉(zhuǎn)強度,初步估計軸的最小直徑:
選取軸的材料為45鋼,調(diào)質(zhì)處理。根據(jù)《設計設計》(第八版)表15-3,取A=112,于是得:
dmin≧A·=112×=43.344mm
因為最小直徑處安裝鏈輪,設有一個鍵槽,故直徑相應增大,取。
4.1.3 軸承類型及其潤滑與密封方式:
采用球滾子軸承,并采用凸緣式軸承蓋,實現(xiàn)軸承兩端單向固定,軸伸處用A型普通平鍵聯(lián)接,實現(xiàn)周向固定,用A型普通平鍵聯(lián)接蝸輪與軸。
4.1.4軸的結(jié)構(gòu)設計:
渦輪軸簡圖
(1)各軸段直徑的確定
1)因為最小直徑處安裝鏈輪,故;
2)為了滿足軸向定位的要求,第一軸段右端需要露出一個軸肩,取;
3)初選滾動軸承: 因軸承同時受有徑向力和軸向力的作用,且載荷不大,故選用圓錐滾子軸承。參考工作要求并根據(jù),查《機械設計手冊》初選30212型圓錐滾子軸承,其尺寸為d×D×T=60mm×110mm×23.75mm ,故選=60mm,
4)安裝蝸輪軸處的直徑(安裝鍵槽),蝸輪軸右側(cè)的軸環(huán)進行軸向定位,取即蝸輪右側(cè)軸肩處的直徑為,蝸輪軸段的右端直徑右端為定位軸肩, 。
(2)各軸段長度的確定
查表根據(jù)第一軸段的直徑為確定軸伸長度,為保證軸的強度、剛度,由鏈輪的輪轂寬度,??;
軸承端蓋的總寬度為62mm(由減速器及軸承的結(jié)構(gòu)設計而定)。根據(jù)軸承端蓋的裝拆及便于對軸承添加潤滑脂的要求,取端蓋的外端面與鏈輪的輪轂右端面的距離,故取為;
蝸輪輪轂的長度,故取輪轂的長度為,采用套筒定位,為了套筒端面可以可靠地壓緊蝸輪,此段應該略短于輪轂的長度,故取與蝸輪配合的軸段長度為;
因為軸環(huán)的寬度,即,取,即;
根據(jù)滾動軸承寬度油板以及箱座結(jié)構(gòu)取
綜上所述,可知:
各軸段的直徑:
各軸段的長度:
軸的總長度為。
(3)軸向零件的軸向定位
蝸輪:蝸輪與軸的周向定位均采用平鍵聯(lián)接,按軸段由《機械設計》(第八版)表6-1查得鍵平面,鍵槽用鍵槽銑刀加工,鍵長為50m,同時為了保證蝸輪與軸配合有良好的對中性,選擇蝸輪輪轂與軸的配合為;軸承與軸的周向定位是由過渡配合來保證的,此處選軸的直徑尺寸公差為。
(4)確定軸上的圓角和倒角尺寸
參照《機械設計》(第八版)表15-2取倒角,各軸肩處的圓角半徑為。
4.1.5軸、軸承、鍵的強度校核:
(1)確定各向應力和反力:
已知蝸輪的分度圓直徑,,蝸桿的分度圓直徑,,所以有:
蝸輪的切向力為
蝸輪的徑向力為
蝸輪的軸向力為
(2)垂直平面的支撐反力:
其中:214兩軸承中心的跨度,108蝸輪中心到右邊軸承中心的距離。
(3)水平平面支撐反力:
(4)確定彎矩:
1)水平彎矩
2)垂直彎矩
3)合成彎矩
4)扭矩
(5)按彎矩合成應力校核軸的強度
進行校核時,通常只校核軸上承受最大彎矩和扭矩的界面(即危險截面C)的強度。軸單向旋轉(zhuǎn)扭轉(zhuǎn)切應力為脈動循環(huán)變應力。取α=0.6 軸端計算應力:
故是安全的。
(6)軸承的校核
對于圓錐滾子軸承,按表13-7派生軸向力查得Y=1.5,e=0.4,
所以有
其中
則1被壓緊,2被放松,即
則
因為P1>P2,故按軸承的受力大小驗算,軸承的基本額定動載荷通過查表可得
則軸承的壽命為
(6)鍵的強度校核:
按軸段由GB1095-2003,查得鍵平面,即鍵寬b=20mm;鍵高h=12mm,取標準鍵長50。
l=L-b=50-30=20mm, k=0.5h=0.5×12=6mm
查得靜荷時的許用擠壓應力[σp]=150>,所以擠壓強度足夠。由普通平鍵標準查得軸槽深t=7.5mm,轂槽深=4.9mm。
4.2 蝸桿軸的設計
4.2.1軸的材料的選擇,確定許用應力:
考慮到減速器為普通中用途中小功率減速傳動裝置,軸主要傳遞蝸桿的轉(zhuǎn)矩,但蝸桿為高速軸,故選材Q235鋼,淬火處理。=600MPa =55MPa
4.2.2按扭轉(zhuǎn)強度,初步估計軸的最小直徑
選取軸的材料為Q235鋼,淬火處理。根據(jù)《設計手冊》,取A=145,于是得:
聯(lián)軸器的計算轉(zhuǎn)矩,查表14-1,取=1.5,則
按照計算轉(zhuǎn)矩應小于聯(lián)軸器公稱轉(zhuǎn)矩的條件,和軸的直徑查表GB/T 5014-2003 選用HL3彈性柱銷聯(lián)軸器,其公稱轉(zhuǎn)矩為,半聯(lián)軸器的孔徑d= 48mm,即軸向直徑取=48mm,半聯(lián)軸器長度L=112mm,半聯(lián)軸器與軸配合的轂孔長度為:=112mm。
4.2.3軸承類型及其潤滑與密封方式:
采用單列圓錐滾子軸承,并采用凸緣式軸承通蓋和嵌入式軸承蓋,實現(xiàn)軸承系兩端單向固定。
4.2.4軸的結(jié)構(gòu)設計
蝸桿軸簡圖
(1)從軸段=48mm開始逐漸選取軸段直徑,為了滿足半聯(lián)軸器的軸向定位要求,右端需制出一軸肩,故取=54mm;右端用軸端擋圈定位,按軸端直徑取擋圈直徑D=54mm。為了保證軸端擋圈只壓在半聯(lián)軸器上而不壓在軸的端面上,故的長度應比略短一些,現(xiàn)取=112mm。
(2)初步選擇滾動軸承。選用單列圓錐滾子軸承。參照工作要求并根據(jù)=54mm,初步選取0基本游隙組、標準精度級的單列圓錐滾子軸承30212,其尺寸為
,故
=60mm;而。
軸承采用軸肩進行軸向定位。由手冊查得30212型軸承的定位軸肩高度為h=4mm,因此,取72mm。軸環(huán)寬度,取=10mm。
(3)5和7處有退刀槽,因,所以選。
(4)取蝸桿齒頂圓直徑。
(5)軸承端蓋總寬度取44mm,根據(jù)軸承端蓋的拆裝及便于對軸承添加潤滑油的要求,取其外端面與半聯(lián)軸器左端面間的距離l=71mm ,故
。
(6)和為退刀槽那段軸端長度,所以==38mm。
(7)軸段的長度:查手冊,,又因為
所以取=150mm。
(8)蝸桿總長
L=(112+115+56+10+38+150+38+10+56)mm=550mm
其中軸徑 =48mm; =54mm; =60mm;
=72mm; =60mm; =96mm;
=60mm; =72mm; =60mm。
長度 ;
;
。
4.2.5蝸桿、軸承、鍵的強度校核
(1)校核30212 查表GB/T297-1994 表12-4
額定動載荷Cr=1.03×103 N;
基本靜載荷Cor=1.3×103 N,e=0.4,Y=1.5,=0.8。
(2)求兩軸承受到的徑向載荷和
由前面設計蝸輪時求得的:
==240.916N;==-0.522N
==381.396N;==279.204N
(3)求兩軸承計算軸向力和
查表GB/T297-1994 12-4 可知,e=0.37
由公式求蝸桿受軸向力
(4)求當量動載荷和
由表13-5 分別計算、,取=1.0,則
=(X1+Y1)
=1.0 ×(0.4×451.114+1.6×747.851)
=1377 N
=×(1×)=1.0×279.204=279.204 N
(5)驗算軸承壽命
因為>,所以按軸承的受力大小計算:
所以軸承滿足壽命要求(c為基本額定動載荷,由設計手冊選擇)。
(6)鍵的強度校核
鍵選擇的是:b×h=16mm×10mm;L=100mm
l=L-b=100-16=84mm;k=0.5×h=0.5×10=5mm
因此,鍵的強度足夠。
第五章 箱體的設計計算
5.1 箱體的結(jié)構(gòu)形式和材料
采用上置式蝸桿減速器。鑄造箱體,材料HT150。因其屬于中型鑄件,鑄件最小壁厚8~10mm,取δ=11mm。
5.2鑄鐵箱體主要結(jié)構(gòu)尺寸和關系
名稱
減速器型式及尺寸關系(mm)
箱座壁厚δ
δ=16
箱蓋壁厚δ1
δ1=16
箱座凸緣厚度b,
箱蓋凸緣厚度b1,
箱座底凸緣厚度b2
b=19
b1=19
b2=40
地腳螺釘直徑及數(shù)目
df=17.76 n=4
箱座、箱蓋上的肋厚
m=14、=12
軸承旁聯(lián)接螺栓直徑
d1=13.32
箱蓋,箱座聯(lián)接螺栓直徑
d2=16
螺栓間距
L=150
軸承端蓋螺釘直徑
d3=12 螺釘數(shù)目6
視孔蓋螺釘直徑
d4=12
df,d1,d2至外壁距離
C1=26,22,16
d1,d2至凸緣邊緣距離
C2=16,14
軸承端蓋外徑
(蝸輪軸)凸緣式:D2=190,嵌入式:D2=190
(蝸桿軸)凸緣式:D2=184,嵌入式:D2=184
軸承旁聯(lián)接螺栓距離
S=127
軸承旁凸臺半徑
R1=18
軸承旁凸臺高度h
根據(jù)軸承座外徑和扳手空間的要求由結(jié)構(gòu)確定
蝸輪外圓與箱內(nèi)壁間距離
=24
蝸輪輪轂端面與箱內(nèi)壁距離
=16
地腳螺栓通孔直徑
=20
地腳螺栓沉頭座直徑
=90
地腳螺栓底座凸緣尺寸
C1=35,C2=30
聯(lián)接螺栓直徑
d=16
聯(lián)接螺栓通孔直徑
=17.5
聯(lián)接螺栓沉頭座直徑
D=33
聯(lián)接螺栓底座凸緣尺寸
C1=35,C2=30
定位銷直徑
d=14
吊環(huán)螺釘直徑
D5=
箱體外壁至軸承座端面的距離
L1=70
軸承端蓋外徑
(蝸輪軸)D2=190;(蝸桿軸)D2=183
第六章 減速器結(jié)構(gòu)與潤滑的概要說明
在以上設計選擇的基礎上,對該減速器的結(jié)構(gòu),減速器箱體的結(jié)構(gòu),軸承端蓋的結(jié)構(gòu)尺寸,減速器的潤滑與密封,減速器的附件作一簡要的闡述。
6.1減速器的結(jié)構(gòu)
本課題所設計的減速器,其基本結(jié)構(gòu)設計是在參照《機械設計課程設計手冊》圖19-24裝配圖的基礎上完成的,該項減速器主要由傳動零件(蝸輪蝸桿、圓柱齒輪),軸和軸承,聯(lián)結(jié)零件(鍵,銷,螺栓,螺母等)。箱體和附屬部件以及潤滑和密封裝置等組成。
箱體為剖分式結(jié)構(gòu),由箱體和箱蓋組成,其剖分面通過蝸輪傳動的軸線;箱蓋和箱座用螺栓聯(lián)成一體;采用圓錐銷用于精確定位以確保和箱座在加工軸承孔和裝配時的相互位置;起蓋螺釘便于揭開箱蓋;箱蓋頂部開有窺視孔用于檢查齒輪嚙合情況及潤滑情況用于加住潤滑油,窺視孔平時被封??;通氣器用來及時排放因發(fā)熱膨脹的空氣,以放高氣壓沖破隙縫的密封而致使漏油;副標尺用于檢查箱內(nèi)油面的高低;為了排除油液和清洗減速器內(nèi)腔,在箱體底部設有放汕螺塞;吊耳用來提升箱體,而整臺減速氣的提升得使用與箱座鑄成一體的吊鉤;減速氣用地腳螺栓固定在機架或地基上。
6.2箱體的結(jié)構(gòu)
該減速器箱體采用鑄造的剖分式結(jié)構(gòu)形式
具體結(jié)構(gòu)詳見裝配圖
6.3端蓋的結(jié)構(gòu)尺寸
詳見零件工作圖
6.4減速器的潤滑與密封
動部分采用潤滑油,潤滑油的粘度為118cSt(100°C)查表5-11《機械設計基礎課程設計》
分采用脂潤滑,潤滑脂的牌號為ZL-2查表5-13
《機械設計基礎課程設計》
6.5減速器附件簡要說明
該減速器的附件含窺視孔蓋,排油孔與油蓋,通氣孔,油標,吊環(huán)螺釘,吊耳, 釘,刮油板,其結(jié)構(gòu)及裝配詳見裝配圖。
設計總結(jié)
這一次的機械設計課程設計,比上學期做的機械原理的課程設計要難得多,工作量也不是簡單的幾個機構(gòu)的設計所能比擬的, 這次課程設計讓我感觸最深的莫過于計算量的繁重了,前后5個星期我重做了3次,因為設計中的傳動比分配不合理重做了一遍,因為前面的計算錯誤重做了一遍,因為強度剛度等不足的問題又重做了一遍,所以浪費了很多時間和力氣在計算方面。
電動機的選擇這一部分的設計,相對來說比較好做,因為計算量還不算大,當?shù)搅撕竺娴膫鲃恿慵脑O計部分就頻頻出錯了,數(shù)據(jù)太多,而且容易計算錯誤,結(jié)果就導致了很多參數(shù)選擇不正確,到得后來的軸的設計校核就是更加地錯誤百出了,重新計算選擇的次數(shù)也增加了很多。
設計的過程是艱苦的,也是無比充實的,它讓我體會到一個真正的工程設計人員所要面對的情況,使我學到了一樣很重要的東西——耐心。之前的我總是很浮躁,很難靜得下心來做一件事情的,這一次的設計過程真真正正地讓我安靜了下來,坐在圖書館里查閱資料,坐在電腦前計算編寫說明書和畫圖,面對著一錯再錯的計算數(shù)據(jù)而沒有選擇放棄,所以真的讓我覺得很充實了。
在對課程的掌握方面,我也學到了很多非常有用的東西,通過設計把機械設計及其他有關先修課程(如機械制圖、理論力學、材料力學、工程材料等)中所獲得的理論知識在設計實踐中加以綜合運用,使理論知識和生產(chǎn)實踐密切的結(jié)合起來,這個也算是對以往學過的知識的檢閱了。這次設計是我首次進行完整綜合的機械設計,它讓我樹立了正確的設計思想,培養(yǎng)了我對機械工程設計的獨立工作能力;讓我具有了初步的機構(gòu)選型與組合和確定傳動方案的能力,也為我今后的設計工作打了良好的基礎。
附錄:參考文獻
[1] 楊黎明,楊志勤·《機械設計簡明手冊》——北京:國防工業(yè)出版社·2008.1
[2] 吳宗澤主編 ·《機械設計課程設計手冊》 第3版 ——北京:高等教育出版社·1992(2007重?。?
[3] 席偉光 ,楊光 ,李波主編 ·《機械設計課程設計》 ——北京:高等教育出版社· 2003(2004重印)
[4] 哈爾濱工業(yè)大學理論力學教研室· 《理論力學》 ——北京:高等教育出版社 ·2002.8 (2003重?。?
[5] 孫恒 ,陳作模主編 · 《機械原理》——北京:高等教育出版社 ·2001(2003重?。?
[6] 吳宗澤主編 ·《機械設計》 ——北京:高等教育出版社 · 2001
[7] 張代東主編 ·《機械工程材料應用基礎——北京:機械工業(yè)出版社 ·2001.6
[8] 趙祥主編·《機械零件課程設計》——北京:中國鐵道出版社·1988
[9] 王連明主編·《機械設計課程設計》——哈爾濱:哈爾濱工業(yè)大學出版社·1996
27