購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預覽,有不明白之處,可咨詢QQ:12401814
廣陵學院畢業(yè)設(shè)計(論文)前期工作材料
學生姓名: 學號:
系部: 機械電子工程系
專 業(yè): 機械設(shè)計制造及其自動化
設(shè)計(論文)題目: 硬質(zhì)合金超聲復合電加工設(shè)計及試驗
指導老師:
材 料 目 錄
序號
名 稱
數(shù)量
備注
1
畢業(yè)設(shè)計(論文)選題、審題表
1
2
畢業(yè)設(shè)計(論文)任務(wù)書
1
3
畢業(yè)設(shè)計(論文)實習調(diào)研報告
1
4
畢業(yè)設(shè)計(論文)開題報告(含文獻綜述)
1
5
畢業(yè)設(shè)計(論文)外文資料翻譯(含原文)
1
6
畢業(yè)設(shè)計(論文)中期檢查表
1
2014 年 04 月 08 日
35
揚州大學廣陵學院
本科生畢業(yè)設(shè)計(論文)選題、審題表
學 院
廣陵學院
選題教師
姓名
專 業(yè)
機械設(shè)計制造及自動化
專業(yè)技術(shù)職務(wù)
申報課題名稱
硬質(zhì)合金超聲復合電加工設(shè)計與試驗
課題性質(zhì)
A
B
C
D
E
課題來源
A
B
C
D
√
√
課題簡介
本課題探討硬質(zhì)合金材料超聲加工特性,并進行超聲加工工具及工藝設(shè)計,進行超聲參數(shù)試驗及優(yōu)化,為其實際應用建立工藝基礎(chǔ)。
設(shè)計(論文)
要 求
(包括應具備的條件)
有較好的特種加工、機械制造技術(shù)課程專業(yè)知識;有超聲加工機床、脈沖電源及各種測試設(shè)備;各種參考文獻及實驗、上機條件。
課題預計
工作量大小
大
適中
小
課題預計
難易程度
難
一般
易
√
√
所在專業(yè)審定意見:
負責人(簽名): 年 月 日
院主管領(lǐng)導意見:
簽名: 年 月 日
說明:1、該表作為本科學生畢業(yè)設(shè)計(論文)課題申報時專用,由選題教師填寫,經(jīng)所在專業(yè)有關(guān)人員討論,負責人簽名后生效;
2、有關(guān)內(nèi)容的填寫見背面的填表說明,并在表中相應欄打“”
課題一旦被學生選定,此表須放在“畢業(yè)設(shè)計(論文)資料袋”中存檔。
填 表 說 明
1、該表的填寫只針對1名學生做畢業(yè)設(shè)計(論文)時選擇使用,如同一課題由2名及2名以上同學選擇,應在申報課題的名稱上加以區(qū)別(加副標題),并且在“設(shè)計(論文)要求”一欄上加以體現(xiàn)。
2“課題性質(zhì)”一欄:
A、工程設(shè)計;
B、實驗研究;
C、軟件工程(如CAI課題等);
D、理論探討;
E、其它。
3、“課題來源”一欄:
A、自然科學基金與部、省、市級以上科研課題;
B、企、事業(yè)單位委托課題;
C、校、院(系)級基金課題;
D、自擬課題。
4、“課題簡介”一欄:
主要指研究設(shè)計該課題的背景介紹及目的、意義。
5、“設(shè)計(論文)要求(包括應具備的條件)”一欄:
主要指本課題技術(shù)方面的要求,而“條件”指從事課題必須具備的基本條件(如儀器設(shè)備、場地、文獻資料等)。
揚州大學廣陵學院
畢業(yè)設(shè)計(論文)任務(wù)書
教 科 部: 機械制造教科部
專 業(yè): 機械設(shè)計制造及其自動化
學 生 姓 名: 學號:
畢業(yè)(論文)題目: 硬質(zhì)合金超聲復合電加工設(shè)計與試驗
起 迄 日 期:
設(shè)計(論文)地點:
指 導 老 師:
專 業(yè) 負 責 人:
發(fā)任務(wù)書日期: 2014 年 04 月 08 日
任務(wù)書填寫要求
1、畢業(yè)設(shè)計(論文)任務(wù)書由指導老師根據(jù)各課題的具體情況填寫,經(jīng)學生所在專業(yè)的負責人審查、學院分管領(lǐng)導簽字后生效。此任務(wù)書應在畢業(yè)設(shè)計(論文)開始前一周內(nèi)填好并發(fā)給學生;
2、任務(wù)書內(nèi)容必須用黑墨水筆工整書寫或按統(tǒng)一設(shè)計的電子文檔標準格式(可在本學院網(wǎng)頁上下載)打印,不得隨便涂改或潦草書寫,禁止打印在其它紙上后剪貼;
3、任務(wù)書內(nèi)填寫的內(nèi)容,必須和學生畢業(yè)設(shè)計(論文)完成的情況相一致,若有變更,應當經(jīng)過所在專業(yè)的教科部及學院主管領(lǐng)導審批后方可重新填寫;
4、任務(wù)書內(nèi)有關(guān)“教科部”、“專業(yè)”等名稱的填寫,應寫中文全稱,不能寫數(shù)字代碼。學生的“學號”要寫全號,不能只寫最后2位或1位數(shù)字;
5、任務(wù)書內(nèi)“主要參考文獻”的填寫,應按照國標GB 7714-87《文后參考文獻著錄規(guī)則》的要求書寫,不能有隨意性;
6、有關(guān)年月日等日期的填寫,應當按照國標GB/T 7408-94《數(shù)據(jù)元和交換格式、信息交換、日期和時間表示法》規(guī)定的要求,一律用阿拉伯數(shù)字書寫。如“2005年3月21日”或“2005-03-21”。
畢業(yè)設(shè)計(論文)任務(wù)書
1.本畢業(yè)設(shè)計(論文)課題應達到的目的:
隨著科學技術(shù)的發(fā)展,具有三維型面的難加工材料的應用越來越廣泛,普通的機械加工難以滿足要求,而超聲波加工不僅能加工硬質(zhì)合金、淬火鋼、陶瓷、半導體鍺和硅片等硬脆材料,電解加工具有效率高、電極無損耗,表面質(zhì)量好等優(yōu)點,特別適用于導電性難加工材料的三維型面加工。
超聲加工結(jié)合電化學加工,利用超聲作用對電解加工過程的改善,可以提高超聲加工的效率,減小電極損耗,提高電解加工的精度,具有技術(shù)復合綜合技術(shù)優(yōu)勢。
本課題本課題探討硬質(zhì)合金材料超聲加工特性,并進行超聲加工工具及工藝設(shè)計,進行超聲參數(shù)試驗及優(yōu)化,為其實際應用建立工藝基礎(chǔ)。
1. 本畢業(yè)設(shè)計(論文)課題任務(wù)的內(nèi)容和要求(包括原始數(shù)據(jù)、技術(shù)要求、工作要求等):
主要內(nèi)容:熟悉超聲波加工的基本原理,對不同的硬脆材料進行超聲加工試驗,
分析不同工藝參數(shù)對加工速度、加工精度以及表面粗糙度等的影響規(guī)律。
要求: 1掌握超聲波復合電化學加工的基本原理,構(gòu)造實驗系統(tǒng);
2 進行硬質(zhì)合金材料超聲復合電化學加工試驗;
3實驗數(shù)據(jù)進行分析、整理,形成可指導實際加工的工藝文件;
畢業(yè)設(shè)計(論文)任務(wù)書
3.對本畢業(yè)設(shè)計(論文)課題成果的要求(包括畢業(yè)設(shè)計論文、圖表、實物樣品等):
1. 完成有關(guān)專業(yè)的資料翻譯
2. 超聲復合電化學加工試驗
3. 加工試驗結(jié)果分析
4. 超聲復合電加工原理圖、 零件圖,系統(tǒng)結(jié)構(gòu)圖
5. 提交畢業(yè)實習報告一份;
6. 提交畢業(yè)論文一份;
4.主要參考文獻:
[1].劉晉春,趙家齊. 特種加工. 北京:機械工業(yè)出版社,1995
[2].苑偉政,馬炳和. 微機械與微細加工技術(shù) . 西北工業(yè)大學出版社,2000.
[3].朱荻. 納米制造技術(shù)與特種加工. 2001年中國機械工程年會特種加工技術(shù)論文集.北京:機械工業(yè)出版社,2001
[4].袁哲俊,王先逵. 精密和超精密加工技術(shù). 北京: 機械工業(yè)出版社,1999.7 .
[5] 胡傳炘主編.夏志東副主編. 特種加工手冊. 北京工業(yè)出版社, 2001
[6] 張云電著.超聲加工及其應用.北京-國防工業(yè)出版社,1995
[7]超聲加工及處理.上海市物理學會聲學委員會編.上海市科學技術(shù)編譯館,1962
[8]曹風國主編.超聲加工技術(shù).化學工業(yè)出版社,2005
[9]余承業(yè)等主編.特種加工新技術(shù).國防工業(yè)出版社,1995
[10]周旭光等主編.特種加工技術(shù).西安電子科技大學出版社,2004
[11] 孔慶華 特種加工. 同濟大學出版社 , 1997
[12] 劉晉春 陸紀陪 主編. 哈爾濱工業(yè)大學 ,1987
[13] 余承業(yè) 等編著 國防工業(yè)出版社 , 1995
[14] 硬脆金屬的超聲電解復合加工研究 楊大春 李乃章 南京航天航空大學 2006年
[15] 微機械(MEMS)與微細加工技術(shù) 段潤保 上海交大 趙硯江,毛言理 河南理工學院 2004年
[16] Ultrasonic machining of titanium and its alloys: A reviewSingh, Rupinder; Khamba, J.S.
Journal of Materials Processing Tech.173, Issue: 2, April 10, 2006, pp.125-135
畢業(yè)設(shè)計(論文)任務(wù)書
5、本畢業(yè)設(shè)計(論文)課題工作進度計劃
起止日期
工 作 內(nèi) 容
1周
2周
3周
4周
5-10周
10-15周
16周
查閱資料,熟悉課題要求,熟悉超聲波加工的基本原理;
完成外文資料的翻譯;
繪制超聲復合加工系統(tǒng)原理圖;
進行加工試驗的準備工作;
進行超聲波復合電化學加工試驗,并對實驗結(jié)果整理,分析討論;
撰寫論文,指導老師審閱;
準備畢業(yè)論文答辯;
所在專業(yè)審核意見:
負責人:
年 月 日
學院意見:
院長:
年 月 日
實 習 調(diào) 研 報 告
在這個大學應屆生連畢業(yè)都難以找到工作的年代,很慶幸我找到了一份和專業(yè)比較對口的工作—在揚州金源自動化設(shè)備有限公司里做機械設(shè)計的實習。下面請允許我介紹一下我的第一個工作單位。
公司介紹:揚州金源機器人自動化設(shè)備有限公司是一家致力于多種機器人自動化解決方案的高科技公司.公司以為提供機器人系統(tǒng)集成、焊接專機、激光跟蹤自動化焊接系統(tǒng)解決方案,提高客戶的自動化水平為遵旨。公司主要員工多年來一直從事機器人自動化設(shè)備、焊接專機等的相關(guān)研發(fā)及銷售管理人員,具有資深的技術(shù)背景和行業(yè)經(jīng)驗,同時有多名行業(yè)專家。公司以我國工業(yè)機器人需求的快速發(fā)展和廣泛普及,專業(yè)的機器人技術(shù)服務(wù)的行業(yè)需求背景。
揚州金源機器人自動化設(shè)備有限公司和北京機械工業(yè)自動化研究所、中國國機集團、清華大學、江蘇大學建立了長期的技術(shù)合作。致力于提高國內(nèi)制造業(yè)自動化技術(shù)發(fā)展水平,為客戶提供機器人自動化系統(tǒng)、交鑰匙工程,系統(tǒng)開發(fā),工程仿真,安裝調(diào)試,培訓服務(wù)。(主要涉及:機器人焊接自動化系統(tǒng),機器人切割自動化系統(tǒng),自動化專機設(shè)備,自動化裝配,包裝碼垛,自動化物流等。)以解決目前國內(nèi)工廠勞動力短缺問題,把工廠工人從復雜的勞動強度,惡力的工作環(huán)境中解脫出來,提供工廠生產(chǎn)的自動化管理水平,解放勞動力。
最近的項目:當然以上純屬做公司的廣告,下面給大家看一下公司最近的幾個項目現(xiàn)場圖
機器人折彎系統(tǒng)現(xiàn)場安裝圖
不銹鋼滾筒現(xiàn)場安裝圖
我直接參與的項目:從一月十五號入職到今33天短短的兩個多月里面,讓我受益匪淺,公司里面的幾個項目我也間接的參與了點,例如南京的迦南科技,揚州的維邦園林,以及與通源機械的幾個項目。而我直接參與的是常州太平洋設(shè)備有限公司的一個板材自動折彎的生產(chǎn)的流水線。
這個項目中有兩臺江蘇亞威的兩臺折彎機,以及兩臺ABB的機器人,這是項目的核心,以及由我們金源自動化自主設(shè)計的自動化的生產(chǎn)線加上北京工業(yè)自動化研究所的電控設(shè)備。雖然這個半年做出來的項目依舊有多方面的缺陷但是對于我們這家人員不足十人的公司已經(jīng)非常不錯了。下面看一下幾張現(xiàn)場的圖片:
現(xiàn)在安裝圖(一)
現(xiàn)場安裝圖(二)
現(xiàn)場安裝圖(三)
現(xiàn)階段實習狀況:在這兩個多月的實習期里,除了在常州出差的半個多月,其他的時間我都投入在了學習solidworks這個軟件以及機械設(shè)計手冊。進公司的幾天后,師傅就對我講做機械設(shè)計者一樣這兩個是基本功。所以我把大多數(shù)的精力都投入在了這兩個上面。
焊機夾具方案
設(shè)計的焊機夾具方案
搜集來的機械設(shè)計手冊電子版
個人小結(jié):雖然我只來了兩個月,但我覺得這比我大學四年還要學得多;雖然公司比較小,但是我覺得我們的明天依舊可以燦爛;雖然我現(xiàn)在什么也不是,但是這同樣意味著,明天,我可以代表著一切。不論路在何方,我都會去追尋我機械工程師的道路;不論這條路是多么的艱難,我都會一直走下去,直到夢的盡頭。努力吧,你一定會成功?。。?
揚州大學廣陵學院
畢業(yè)設(shè)計(論文)開題報告
學 生 姓 名: 秦 峰 學號:100007128
專 業(yè): 機械設(shè)計制造及其自動化
設(shè)計(論文)題目:硬質(zhì)合金超聲復合電加工及試驗
指 導 老 師: 朱 永 偉
2014年 4 月 4 日
畢 業(yè) 設(shè) 計 (論文)開 題 報 告
畢業(yè)設(shè)計
(論文)題目
超聲復合電化學加工試驗研究
課
題
類
型
課題性質(zhì)
三結(jié)合情況
是否新題
繼承性
工
程
設(shè)
計
實
驗
研
究
理
論
探
討
其
它
實
驗
室
建
設(shè)
科
研
生
產(chǎn)
實
際
是
否
是
否
開題報告的內(nèi)容:
一、課題的目的和意義
隨著科學技術(shù)的發(fā)展,具有三維型面難加工材料的應用越來越廣泛,普通的機械加工難以滿足各種要求。超聲波加工能有效加工硬質(zhì)合金、淬火鋼、陶瓷、半導體鍺和硅片等硬脆材料,電解加工具有效率高、電極無損耗,表面質(zhì)量好等優(yōu)點,特別適用于導電性難加工材料的加工。
超聲結(jié)合電化學加工,利用超聲作用對電解加工過程的改善,可以提高超聲的效率,減小電極損耗,提高電解加工的精度,具有技術(shù)復合的綜合技術(shù)優(yōu)勢。
本課題構(gòu)造進行超聲復合電化學加工試驗系統(tǒng),并進行機理試驗,熟悉其加工特性,進行參數(shù)優(yōu)化,為其實際應用建立工藝基礎(chǔ)。
二、本課題在國內(nèi)外的發(fā)展概括
超聲加工起源于50年代初期。最早研究超聲加工技術(shù)的國家是日本。原蘇聯(lián)的超聲加工研究50年代末和60 年代初已經(jīng)發(fā)表過很有價值的論文,在超聲車削、超聲鉆孔,超聲磨削,超聲光整復合加工等方面均有生產(chǎn)應用,并取得了良好的經(jīng)濟效益。而我國的超聲加工始于50 年代末,到1993年為止,我國已經(jīng)發(fā)表了300多篇有關(guān)超聲加工方面的科學研究論文,可以相信,隨著超聲加工設(shè)備的不斷完善和理論研究的不斷深入,它必將在我國技術(shù)進步和現(xiàn)代化建設(shè)中起到重要的作用。
電化學加工是通過電化學反應去除工件材料或在其上鍍覆金屬材料等的特種加工。早在1834年,法拉第就發(fā)現(xiàn)了電化學作用原理,后來人們又先后開發(fā)出諸如:電鍍、電鑄電解加工等電化學加工方法,并早已在工業(yè)上獲得廣泛應用。近幾十年來,借助高新技術(shù),在精密電鑄、復合電解加工電化學微細加工等方面發(fā)展較快。目前,在機械制造業(yè)中,電化學加工已成為一種不可缺少的去除或鍍覆金屬材料及進行微細加工的重要方法,在發(fā)展科學研究、工業(yè)生產(chǎn)、國民經(jīng)濟中發(fā)揮了日益重要的作用。
揚州大學廣陵學院
畢 業(yè) 設(shè) 計 (論文)開 題 報 告
三、課題的主要內(nèi)容及實施方案
主要內(nèi)容:
主要內(nèi)容:熟悉超聲復合加工的基本原理,對多種硬脆材料進行超聲加工試驗,
分析不同工藝參數(shù)對加工速度、加工精度以及表面粗糙度等的影響規(guī)律。
要求: 1掌握超聲波復合電化學加工的基本原理,構(gòu)造試驗系統(tǒng);
2 進行超聲復合電化學加工試驗;
3實驗數(shù)據(jù)分析、處理,形成可指導實際加工的工藝文件
實施方案:
查閱相關(guān)資料,熟悉超聲波加工的基本原理和工藝特點。對玻璃、壓電陶瓷、工業(yè)陶瓷、硬質(zhì)合金等硬脆性材料進行超聲加工試驗,探索超聲波加工的基本工藝規(guī)律,并對實驗結(jié)果進行分析討論。
課題主要進程安排:
第1周: 完成外文資料的翻譯,熟悉課題要求;
第2周: 查閱資料,熟悉超聲波及電化學加工的基本原理;
第3-4周: 繪制超聲復合加工系統(tǒng)原理圖;進行加工試驗的準備工作;
第5-9周: 進行超聲波復合電化學加工試驗,并對實驗結(jié)果整理,分析討論;
第10-12周:撰寫論文,指導老師審閱;
第13周: 準備畢業(yè)論文答辯;
課題主要參考文獻:
[1].劉晉春,趙家齊. 特種加工. 北京:機械工業(yè)出版社,1995
[2].苑偉政,馬炳和. 微機械與微細加工技術(shù) . 西北工業(yè)大學出版社,2000.
[3].朱荻. 納米制造技術(shù)與特種加工. 2001年中國機械工程年會特種加工技術(shù)論文集.北京:機械工業(yè)出版社,2001
[4].袁哲俊,王先逵. 精密和超精密加工技術(shù). 北京: 機械工業(yè)出版社,1999.7 .
[5] 胡傳炘主編.夏志東副主編. 特種加工手冊. 北京工業(yè)出版社, 2001
[6]B.Bhattacharyya, S.Mitra, A.K.Boro. Electrochemical machining:new possibilities for micromachining. Robotics and Computer Integrated Manufacturing 18(2002) 283-289
揚州大學廣陵學院
畢業(yè)設(shè)計(論文)開題報告
指導教師意見:
1.對“文獻綜述”的評語:
2.對本課題的深度、廣度及工作量的意見和對設(shè)計(論文)結(jié)果的預測:
指導老師:
年 月 日
所在專業(yè)審查意見:
負責人:
年 月 日
揚州大學機械工程學院
畢業(yè)設(shè)計(論文)外文資料翻譯
教 科 部: 機械電子工程系
專 業(yè): 機械設(shè)計制造及其自動化
姓 名:
學 號:
外 文 出 處:Material removal mechanisms in precision machining of newmaterials
指導老師評語
簽 名:
年 月 日
翻譯原文
Material removal mechanisms in precision machining of newmaterials
Abstract
Modern-day products are characterised by high-precision components. A wide range of materials, includingmetals and their alloys, ceramics, glasses and semiconductors, are finished to a given geometry, finish,accuracy and surface integrity to meet the service requirements. For advanced technology systems, demandsfor higher fabrication precision are complicated by the use of brittle materials. For efficient and economicalmachining of these materials, an understanding of the material removal mechanism is essential. This paperfocuses on the different material removal mechanisms involved in machining of brittle materials. 2001Published by Elsevier Science Ltd.
Keywords: Brittle; Defects; Ductility; Material removal; Precision machining
1. Introduction
Ultra-precision machining technology has been developed over recent years for the manufactureof cost-effective and quality-assured precision parts for several industrial applications such aslasers, optics, semiconductors, aerospace and automobile applications. Precision manufacturingdeals with the realisation of products with high shape accuracy and surface quality. The accuracymay be at the nanometric level. Several machining techniques can be mentioned here like diamondturning, grinding, lapping, polishing, honing, ion and electron-beam machining, laser machining,etc. Efficient overviews of the processes are given in Refs. [1–3].
Ultra-precision machining technology has been highly developed since the 1980s mainlybecause of its high accuracy and high productivity in the manufacturing of optical, mechanicaland electronic components for industrial use. For many advanced technology systems, higherfabrication precision is complicated by the use of brittle materials. The past decade has seen atremendous resurgence in the use of ceramics in structural applications. The excellent thermal,chemical and wear resistance of these materials can be realised because of recent improvementsin the overall strength and uniformity of advanced ceramics [4].
Ceramic materials have been widely adapted as functional materials as well as structuralmaterials in various industrial fields and their application to precision parts is also increasing [5].
However, the high dimensional accuracy and good surface quality required for precision parts arenot necessarily obtained by the conventional forming and sintering process of ceramic powders.Thus precision finishing of the ceramics after forming and sintering is recognised as a key technologyto precision ceramic parts [6].
The quantity of ceramic material to be removed by the finishing process must be very small,so that microcracks do not remain on the finished surface. Abrasive processes such as grindingor lapping with diamond abrasives have generally been adopted for precision finishing of ceramics[7–9].
However, it is expected that better surface integrity and higher production rates can berealised by cutting processes. Compared with other processes, cutting is also advantageous inmachining complex shapes.Brittle materials can be divided into three groups: amorphous glasses, hard crystals andadvanced ceramics. Advanced ceramics are a modern development. They are made from fineporous particles that are formed, consolidated and thermally treated under precisely controlledconditions. Use of these materials enables development of high-technology devices and systemsthat simply could not be produced otherwise [10].
The same statement could be made about theuse of certain crystalline materials (e.g., semiconductors) and advanced high-temperature glasses.
2. Ductile regime machining
Improvements in machining tolerances have enabled researchers to expose the ductile materialremoval of brittle materials. Under certain controlled conditions, it is possible to machine brittlematerials like ceramics using single- or multi-point diamond tools so that material is removed byplastic flow, leaving a crack-free surface (Fig. 4). This process is called ductile regime machining.
Ductile regime machining follows from the fact that all materials will deform plastically if thescale of deformation is very small. Another way of viewing the ductile regime machining problemis that described by Miyashita [17], as shown in Fig. 5. The material removal rates for grindingand polishing are compared and there is a gap in which neither technique has been utilised. Thisregion can be termed the micro-grinding gap since the region lies in between grinding and polishing.This gap is important because it represents the threshold between ductile and brittle grindingregimes for a wide range of materials like ceramics, glasses and semiconductors.
2.1. Principle of ductile regime machining
The transition from brittle to ductile mode during machining of brittle materials is described in terms of the energy balance between strain energy and surface energy [18]. Localised fracturesproduced during application of load are of interest in machining of brittle materials. Machiningis an indentation process during which indentation cracks are generated, and these cracks play animportant role in ductile regime machining [19].
A critical penetration depth dc for fracture initiation is described as follows [20]
where Kc is the fracture toughness, H is the hardness, E is the elastic modulus and b is a constantwhich depends on tool geometry. Fig. 6 shows a projection of the tool perpendicular to the cuttingdirection. According to the energy balance concept, fracture damage will initiate at the effectivecutting depth and will propagate to an average depth yc. If the damage does not continue belowthe cut surface plane, ductile regime conditions are achieved. The cross-feed f determines theposition of dc along the tool nose. Larger values of f move dc closer to the tool centreline.Another interpretation of ductile transition phenomena is based on cleavage fracture due to thepresence of defects [21]. The critical values of a cleavage and plastic deformation are affectedby the density of defects/dislocations in the work material. Since the density of defects is not solarge in brittle materials, the critical value of fracture depends on the size of the stress field. Fig
7 shows a model of chip removal with size effects. When the uncut chip thickness is small, thesize of the critical stress field is small to avoid cleavage. Consequently a transition in the chip
2.2. Material removal mechanisms in ductile regime machining
Machining generates a useful surface by intimate contact of two mating surfaces, namely the workpiece and abrasive tool. However, the micromechanisms of material removal differ from material to material depending upon the microstructure of both workpiece and tool material.
Generally, during high-precision machining of brittle materials, tools having large negative rake angles are used (as high as -30°). The negative rake angle provides the required hydrostatic pressure for enabling plastic deformation of the work material beneath the tool radius. During conventional machining with a single-point tool, the rake angle will be positive or close to 0°.With positive rake angle, the cutting force will generally be twice the thrust force. Hence the deformation ahead of the tool will be in a concentrated shear plane or in a narrow plane as shown
in Fig. 8. During the grinding process, it is generally agreed that the tool will have a large negative rake angle and also that the cutting force is about half of the thrust force [Fig. 8(b)]. In ultraprecision machining of brittle materials at depths of cut smaller than the tool edge radius, the tool presents a large negative rake angle and the radius of the tool edge acts as an indenter as shown in Fig. 8(c). This represents indentation sliding of a blunt indenter across the workpiece surface. This is similar to a situation where the tool is rigidly supported and cuts the workpiece under a stress such that no median vents are generated but the material below the tool is plastically deformed due to large hydrostatic pressure as in Fig. 8(d).
3. Material removal in glass and ceramics
The ductile grinding of optical glass is considered as the most perfect adaptation of a machining method to the material [22]. Glass is an inorganic material supercooled from the molten state to the solid state without crystallising. Glasses are non-crystalline (or amorphous) and respond intermediate between a liquid and a solid; i.e., at room temperature they behave in a brittle manner
1838 P.S. Sreejith, B.K.A. N個goi / International Journal of Machine Tools & Manufacture 41 (2001) 1831–1843
but above the glass transition temperature in a viscous manner. The high brittleness of glass is due to the irregular arrangement of atoms. In crystalline materials like metals, the atoms have a fixed arrangement and regularity described by Miller indices, whereas glass structure does not show any definite orientation [23].
The unique physical and mechanical properties of ceramics such as hardness and strength,chemical inertness and high wear resistance have contributed to their increased application in mechanical and electrical components. The advanced ceramics for structural and wear applications include alumina (Al2O3), silicon nitride (Si3N4), silicon carbide (SiC), zirconia (ZrO2) and SiAlON. The nature of atomic bonding determines the hardness of the material as well as the Young’s modulus. For ductile metallic-bonded materials the ratio E/H is about 250, while for covalentbonded brittle materials the ratio is about 20. The ratio will lie in between these values for ionicbonded materials. Low density and low mobility of dislocations are the reasons for the high hardness of some of brittle materials.
4. Gentle grinding
There is an alternative hypothesis called “gentle” machining wherein it is believed that plastic deformation is not involved exclusively in the material removal [26]. According to this theory, since the mode of deformation (plastic/brittle) depends on the state of the stress and not on the magnitude of the stress, it is difficult to assume that the mode of deformation will change by merely changing the depth of cut keeping all other parameters constant. Investigations have shown that, in order for brittle materials to deform in a ductile manner, considerable hydrostatic stress and/or temperature are required. Reducing the depth of cut will merely decrease the stress without changing the stress state. Therefore this theory suggests that the superior quality of the surface produced at lower depth of cut is due to the above effect and not necessarily to plastic deformation. At smaller depths of cut, microcracks may be formed but they may not propagate to form larger cracks. Hence grinding at extremely small depth of cut can be called gentle grinding rather than ductile grinding.
翻 譯
材料去除機制新材料的精密加工
注:
Sreejith *,B.K.A. Ngoi學校的機械和生產(chǎn)工程、南洋理工大學、新加坡南洋大道639798年
文摘
現(xiàn)代產(chǎn)品的特點是高精度的零部件。廣泛的材料,螢火蟲-荷蘭國際集團金屬及其合金、陶瓷、眼鏡和半導體,完成給定的幾何形狀,完成,精度和表面完整性,以滿足服務(wù)需求。先進技術(shù)系統(tǒng)的要求制造精度高是復雜的脆性材料的使用。有效的和經(jīng)濟的這些材料的加工,材料去除機理的理解是至關(guān)重要的。摘要側(cè)重于不同的材料去除機制參與脆性材料的加工。2001年由愛思唯爾的科學有限公司出版。
介紹
超精密加工技術(shù)是近年來開發(fā)生產(chǎn)成本效益和有質(zhì)量保證的精密零件等工業(yè)應用激光、光學