購(gòu)買設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見(jiàn)即所得,都可以點(diǎn)開(kāi)預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無(wú)水印,可編輯。。。具體請(qǐng)見(jiàn)文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
附 錄
Human activities on the ecological damage to the environment has become a global problem, to reduce fuel consumption, reduce automobile exhaust emissions is energy conservation, prevention of air pollution in an important measure. Vehicle energy consumption is closely related with the tire rolling resistance. On cars or light trucks, the 3.4% ~ 6.6% of fuel consumption used to overcome rolling resistance tires; of loaded radial truck tire with the car example, 12.4% ~ 14.5% of fuel consumption to overcome the rolling resistance tires . Tire rolling resistance by 10%, fuel-efficient cars will be 1.2 percent, 4 percent savings trucks. To this end,the tire manufacturers have at home and abroad to develop new low-power tires to reduce rolling resistance, saving fuel.
Automobile tires in the rolling process, the total vehicle rolling resistance accounts for about 20% of the resistance, if reduced by 10% per tire rolling resistance, lower 2% ~ 3% of fuel, then rolling resistance tires to enhance the level of control of vehicle contribution to fuel economy will be significant, but also in a wide range can be achieved. Therefore, how to effectively control the tire's rolling resistance is the industry facing a key issue. This article will explore the various angles and analysis as well as tire rolling resistance testing technology.
I. Summary
In the tire rolling process, the cycle of changes in the stress and strain lead to energy loss, the formation of tire rolling resistance, also known as the tire hysteresis energy loss. Studies have shown that to overcome tire rolling resistance on fuel consumption of the general accounting for the total fuel consumption of motor vehicles more than 10%. Reduce rolling resistance tires can reduce vehicle energy consumption, so that the car farther away from efficient. Tire rolling resistance is the overall energy consumption of material, equivalent to the tire rolling units of energy loss from the rolling units in addition to its distance, the dimensionless N ? m / m, although its equivalent to the dimensionless force, but from the point of view of energy analysis and understanding more convenient and reasonable.
Through the measurement of rolling resistance tires can study the best section.
However, the results of lab experiments can only make a comparison, the final road test should be used as the basis of the results.
Second, research the history of
As early as age 60 in the 20th century, Beijing Research and Design Institute of Rubber Industry in turn on the drum machine and measured the wire cotton tire cord tire power loss, also measured on the road when the vehicle speed steady traction resistance. At that time, due to restrictions on the use of equipment, the pilot is in its early exploratory phase of long-term. Since the mid-80s, with the accelerated development of China's tire needs, a small number of tire manufacturers from the United States, Japan and Germany with the introduction of the rolling resistance of the switch position test tire drum testing machine, combined with the development of a new type of radial tire and the analysis of foreign samples a number of tire rolling resistance tires test.
Inspection. 70s from the 20th century in the United States, Japan and Europe, such as the economically developed countries, in order to solve energy shortages and the deterioration of environmental quality issues and the rolling resistance tires for a large number of experiments and research work. At the same time, tire rolling resistance testing technologies have also made remarkable progress. Beginning in 2004, the U.S. National Research Center on the control of rolling resistance tires to start a new round of extensive research. In 2007, the European Rubber Manufacturers Association also made to the EU to control the level of rolling resistance of the recommendations. Therefore, China will also face the control of rolling resistance.
Third, testing technology
At present, China has established a laboratory test-based, supplemented by the direction of the outdoor experiment. Steady-state conditions in the interior that is a constant load and speed, the tires when driving to reach thermal equilibrium Tire rolling resistance measurement method of standardization has been achieved.
Preliminary results show that the simulation of the city of tire rolling resistance condition than under the conditions of steady-state rolling resistance by 26% ~ 47% of the difference between the two aroused people's interest in the emergence of a simulation of various operating conditions of automobile tires non-steady-state test. But so far did not see a unified standard test methods or test protocols. Carried out in the outdoor tire rolling resistance test methods are mainly trailer Act, taxiways and three kinds of torque method, in which a wider application of the trailer Act.
Fourth, laboratory equipment
Laboratory test equipment, through decades of effort, has appeared in various types of tire rolling resistance testing machine. Their roads in accordance with the form of simulation points, and to have a steel drum two broad categories. Strip-type test machine to simulate the continuous flat surface, is very expensive test equipment tires. At present, it is the most widely to drum testing machine, in particular, a diameter of 1.7 meters to the drum. These test equipment measuring tire rolling resistance by way of points, and measuring method, torque law, power law and reduce the rate of four kinds of law. The use of existing equipment to load and torque of law are most welcome. In the past two decades, the accuracy of test equipment greatly enhanced to reduce the double measurement error, and has formed a set of test data to ensure the repeatability of the equipment necessary for accuracy. Has the full realization of China's current industrial production equipment is Jiurong Tianjin rolling resistance testing machine, is divided into car and truck tire with two types of tires, and its accuracy in line with the requirements of ISO. As the outdoor test line tire rolling resistance of non-standard test, the test equipment they use is not changed. Association for the Study of the British automobile industry with the use of the pilot housing trailers, all kinds of tires for air resistance in the same test under the conditions created.
V. Test Methods
1. Indoor and outdoor test test
Indoor and outdoor test test test is based on the distinction between the two types of tire place test method. Indoor test of tire rolling resistance testing machine were conducted, and its experimental conditions, although the Department of simulated conditions of use but can be under control, so that good reproducibility of experimental data. Outdoor test rolling resistance tires are used on test vehicles on the road completed, it is true although the experimental conditions, but susceptible to external factors, pilot error, and therefore tire rolling resistance test to test the main indoor and outdoor test Des.
2. Steady-state conditions and non-steady-state conditions
Steady-state conditions in the constant refers to the tire load and speed, and traveling in the tire to reach thermal equilibrium when measuring rolling resistance; non-steady-state conditions, it means the tire change with time in the load and speed, and tire temperature in the process of moving measuring rolling resistance. Of course, the tires in the car on the non-steady-state condition is varied. To the total points, tire condition of the car has the city, the suburbs of the car and coach on. However, a breakdown, and another empty, heavy vehicles, drive, driven, acceleration, deceleration, taxiways, brake, turn, etc. and combinations there of. Typical working condition of the tires as the standard test of non-steady-state conditions, needs to be done to investigate and test a large number of research work. So whether it is the latest ISO 18164 or the existing SAEJ 1269, they were under steady-state conditions. In addition, SAEJ 2452 slowdown is a complex experiment, the experimental conditions than under the uniform steady-state movement is much more complicated, but it is not completely under non-steady-state experiment. As can accurately predict tire rolling resistance is uniform or slowdown, more tests need to be verified, such comparison tests being investigated. However, the tire manufacturer's tire rolling resistance testing machine mostly for the use of steady-state conditions, if used for non-steady-state conditions by the test needs Plus many new features, testing may be a substantial increase in cost.
First of all, to deal with the choice of tires to test full consideration, such as the representativeness of the sample, the tire size, type, rated speed, the original production equipment and the type of wheel rim, as well as the technological level of producers and industry status.
Secondly, the performance evaluation of the establishment of test methods. Is not any test method can be used to evaluate the performance level, especially the study of test methods, and therefore take into account the actual tire, the combination of existing technology and the means test, set up in line with the experimental detection conditions.
Third, laboratory equipment to ensure precision and accuracy of the equipment of the establishment of standards to ensure that test reproducibility and repeatability, such as samples of the same specifications of the rolling resistance tires are consistent and repeatable, with the control tire for the different experiments comparison.
Fourth, the establishment of quality control procedures to ensure that the different rolling resistance testing machine test results are consistent and repeatable, the data in these experiments should also include information such as equipment.
Fifth, repeat the same tire test, test results are consistent and repeatable.
Sixth, tire prices and the relationship between the dynamic resistance.
Seventh, most importantly, in the protection of national industries and safeguard the environment and conserve fuel, to resist the flow of low-quality tires to enter the market, the need for serious thinking.
A lot of tests in measuring very small load rolling resistance tire rolling resistance is measured the basic characteristics of the tire positioning accuracy, therefore, control precision and accuracy requirements and other equipment is key. According to many years of experience confirm the accuracy of test equipment requirements is necessary, otherwise the test data can not be guaranteed to reach the standards of repeatability and comparability.
Lower rolling resistance tires can significantly save energy and protect the environment, with considerable economic and social benefits. Under the conditions of typical use of the tire rolling resistance and fuel consumption the relationship between the steady-state conditions with non-steady-state conditions compared with the torque method, power law and measured by the speed difference in rolling resistance tires will be The next step of our research objectives.
Should be established and planned research projects, and used to determine the appropriate control of the rolling resistance or grade; from different points of view to promote and strengthen the grasp of the concept of rolling resistance and applications.
人類活動(dòng)對(duì)生態(tài)環(huán)境的破壞已成為全球性問(wèn)題,減少燃料消耗、降低汽車尾氣排放量是節(jié)約能源、防止大氣污染的重要措施。汽車能量消耗與輪胎滾動(dòng)阻力有密切關(guān)系。對(duì)轎車或輕型載重汽車來(lái)說(shuō),3.4%~6.6%的燃料消耗用于克服輪胎的滾動(dòng)阻力;對(duì)裝用載重子午線輪胎的汽車來(lái)說(shuō),12.4%~14.5%的燃料消耗用于克服輪胎的滾動(dòng)阻力。輪胎的滾動(dòng)阻力降低10%,轎車將節(jié)約燃料1.2%,載重汽車節(jié)約4%。為此,國(guó)內(nèi)外輪胎生產(chǎn)商紛紛開(kāi)發(fā)新的低能耗輪胎,以降低滾動(dòng)阻力、節(jié)約燃料。
汽車輪胎在滾動(dòng)過(guò)程中,其滾動(dòng)阻力約占汽車總阻力的20%,如果按照每減少10%的輪胎滾動(dòng)阻力,降低2%—3%燃油的話,加強(qiáng)對(duì)輪胎滾動(dòng)阻力水平的控制,對(duì)汽車燃油經(jīng)濟(jì)性的貢獻(xiàn)將是顯著的,而且可以在較大范圍內(nèi)得以實(shí)現(xiàn)。因此,如何有效地控制輪胎的滾動(dòng)阻力是行業(yè)面臨的一個(gè)關(guān)鍵問(wèn)題。本文將從多個(gè)角度探討和分析汽車輪胎滾動(dòng)阻力以及測(cè)試技術(shù)。
一、綜述
在輪胎滾動(dòng)過(guò)程中,循環(huán)變化的應(yīng)力應(yīng)變導(dǎo)致能量損耗,形成輪胎滾動(dòng)阻力,也稱為輪胎滯后能量損耗。研究表明,克服輪胎滾動(dòng)阻力消耗燃油占普通汽車總油耗的10%以上。減小輪胎滾動(dòng)阻力可以降低汽車能耗,使汽車行駛的距離更遠(yuǎn),效率更高。滾動(dòng)阻力是輪胎材料能量的總體消耗,等于輪胎滾動(dòng)單位距離的能量損耗除以其滾動(dòng)單位距離,量綱為N·m/m,盡管其等于力的量綱,然而從能量的角度分析和理解更為方便和合理。
通過(guò)對(duì)滾動(dòng)阻力的測(cè)量可以研究輪胎最佳的節(jié)能效果。但是室內(nèi)實(shí)驗(yàn)的結(jié)果只能做出比較,最后仍應(yīng)以道路試驗(yàn)的結(jié)果作為依據(jù)。
二、研究歷史
早在20世紀(jì)60年代,北京橡膠工業(yè)研究設(shè)計(jì)院就開(kāi)始在轉(zhuǎn)鼓式試驗(yàn)機(jī)上測(cè)量了鋼絲輪胎和棉簾線輪胎的功率損耗,也曾在道路上測(cè)量汽車穩(wěn)速行駛時(shí)的牽引阻力。由于受當(dāng)時(shí)使用設(shè)備的限制,該項(xiàng)試驗(yàn)長(zhǎng)期處于初期探索階段。80年代中期起,隨著我國(guó)加速發(fā)展子午線輪胎的需要,少數(shù)輪胎生產(chǎn)企業(yè)從美國(guó)、日本和德國(guó)引進(jìn)了帶有滾動(dòng)阻力試驗(yàn)工位的轉(zhuǎn)鼓式輪胎試驗(yàn)機(jī),結(jié)合開(kāi)發(fā)新型子午線輪胎和剖析外國(guó)輪胎樣品進(jìn)行了一些輪胎滾動(dòng)阻力試驗(yàn)。
20世紀(jì)70年代起,在美國(guó)、日本和歐洲等經(jīng)濟(jì)發(fā)達(dá)國(guó)家,為了解決能源短缺和環(huán)境質(zhì)量惡化問(wèn)題,對(duì)汽車輪胎滾動(dòng)阻力進(jìn)行了大量的實(shí)驗(yàn)和研究工作。與此同時(shí),輪胎滾動(dòng)阻力的測(cè)試技術(shù)也取得了長(zhǎng)足的進(jìn)步。從2004年開(kāi)始,美國(guó)國(guó)家研究中心就輪胎滾動(dòng)阻力的控制展開(kāi)了新一輪的廣泛研究。2007年,歐洲橡膠制造者協(xié)會(huì)也向歐盟提出了滾動(dòng)阻力的控制水平建議。因此,我國(guó)也將同樣面臨滾動(dòng)阻力的控制研究。
三、測(cè)試技術(shù)
目前我國(guó)確立了以室內(nèi)試驗(yàn)為主,室外試驗(yàn)為輔的方向。在室內(nèi)穩(wěn)態(tài)條件即恒定的負(fù)荷和速度下,輪胎行駛達(dá)到熱平衡時(shí)測(cè)量汽車輪胎滾動(dòng)阻力的方法,已實(shí)現(xiàn)了標(biāo)準(zhǔn)化。初步結(jié)果表明,模擬市內(nèi)汽車輪胎工況的滾動(dòng)阻力要比穩(wěn)態(tài)條件下的滾動(dòng)阻力大26%~47%,兩者的差別激起了人們的興趣,興起了模擬各種汽車輪胎工況的非穩(wěn)態(tài)試驗(yàn)。但迄今為止未見(jiàn)到統(tǒng)一的試驗(yàn)方法標(biāo)準(zhǔn)或試驗(yàn)規(guī)程。在室外進(jìn)行汽車輪胎滾動(dòng)阻力試驗(yàn)的方法主要有拖車法、滑行法和扭矩法3種,其中拖車法應(yīng)用較廣。
四、室內(nèi)實(shí)驗(yàn)設(shè)備
室內(nèi)試驗(yàn)設(shè)備方面,經(jīng)過(guò)幾十年的努力,先后出現(xiàn)了多種類型的輪胎滾動(dòng)阻力試驗(yàn)機(jī)。它們按照模擬路面的形式來(lái)分,有鋼帶式和轉(zhuǎn)鼓式兩大類。鋼帶式試驗(yàn)機(jī)模擬了平的連續(xù)路面,是目前價(jià)格昂貴的輪胎試驗(yàn)設(shè)備。目前應(yīng)用最廣的是轉(zhuǎn)鼓式試驗(yàn)機(jī),尤其是直徑為1.7米的轉(zhuǎn)鼓式。這些試驗(yàn)設(shè)備按測(cè)量輪胎滾動(dòng)阻力的方法來(lái)分,又有測(cè)力法、扭矩法、功率法和減速度法4種?,F(xiàn)有的設(shè)備以采用測(cè)力法和扭矩法者居多。在近二十年內(nèi),試驗(yàn)設(shè)備的精度大大提高,測(cè)量誤差成倍減少,已形成了一套確保試驗(yàn)數(shù)據(jù)可重復(fù)性所必須的設(shè)備精度要求。我國(guó)目前已經(jīng)全面實(shí)現(xiàn)工業(yè)化生產(chǎn)的設(shè)備是天津久榮的滾動(dòng)阻力測(cè)試機(jī),分為轎車輪胎用和載重汽車輪胎用兩類,其精度符合ISO的要求。由于室外的輪胎滾動(dòng)阻力試驗(yàn)系非標(biāo)準(zhǔn)試驗(yàn),其所用的試驗(yàn)設(shè)備改變不大。英國(guó)汽車工業(yè)研究協(xié)會(huì)使用的帶外罩的試驗(yàn)掛車,為各種輪胎在相同空氣阻力下進(jìn)行試驗(yàn)創(chuàng)造了條件。
五、試驗(yàn)方法
1.室內(nèi)試驗(yàn)和室外試驗(yàn)
室內(nèi)試驗(yàn)與室外試驗(yàn)是按試驗(yàn)場(chǎng)所區(qū)分的兩類輪胎試驗(yàn)方法。室內(nèi)的輪胎滾動(dòng)阻力試驗(yàn)都是在試驗(yàn)機(jī)上進(jìn)行的,它的試驗(yàn)條件雖系模擬的使用條件但可以加以控制,故試驗(yàn)數(shù)據(jù)的重復(fù)性好。室外的輪胎滾動(dòng)阻力試驗(yàn)都是用試驗(yàn)車輛在道路上完成,它的試驗(yàn)條件雖然真實(shí),但易受外界因素的影響,試驗(yàn)誤差大,因此汽車輪胎滾動(dòng)阻力試驗(yàn)以室內(nèi)試驗(yàn)為主,室外試驗(yàn)為輔。
2.穩(wěn)態(tài)條件和非穩(wěn)態(tài)條件
穩(wěn)態(tài)條件指輪胎在恒定的負(fù)荷和速度下,且在輪胎行駛達(dá)到熱平衡時(shí)測(cè)量滾動(dòng)阻力;非穩(wěn)態(tài)條件則指輪胎在隨時(shí)間改變的負(fù)荷和速度下,且輪胎處于行駛升溫過(guò)程中測(cè)量滾動(dòng)阻力。當(dāng)然,輪胎在汽車上的工況是非穩(wěn)態(tài)的,是多種多樣的??偟膩?lái)分,輪胎的工況有市內(nèi)汽車上的、市郊汽車上的和長(zhǎng)途汽車上的。但細(xì)分起來(lái),又有空車、重車、驅(qū)動(dòng)、從動(dòng)、加速、減速、滑行、制動(dòng)、轉(zhuǎn)彎等條件及其組合。選擇典型的輪胎工況作為試驗(yàn)標(biāo)準(zhǔn)的非穩(wěn)態(tài)條件,需要做大量的調(diào)查和試驗(yàn)研究工作。因此無(wú)論是最新的ISO 18164還是現(xiàn)行的SAEJ 1269,它們均系穩(wěn)態(tài)條件下的。此外,SAEJ 2452是一種復(fù)雜的減速實(shí)驗(yàn),其實(shí)驗(yàn)條件較穩(wěn)態(tài)下的勻速運(yùn)動(dòng)復(fù)雜得多,但也不完全是非穩(wěn)態(tài)下的實(shí)驗(yàn)。至于可以精確預(yù)測(cè)輪胎的滾動(dòng)阻力是勻速的還是減速的,有待于更多的試驗(yàn)驗(yàn)證,這種比較試驗(yàn)正在研究中。但目前輪胎制造廠商擁有的輪胎滾動(dòng)阻力試驗(yàn)機(jī)大部分是供穩(wěn)態(tài)條件下使用的,若用于非穩(wěn)態(tài)條件下的試驗(yàn)需要增加很多新的功能,試驗(yàn)成本可能也會(huì)大量增加。
首先,應(yīng)對(duì)試驗(yàn)輪胎的選擇予以全面的考慮,如樣本的代表性,輪胎的尺寸規(guī)格、種類、額定速度、原始生產(chǎn)設(shè)備和輪輞的類型以及生產(chǎn)商的技術(shù)水平和行業(yè)地位等。
其次,性能評(píng)價(jià)試驗(yàn)方法的建立。不是任何試驗(yàn)方法都可以用來(lái)評(píng)價(jià)性能等級(jí)的,尤其是研究性的試驗(yàn)方法,因此在考慮實(shí)際輪胎的情況下,結(jié)合現(xiàn)有的測(cè)試技術(shù)與手段,建立合乎國(guó)情的實(shí)驗(yàn)檢測(cè)方法。
第三,保證實(shí)驗(yàn)設(shè)備的精度和準(zhǔn)確度的設(shè)備標(biāo)準(zhǔn)的建立,以保證試驗(yàn)的重現(xiàn)性和再現(xiàn)性,如同樣規(guī)格輪胎樣本的滾動(dòng)阻力是否一致和可重復(fù),用對(duì)照輪胎作不同的實(shí)驗(yàn)進(jìn)行比較等。
第四,建立質(zhì)量管理程序,保證不同滾動(dòng)阻力試驗(yàn)機(jī)試驗(yàn)結(jié)果是否一致和可重復(fù),在這些實(shí)驗(yàn)數(shù)據(jù)中還應(yīng)包括設(shè)備的信息等。
第五,同類輪胎的重復(fù)試驗(yàn),試驗(yàn)結(jié)果是否一致和可重復(fù)。
第六,輪胎價(jià)格與動(dòng)阻力之間的關(guān)系。
第七,最為重要的是,在保護(hù)民族工業(yè)和維護(hù)環(huán)境、節(jié)約燃油、抵制劣質(zhì)輪胎進(jìn)入流通市場(chǎng)的問(wèn)題上,需要嚴(yán)肅的思考。
在很大的試驗(yàn)負(fù)荷下測(cè)量很小的滾動(dòng)阻力是汽車輪胎滾動(dòng)阻力測(cè)量的基本特點(diǎn),因此輪胎的定位精度、控制精度和測(cè)量精度等設(shè)備要求是關(guān)鍵性的。據(jù)多年經(jīng)驗(yàn)證實(shí),試驗(yàn)設(shè)備精度要求是必須的,否則就不能保證試驗(yàn)數(shù)據(jù)達(dá)到標(biāo)準(zhǔn)的可重復(fù)性和可比性。
降低汽車輪胎滾動(dòng)阻力能明顯節(jié)約能源,保護(hù)環(huán)境,具有可觀的經(jīng)濟(jì)效益和社會(huì)效益。各種典型使用條件下的輪胎滾動(dòng)阻力與汽車耗油量之間的關(guān)系,穩(wěn)態(tài)條件與非穩(wěn)態(tài)條件的對(duì)比,用扭矩法、功率法和減速度法測(cè)量輪胎滾動(dòng)阻力的差異等將成為我們下一步的研究目標(biāo)。
應(yīng)建立有計(jì)劃的研究項(xiàng)目,并用來(lái)確定適宜的滾動(dòng)阻力控制范圍或者等級(jí);從不同的角度來(lái)推廣和加強(qiáng)滾動(dòng)阻力概念的掌握和應(yīng)用。
10