購(gòu)買設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見即所得,都可以點(diǎn)開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請(qǐng)見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
附件1
基于路徑幾何約束的高效機(jī)械手控制算法
Kang G. Shin and Neil D. McKay
Department of Electrical and Computer Engineering
The University of Michigan
Ann Arbor, Michigan 48109
摘要:傳統(tǒng)上,機(jī)械手控制運(yùn)算法則被區(qū)分為兩級(jí),即路徑規(guī)劃和路徑跟蹤(或路徑控制)。這種劃分方法已經(jīng)被主要地應(yīng)用于減輕復(fù)雜連結(jié)的機(jī)械手動(dòng)力學(xué)。不幸的是,這種簡(jiǎn)單的劃分方法是以犧牲機(jī)械手的工作效率為代價(jià)的。
為了改善這種低效率的情況,本文認(rèn)為要使機(jī)械手在最短時(shí)間內(nèi)沿著一條指定的幾何路徑移動(dòng)受到輸入扭矩/扭力的限制。我們首先采用幾何學(xué)路徑約束引入避免碰撞和操作需求的變量函數(shù)來描述機(jī)械手動(dòng)力要求,然后將輸入扭矩/扭力的限制參數(shù)轉(zhuǎn)變成這些變量。最后最短時(shí)間的求解就可用相平面技術(shù)進(jìn)行推導(dǎo)運(yùn)算求解。
1、前言
在過去的幾年人們主要關(guān)注于工業(yè)自動(dòng)化技術(shù),尤其是使用通用機(jī)器人技術(shù)。由于工業(yè)機(jī)器人的目的是為了提高生產(chǎn)力,如何使每1美元的機(jī)器人控制投入獲得盡可能多的效益成為越來越突出的問題。通常固定成本在生產(chǎn)項(xiàng)目成本中占主導(dǎo)地位,所以人們總希望在給定的時(shí)間中生產(chǎn)盡可能多的產(chǎn)品。
有多種算法可用于最短時(shí)間或接近最短時(shí)間機(jī)械手控制運(yùn)算。這些算法通常劃分為兩個(gè)層次。第一個(gè)層次是所謂的路徑規(guī)劃,第二個(gè)層次是所謂的路徑跟蹤或路徑控制。通常路徑控制的定義是企圖實(shí)現(xiàn)讓機(jī)器人的實(shí)際位置和速度匹配理想的位置和速度。這種控制用控制器來實(shí)現(xiàn)??刂破鹘邮丈弦淮斡?jì)算的理想位置值與速度值進(jìn)行路徑位置描述,然后通過路徑跟蹤系統(tǒng)跟蹤機(jī)械手實(shí)際位置和速度得到運(yùn)動(dòng)偏差。
這樣分開控制方案是基于機(jī)械手控制程序,如果把控制作為一個(gè)整體考慮將會(huì)非常復(fù)雜,由于幾乎最簡(jiǎn)單的機(jī)械手的動(dòng)力學(xué)之后是高度地非線性甚至更復(fù)雜。把控制分為兩部分來分別處理使得整個(gè)控制過程變得簡(jiǎn)單。路徑追蹤通常是一個(gè)線性的控制算法,機(jī)械手動(dòng)力學(xué)的非線性在這一個(gè)水平時(shí)常不被考慮,如此的追蹤控制通常能得到需要的軌道并使機(jī)械手運(yùn)動(dòng)與實(shí)際要求保持非常接近。使得精密加工得以實(shí)現(xiàn),例如解析運(yùn)動(dòng)速度控制(參考文獻(xiàn)[1] ) ,突然的加速度控制(參考文獻(xiàn)[2] ), 及斷續(xù)速度變化控制(參考文獻(xiàn)[3]-[5] )。
不幸的是,單純地劃分為路徑規(guī)劃和路徑追蹤是以犧牲效率為代價(jià)的。效率低下的根源是路徑規(guī)劃,為了提高機(jī)械手的效率,路徑規(guī)劃時(shí)必須了解該機(jī)器人的動(dòng)態(tài)特性,以及準(zhǔn)確的動(dòng)態(tài)模型。然而,規(guī)劃運(yùn)算法則的大部份的路徑計(jì)算只與數(shù)據(jù)計(jì)算有關(guān),有關(guān)機(jī)械手的動(dòng)力學(xué)計(jì)算非常少。通常假定機(jī)械手的速度和加速度為恒定或按一定規(guī)律變化的(參考文獻(xiàn)[6,7]),并具有一定的區(qū)域邊界約束。事實(shí)上,這些約束因位置,負(fù)載大小,甚至隨有效載荷面積而改變。因此為了使邊界約束為有效的恒定值,速度面積法的邊界取值必須是速度和加速度的整體最低值;換句話說,對(duì)于最壞情況的限制必須有效。由于機(jī)械手關(guān)節(jié)處的轉(zhuǎn)動(dòng)慣量加速度有限制,可能被三個(gè)或更多的條件所約束,這些多出的約束造成機(jī)械手的效率低下。
為了提高效率,本文提出了一種依據(jù)幾何路徑和輸入扭矩/扭力上的最短時(shí)間機(jī)械手路徑控制解決方案,方案以路徑運(yùn)算法則的方式加入機(jī)械手動(dòng)力學(xué)運(yùn)算。
路徑規(guī)劃輸出真實(shí)的最短時(shí)間,作為其它可被測(cè)量的路徑規(guī)劃的測(cè)量標(biāo)準(zhǔn)。
注意,本文提到的問題和解決辦法與參考文獻(xiàn) [8,9] 中的接近最短時(shí)間控制理論不同。
本文分為五個(gè)部分分別論述,第二部分描述了使機(jī)械手輸入扭矩的動(dòng)態(tài)約束方程更易于處理和控制的方法;第三部分考慮公式化-時(shí)間控制的細(xì)節(jié)問題;第四部分用狀態(tài)-平面的技術(shù)求解最優(yōu)解;第五部分是本文亮點(diǎn),推導(dǎo)產(chǎn)生最佳的運(yùn)動(dòng)軌跡的運(yùn)算法則;最后部分是該方法則使用意義討論。
2、機(jī)器人動(dòng)力學(xué)與約束
在進(jìn)行最短時(shí)間控制問題研究前,先考慮對(duì)系統(tǒng)的行為進(jìn)行控制,即機(jī)器人的手臂動(dòng)力學(xué)模型。有多種方法獲得的機(jī)器人臂的動(dòng)力學(xué)方程,即方程中有關(guān)位置處的綜合力和扭矩,速度扭矩和加速度。最常使用的兩種方法是拉格朗日和牛頓、歐拉公式。牛頓、歐拉公式雖然計(jì)算效率高,但卻很難用于控制問題的遞推計(jì)算。拉格朗日雖然計(jì)算效率不高,但確實(shí)產(chǎn)生一組非常適用于機(jī)械手控制問題的微分方程式。在這里動(dòng)力方程僅用于獲得分析結(jié)果,我們使用拉格朗日的方法得出以下機(jī)械手動(dòng)力學(xué)方程(參考文獻(xiàn)[12,13])。
qi=vi (1a)
ui=Jijqvj+Rijvj+Cijkqvjvk+Giq (1b)
式中
qi=ith 廣義坐標(biāo)
vi=ith 廣義速度
ui=ith 廣義力
Jij= 慣性矩陣
Gi = 在 ith 加上重力的力
Cijk= 科氏陣列
Rij= 粘性摩擦矩陣
愛因斯坦求和約束的使用使所有指數(shù)從1到n包含在n自由度機(jī)器人中。
慣性矩陣Jij的比例常數(shù)是施加于ith的總的扭矩/扭力與Jij上的總加速度??评飱W利數(shù)列描述了結(jié)合 j 和 k 的速度進(jìn)入Cijk的力。粘性摩擦矩陣R給出由于速度 j 產(chǎn)生的 i 而受到的摩擦力。注意這個(gè)矩陣為對(duì)角矩陣,所有輸入數(shù)值無負(fù)值。
機(jī)器人的手臂運(yùn)動(dòng)當(dāng)然不會(huì)完全不受約束。事實(shí)上,在關(guān)節(jié)處機(jī)器人手臂必須限制在一個(gè)固定的空間運(yùn)動(dòng),且運(yùn)動(dòng)軌跡為給定的參數(shù)化曲線。曲線被由參數(shù) λ 的n個(gè)函數(shù)集決定,所以我們有
qi=fiλ , 0≤λ≤λmax (2)
其中λ為理想軌跡的一個(gè)參數(shù),當(dāng)λ從 0 到λmax變化時(shí)坐標(biāo) qi 也連續(xù)地變化且路徑不重復(fù),即λ0=0 ,λtf=λmax .
應(yīng)當(dāng)指出,在實(shí)際空間的運(yùn)動(dòng)軌跡是建立在笛卡爾坐標(biāo)上。一般很難把曲線從笛卡爾坐標(biāo)完全轉(zhuǎn)換到機(jī)械臂關(guān)節(jié)空間坐標(biāo)中,相對(duì)地執(zhí)行單個(gè)點(diǎn)的轉(zhuǎn)換卻很容易。在笛卡爾的路徑上拾足夠多的點(diǎn)進(jìn)行坐標(biāo)變換,利用插值法技術(shù) (例如 三次樣條函數(shù))獲得機(jī)械臂關(guān)節(jié)空間的一個(gè)相似的軌跡。(見[10]為一個(gè)例子)
回到之前的問題,我們用時(shí)間來區(qū)分參數(shù)化的qi 得到
其中μ =λ 運(yùn)動(dòng)方程沿著曲線(Le.幾何學(xué)的路徑)變成
注意,如果λ表示沿著路徑的弧長(zhǎng),那么μ和μ分別表示沿著路徑的速度和加速度。
基于這種參數(shù)化有兩個(gè)狀態(tài)變量,即λ和μ,但有(n + 1)個(gè)方程。選擇方程λ=μ和剩余方程序之一為狀態(tài)方程,其他方程作為輸入 μ 的約束。將ith乘以dfi(λ)dλ 就可以從給出的n個(gè)方程中得到一個(gè)狀態(tài)方程
這個(gè)公式有個(gè)明顯的優(yōu)點(diǎn),在約束函數(shù)導(dǎo)出的向量中參數(shù)μ是二次的,當(dāng)一階導(dǎo)數(shù)存在時(shí)曲線可以進(jìn)行參數(shù)化,且慣性矩正定,整個(gè)的方程能被正的、非零的參數(shù)μ分開,由λ和μ得到μ的一個(gè)解。現(xiàn)在得到二個(gè)狀態(tài)方程,而最初的n個(gè)方程則由輸入和 μ 約束(關(guān)于這方面將在后面討論)。
通過變換,狀態(tài)方程變?yōu)?
現(xiàn)在考慮由|ui|≤umaxi和公式(4a)限制的約束,動(dòng)態(tài)方程(4a)可以寫成這樣的形式:ui=gi(λ)u+hi(λ,μ). 對(duì)于一個(gè)給定的狀態(tài),也就是給定的 h 和,u,這是一個(gè)參數(shù)p的一組線性參數(shù)方程,約束存在于輸入變化區(qū)間及因輸入變化形成的約束矩陣中。因此把矩陣約束在u上,通過方程參數(shù)使輸入扭矩/扭力變化的所有位置、速度在路徑上彼此限制,給出初始的(λ,μ)及u的大小,如果知道機(jī)械手關(guān)節(jié)處的輸入扭矩、扭力這樣就能用數(shù)的處理來代替n個(gè)矢量的處理進(jìn)而得到一系列的約束(路徑狀態(tài)方程)。
因?yàn)樾阅芡耆蓇決定,我們用-umaxi≤ui≤+umaxi于是有:
簡(jiǎn)化:
于是得到:
注意:前面的方程都是λ的函數(shù),為了簡(jiǎn)化計(jì)算,功能的依賴性在下面的計(jì)算不再指出。
給出的控制不等式:
另一種格式:
LBi≤u≤UBi,這些參數(shù)由n決定,u滿足:maxLBi≤u≤minUBi 或者
GLB(λ,μ)≤u≤LUB(λ,μ) (7e)
路徑計(jì)劃要呈現(xiàn)的運(yùn)算法則與之前依照慣例得到方程的不同,可知參數(shù)λ 是笛卡爾的空間的弧長(zhǎng),μ是速度,μ是幾何加速度。傳統(tǒng)路徑規(guī)劃把加速度劃分為幾個(gè)常數(shù)間隔,于是:
GLB(λ,μ)≤umin≤u≤umax≤LUB(λ,μ)
式中umin 和 umax是常數(shù)。傳統(tǒng)方法把加速度進(jìn)行了過多的約束,使速度也有過多的約束。
3、最佳控制問題的公式化
現(xiàn)在我們得到根據(jù)幾何路徑和輸入系統(tǒng)規(guī)定參數(shù)的機(jī)械手動(dòng)力方程,就可以分析實(shí)際控制問題了。機(jī)械手控制的目的是以最小的輸入得到最大的動(dòng)力輸出,這可以用最佳控制語言來描述,常用的方法使龐特里亞金最大值原理[11]。最大值問題即點(diǎn)的連接問題,除了一些簡(jiǎn)單的點(diǎn)不能使用閉環(huán)控制,而且很難以數(shù)字的方式解決。我們使用最大值原理獲得加工質(zhì)量而不僅僅是獲得方程的解,這個(gè)解將用于之后的最小時(shí)間求解。
考慮實(shí)際情況,最低成本即最短加工時(shí)間,就是求機(jī)械手運(yùn)動(dòng)最大速度,可以表示為:
C=0tf l ? dt (8)
這里tf由電子激光器決定,價(jià)值函數(shù)C必須服從下面給出的3個(gè)約束:機(jī)械手的動(dòng)力微分方程約束(即式(6a),(6b));輸入量要求,關(guān)節(jié)驅(qū)動(dòng)器輸入扭矩允許范圍要求(即|ui|≤umaxi);第三個(gè)參數(shù)是空間參數(shù)設(shè)置,機(jī)械手運(yùn)動(dòng)到達(dá)指定工位不能與如何物體相碰。假定理想的幾何方程已經(jīng)把最小時(shí)間控制參數(shù)化,就像之前希望的(即等式(3)),但最初的點(diǎn)為λ=0,結(jié)束點(diǎn)為λ=λmax且dfidλ存在,這樣保證(6a),(6b)存在,同時(shí)當(dāng)λ從0到λmax方程是單調(diào)的。把這些代入動(dòng)力方程,我們得到如下的最短時(shí)間方程(簡(jiǎn)稱MTPP)。
MTPP:求出x0=λ0,μ0和ui0 通過將式(8)代入(6a),(6b), |ui|≤umaxi ,及邊界條件
μ0=μ0 , μtf=μf (9a)
λ0=0 , λtf=λmax (9b)
3.1、最大原則的應(yīng)用
為了使0≤λ≤λmax需要增加一個(gè)第三個(gè)狀態(tài)方程,第三狀態(tài)v,并要求:
v=λ2l-λ+λmax-λ2lλ-λmax (10)
其中:lx=1 (x≥0) 0 (x<0)
v≥0要求邊界約束v0=vtf=0這樣v無限接近0,當(dāng)λ在0≤λ≤λmax中間隔取值使v無限接近0。
在對(duì)狀態(tài)方程進(jìn)行變化前,先定義函數(shù):
這樣就可以簡(jiǎn)化公式,得到:
區(qū)間M表示機(jī)械手功能的二次形式,如果把參數(shù)qi加入到動(dòng)能方程,得到K=Mμ2/2 ;Q表示科里奧利的組成和沿著路勁加上參數(shù)化的地心引力;區(qū)間R表示摩擦力,S給出沿著路勁的地心引力,U表示輸入重力區(qū)間。
之前的MTPP可以這樣變化
將(8)代入(11a),(11b),(11c),(7d),(9a),(9b)求y0=λ0,μ0,v0和U0的極小值,通過MTPP變換哈米爾頓函數(shù)變?yōu)椋?
或使用前面的替換得到哈米爾頓函數(shù)
對(duì)μ求導(dǎo),
對(duì)λ求導(dǎo),
最后對(duì)v求導(dǎo),
應(yīng)用最大值原理,我們需求出H在(12b)中的最小值,聯(lián)合各式(11a),(11b),(11c),(9a)及(7b),且H必須滿足邊界條件。
這里y是矢量(λ,μ,v)的狀態(tài)向量,我們得到一個(gè)簡(jiǎn)單的輸入?yún)^(qū)間
在式(14)中知道H不明確依賴t,也可以看作 是由約束(9)和vtf=0得到。
注:哈米爾頓函數(shù)(12b)在U上線性,且由于ui和dfidλ在[0,λmax]有界使得U有界,這就要求U的最優(yōu)解必須滿足繼電氣控制邏輯,
在最優(yōu)軌跡上任意點(diǎn)的式(12b)中U的解是U的最大或最小值,通過對(duì)ui求導(dǎo)得到U的極值,關(guān)于ui的等式約束為ui=gi(λ)μ+ hi (λ,μ),得到
由于U的繼電器控制和給定的參數(shù)(λ,μ)U的大小線性地跟隨μ,μ也必須滿足繼電氣控制邏輯。因此μ等于GLB(λ,μ)或LUB(λ,μ)。再考慮三維空間,μ作用于不均等加工時(shí)輸入等式約束線上一點(diǎn),如果 i-th 的聯(lián)合輸入在約束的一邊慢慢趨近于最大值,將推使機(jī)械手向正方向推動(dòng)。
無論輸入的系數(shù)是否為零以上的推論都成立,即p2在(13a)中不為0。如果p2只在孤立的點(diǎn)處為0,則得到各處的最佳控制。另一方面,如果p2在某些區(qū)間內(nèi)為0,我們有下列的定理。
定理1:如果p2在區(qū)間[t1,t2] (t1
S0>Umin(0) 則p2(0)<0,p2(tf)>0 ;
證明:已知0≤λ≤λmax則當(dāng)t=tf有μ≤0,又μtf=0,則當(dāng)tλmax。但在tf處μtf=M-1U-S<0,又M>0于是U-S<0,在時(shí)間tf時(shí)H的值為0,則
如果p2(tf)≤0,那么Htf>0,矛盾,故有p2(tf)>0;
確定p2(0)的符號(hào)及μ(0)的大小,同理可得μ0>0 ,則U-S>0,使用繼電器控制于是有U=Umax否則 U=Umin且Umin-S<0,但如果U=Umax則p2<0,于是p2(0)<0.
這些理論的一個(gè)重要原則是開關(guān)點(diǎn)個(gè)數(shù)為奇數(shù),如果開關(guān)點(diǎn)個(gè)數(shù)為偶數(shù),p2(tf)的符號(hào)將和p2(0)的符號(hào)相同,則sinp2tf=(-1)msin( p20)其中m為符號(hào)變化次數(shù)。
4、相平面解釋
在相位平面中審查系統(tǒng)行為,相位平面軌跡的方程由方程(11 b )及(11 a)獲得
有趣的是整個(gè)時(shí)間T從開始到結(jié)束可以寫為
然后將得到給定的整體最小參數(shù),這就希望μ越大越好。
參數(shù)μ有兩個(gè)影響因數(shù):運(yùn)動(dòng)軌跡的斜率和μ值的大小。用μ除以μ得到dμdλ=μμ ;為了得到μ就必須考慮μ的范圍,通過λ和μ的特征值,我們有LUB(λ,μ)< GLB(λ,μ), μ不存在允許值。對(duì)于λ的每個(gè)值,對(duì)應(yīng)一個(gè)由不等式UBi(λ,μ)- LBi (λ,μ)≥0決定的μ值。對(duì)于所有的i,j不等式UBi(λ,μ)- LBi (λ,μ)≥0都成立。不等式?jīng)Q定的區(qū)間重合處相平面的軌跡不能丟失,這一區(qū)域?qū)?huì)作為i和j不等式最大、最小相位檢測(cè)區(qū),即
對(duì)不等式進(jìn)行變化
或
除以Mi?Mj
左邊是關(guān)于μ的二次方程,如果對(duì)于所有的i,Si≤umaxi成立,則μ=0時(shí)上面的不等式成立,就能從二次方式中得到μ的邊界值。
引入簡(jiǎn)化方程:
不要把Cij和C或Cijk弄混了,于是不等式簡(jiǎn)化為:
Aijμ2+Bijμ+Cij+Dij≥0 (17b)
注:由定義Aij=-Aji,Bij=-Bji,Cij=-Cji,Dij=-Dji,對(duì)于所有的i和j能被互相交換、對(duì)稱或者系數(shù)的反對(duì)稱,得到不等式
-Aijμ2-Bijμ+Cij-Dij≥0 (17c)
當(dāng)i≠j時(shí),有n(n-1)/2對(duì)方程,n為機(jī)械手自由度數(shù)。
5、最佳軌跡確定
為了說明我們先找出一個(gè)無摩擦機(jī)械手最優(yōu)軌跡的運(yùn)算法則,運(yùn)算法則包含普通情況,在零磨擦情況,我們有n(n -1)/2 個(gè)關(guān)于μ的解,每一個(gè)解都是關(guān)于μ=0對(duì)稱的。在相平面內(nèi)沒有需要避開的孤島,唯一的限制是 μ由一對(duì)連續(xù)的曲線軌跡分段連續(xù)導(dǎo)出。最佳的軌跡能構(gòu)建在叫做構(gòu)建無摩擦最優(yōu)軌跡運(yùn)算法則(簡(jiǎn)稱ACOTNF)。
第一步:從λ=0,μ=μ0構(gòu)建具有最大加速度值的軌跡,延長(zhǎng)這一曲線直到它在相平面內(nèi)穿越過可行域或越過λ=λmax,注意“離開可行域 " 暗示如果軌道的一部份碰巧與可行域接口的一個(gè)斷面重合,那么軌跡應(yīng)該沿著接口被延長(zhǎng),直到碰觸到可行域的邊緣,否則軌跡將不連續(xù)。
第二步:從λ=λmax,μ=μf 轉(zhuǎn)折點(diǎn)建立第二個(gè)曲線軌跡,它是一個(gè)減速曲線。這一個(gè)曲線應(yīng)該被延長(zhǎng),直到它離開可行域或越過λ=0。
第三步:這兩個(gè)曲線交點(diǎn)即轉(zhuǎn)折點(diǎn),從λ=0到轉(zhuǎn)折點(diǎn)的第一條曲線和從轉(zhuǎn)折點(diǎn)到λ=λmax的第二條曲線組成運(yùn)動(dòng)的最佳軌跡。運(yùn)算法則到此次結(jié)束。
第四步:如果兩條曲線在區(qū)域內(nèi)不相交,那么它們一定離開可行域,稱加速度離開可行域的點(diǎn)為λ1,這是可行域邊界曲線上的一個(gè)點(diǎn)。如果邊界曲線由μ=g(λ)給出,從λ1處沿著曲線搜索,直到找到點(diǎn)使 dμdλ=dgdλ 。這個(gè)點(diǎn)作為下一個(gè)轉(zhuǎn)換點(diǎn),記為λd。
第五步:從λd向后建立一個(gè)減速曲線,直到它與加速曲線相交,這樣得到另一個(gè)轉(zhuǎn)折點(diǎn)。
第六步:從λd建立一個(gè)加速曲線,延長(zhǎng)曲線直到它與減速曲線相交或者離開可行域。如果它與減速曲線相交,那么得到另一個(gè)轉(zhuǎn)折點(diǎn)。如果曲線離開可行域,那么重新計(jì)算第四步。
這個(gè)運(yùn)算法則依次交替加速減速計(jì)算給出最佳的運(yùn)動(dòng)軌跡,在討論軌道的最優(yōu)性之前,必須保證ACOTNF 的所有階段是可行的而且 ACOTNF 會(huì)結(jié)束。
回到最初的問題,步驟1、2、3、5、6明確可行,但是第4步要求找到函數(shù)的0點(diǎn)。在給定的狀態(tài)之下,函數(shù)至少存在一個(gè)零點(diǎn)嗎?回答是的,可由下證明:
注意,在λ=λ1處 ,曲線軌跡從可行域溢出。
同樣地,在點(diǎn)λ=λ2 處減速曲線在可行域外經(jīng)過,軌跡一定穿過內(nèi)部。如果在這些點(diǎn)處可行域的邊界曲線的斜率連續(xù),那么我們有
g(λ)是可行域邊界方程,dμdλ=dg(λ)dλ的值必須在λ1和λ2之間變化。如果 g(λ )在這一范圍內(nèi)連續(xù),那么至少存在一個(gè)零點(diǎn)。然而, g( λ )只是大體上分段地可見,所以可能導(dǎo)出不連續(xù)的點(diǎn),這種情況有可能「零點(diǎn)不存在」,事實(shí)上零點(diǎn)總是存在的,我們通過下列的定理證明。
定理3a:左導(dǎo)數(shù)使?λ=dμdλ-dg(λ)dλ,如果?λ1>0且?λ2<0,則?λ在區(qū)間[λ1,λ2]至少存在一個(gè)零點(diǎn)。
證明:如果g( λ )的微分在區(qū)間[λ1,λ2]連續(xù),那么一定存在一個(gè)零點(diǎn)。如果g( λ )不連續(xù),假設(shè)不存在零點(diǎn),則在g( λ )溢出區(qū)間存在一個(gè)或更多的點(diǎn),符號(hào)變化發(fā)生于這一個(gè)或更多的這些點(diǎn)。
如果不是這樣,那么在g( λ )存在一個(gè)符號(hào)變化的點(diǎn)使g( λ )微分連續(xù),而且因此會(huì)有一個(gè)零點(diǎn)。兩個(gè)限制參數(shù)記為g1,g2;g1作用于λ<λd,g2作用于λ>λd,由limλ>0>limφλ有
對(duì)于ε>0我們有代入約束,由g( λ )=min gi( λ )得g1 λd+ε λdi的約束解,和假設(shè)矛盾。這樣至少存在一個(gè)點(diǎn)使?λ為零。這一個(gè)定理的圖解意義在圖 7 說明。從圖中看出, g( λ )一定超出區(qū)域,且?λ是分段連續(xù)的,曲線向上跳躍。證明完畢。
為了要證明ACOTNF 結(jié)束,我們對(duì)函數(shù)fi(λ) 進(jìn)行一些假設(shè) ,假設(shè)fi可分段求解且由有限個(gè)不含實(shí)際價(jià)值的數(shù)組成。非正式地,因?yàn)閼T性矩陣,科里奧利數(shù)列,重力加速度等是全局解析函數(shù),而且自從路徑被限制之后是分段求解的,我們已經(jīng)處理的所有函數(shù)也是分段求解的,函數(shù)?λ也是分段求解的,于是將會(huì)因此在每個(gè)區(qū)域中產(chǎn)生一個(gè)零點(diǎn)或有限個(gè)零點(diǎn)。如果?λ間隔地為0,軌跡將沿著邊界停止在間隔結(jié)束的地方,相同的零間隔不會(huì)引起問題。只有間隔的最右面點(diǎn)可能是一個(gè)交換點(diǎn),因此只有如此有限的間隔會(huì)引起ACOTNF 有限的反復(fù)。如此收斂被保證,因此有限數(shù)目的解域我們有下列的定理:
定理3b:如果函數(shù)fi有有限個(gè)實(shí)際價(jià)值解,那么函數(shù)?λ存在一定數(shù)量的間隔結(jié)束于區(qū)域外的零。
證明:慣性矩陣,科里奧利陣列,重力加速度在 qi 中分段解,fiλ在λ處的解等等作為λ函數(shù)(就像公式(4a)和(4b))的分段解或有限的單解。公式(7b)中的M,Q,R,S也是單個(gè)的解。一個(gè)在有限區(qū)間內(nèi)沒有奇點(diǎn)的實(shí)際價(jià)值的解析函數(shù),一定存在有限個(gè)零點(diǎn)或同一零點(diǎn),工程量M必須在區(qū)間內(nèi)為零。如果假設(shè)
我們可以得到所有的Mi零點(diǎn)。如果其中一個(gè)Mi不為零,就不存在邊界曲線,就沒有零點(diǎn)。只要有兩個(gè)或更多不為零的點(diǎn),就可得到邊界曲線。坐標(biāo)i,j代入式(17b)(用=代替≥)得到曲線,式(17b)中系數(shù)A,B,C,D排除在Mi中的零之外,由于Mi存在零點(diǎn),考慮用Mi中的零點(diǎn)進(jìn)行區(qū)間分割。在每個(gè)小區(qū)間內(nèi),只有一個(gè)(17b)方程有效。在區(qū)間內(nèi)μ是λ的一個(gè)解,邊界曲線g( λ )是特解,?λ也是特解且在每個(gè)區(qū)間內(nèi)存在一個(gè)或數(shù)個(gè)零點(diǎn)。由于?λ在區(qū)間內(nèi)存在一個(gè)或數(shù)個(gè)零點(diǎn),因此區(qū)間個(gè)數(shù)是有限的,且結(jié)束于區(qū)域外的零。證明完畢。
定理4:由ACOTNF產(chǎn)生的任何軌跡在最短時(shí)間控制上是最優(yōu)的。
證明:該定理的證明是直接證明。假設(shè)一個(gè)軌跡比由ACOTNF算法產(chǎn)生的軌跡有更小的運(yùn)動(dòng)時(shí)間。由等式(8)可知,必然存在λ使新軌跡上的點(diǎn)(λ,μ’)高于ACOTNF軌跡上的點(diǎn)(λ,μ),即μ’>μ。否則,就不存在一個(gè)運(yùn)動(dòng)時(shí)間更短的軌跡。我們根據(jù)最大原則分析可知解不唯一,即存在數(shù)條最大加減速曲線,所以我們只能應(yīng)用那些不確定的軌跡。現(xiàn)在有四種可能,(λ,μ’)可能位于ACOTNF軌跡初始的加速段,也可能位于最后的減速段,也有可能位于其他的加速或減速軌跡上。在第一種情況下,新軌跡的初始值必須大于ACOTNF的初始值。否則,新的軌跡必須在某些點(diǎn)上具有比ACOTNF更大的加速度,而這是不可能的,因?yàn)锳COTNF軌跡擁有可允許的最大加速度。新軌跡因此就可能達(dá)到合適的臨界條件。第二種情況與之類似。因?yàn)椋é?,μ’)點(diǎn)在ACOTNF軌跡上,新軌跡必須比擁有最大的減速度的ACOTNF軌跡減速更快才能達(dá)到相同的臨界條件。這也是不可能的,因?yàn)锳COTNF使用最大的減速度。在第三種情況下,(λ,μ’)在其他的加速軌跡上,在這種情況下,通向(λ,μ’)點(diǎn)的軌跡必須移出可行域的邊界。否則,這些軌跡必須通過ACOTNF軌跡的加速階段,因?yàn)樗鼈兺ㄟ^邊界上的一個(gè)點(diǎn)。新軌跡在該相交點(diǎn)的加速度將大于ACOTNF的軌跡,同樣,這也是不可能的。最后一種情況與前者類似。從(λ,μ’)出發(fā)的加速或者減速軌跡必須要么與可行域的邊界相交,要么比ACOTNF減速軌跡減速快,因此,無解。證明完畢。
這種產(chǎn)生最優(yōu)軌跡的方法可以在相位平面內(nèi)任何有可行域的情況下工作,而不只是無摩擦的情況。基本思想是無限接近可行域的邊緣而不超出它。因此軌跡僅僅是沒有接觸到非可行域。在實(shí)際中這當(dāng)然會(huì)很危險(xiǎn),因?yàn)榭刂葡到y(tǒng)輸入和測(cè)試系統(tǒng)參數(shù)的小錯(cuò)誤都將很可能使機(jī)器人偏離預(yù)定的軌跡。然而從理論上說,這個(gè)軌跡是最節(jié)約時(shí)間的。
我們現(xiàn)在考慮一般的情況,即摩擦力足以使相位平面產(chǎn)生孤島。在這種情況下,該算法必須用一種超微不同的形式來展現(xiàn)。因?yàn)榇嬖跀?shù)條邊界曲線而不是一個(gè),不可能像ACOTNF中做的那樣只研究零點(diǎn)的一個(gè)函數(shù)。因此我們不再在算法過程中尋找零點(diǎn),而是一次性的全找出來。然后建立沒有邊界的軌跡,不管這些邊界是可行域的邊緣還是孤島的邊緣。合適的軌跡可以通過搜索結(jié)果曲線圖找到——一直選擇盡可能高的軌跡,有必要的話回溯。更正式的,最優(yōu)軌跡建立算法是:
第一步:建立初始的加速軌跡。(與ACOTNF相同)
第二步:建立最終的減速軌跡。(與ACOTNF相同)
第三步:計(jì)算可行域邊線和所有的孤島邊線的函數(shù)?(λ)。在每一個(gè)零點(diǎn),建立一個(gè)以零點(diǎn)為轉(zhuǎn)換點(diǎn)的軌跡,就像ACOTNF的第五步和第六步。轉(zhuǎn)換方向(加速到減速或者反過來)應(yīng)該以不使軌跡離開可行域?yàn)闇?zhǔn)來選擇。延長(zhǎng)每條軌跡,使它或者離開可行域或者通過λmax.
第四步:找到軌跡的所有交點(diǎn)。這是潛在的轉(zhuǎn)換點(diǎn)。
第五步:從λ=0,μ=μC穿過網(wǎng)格,這些網(wǎng)格是由從起始點(diǎn)到終點(diǎn)的最高的軌跡形成的。這在下面的網(wǎng)格穿越算法中有介紹。
穿越有上面的第三步和第四步產(chǎn)生的軌跡形成的網(wǎng)格是對(duì)曲線圖的一個(gè)搜索,目的是要找到最終的減速軌跡。如果設(shè)想一個(gè)人沿著這些軌跡搜索這些網(wǎng)格,那么如果這可能的話他就會(huì)一直左轉(zhuǎn)。如果一個(gè)轉(zhuǎn)向引向了死角,那么就有必要回溯,然后就向右轉(zhuǎn)了。整個(gè)過程是遞歸的,就像瀏覽樹狀圖的過程一樣。
算法包含兩個(gè)過程,一個(gè)是搜索加速曲線,另一個(gè)搜索減速曲線。算法是:
加速搜索:在當(dāng)前的(加速)軌跡上,找到最后一個(gè)轉(zhuǎn)換點(diǎn)。在這一點(diǎn),當(dāng)前的軌跡到達(dá)一個(gè)減速軌跡。如果那條曲線是最終的減速軌跡,那么現(xiàn)在考慮的轉(zhuǎn)換點(diǎn)就是最終的最優(yōu)軌跡的一個(gè)轉(zhuǎn)換點(diǎn)。否則,從當(dāng)前的轉(zhuǎn)換點(diǎn)開始進(jìn)行減速搜索。如果減速搜索成功,那么當(dāng)前的點(diǎn)就是最優(yōu)軌跡的一個(gè)轉(zhuǎn)換點(diǎn)。否則,沿當(dāng)前的加速曲線回到前一個(gè)轉(zhuǎn)換點(diǎn),重復(fù)這個(gè)過程。
減速搜索:在當(dāng)前的(減速)軌跡,找到第一個(gè)轉(zhuǎn)換點(diǎn)。從該點(diǎn)開始應(yīng)用加速搜索。如果成功,那么當(dāng)前的點(diǎn)就是一個(gè)最優(yōu)軌跡的轉(zhuǎn)換點(diǎn),則前移至下一個(gè)轉(zhuǎn)換點(diǎn)并重復(fù)這個(gè)過程。
這兩個(gè)算法一直是首先尋找速度最高的曲線,因?yàn)榧铀偎阉骺偸菑募铀偾€的末端開始,而減速搜索總是從減速曲線的開端開始。因此算法找到(如果有可能)速度最快的軌跡,因此搜索時(shí)間最短。
這個(gè)算法的最優(yōu)性和一致性的證明實(shí)質(zhì)上與ACOTNF是一樣的,這里不再重復(fù)。注意在ACOTNF的一致性證明中,在零摩擦情況下只存在一條邊界曲線的事實(shí)沒有用到;因此同樣的證明也適用于高摩擦條件下。
6.討論和總結(jié)
在這篇文章里,我們展示了一種獲得在提供理想的幾何軌跡和輸入扭轉(zhuǎn)約束力的條件下機(jī)械手運(yùn)動(dòng)最小時(shí)間控制軌跡的方法。
就像前面提出的,最優(yōu)軌跡可能接觸到可行域的邊界,產(chǎn)生相當(dāng)危險(xiǎn)的情況。但是,如果在計(jì)算中使用略微保守的扭轉(zhuǎn)約束值,那么實(shí)際的可行域就會(huì)略微大于計(jì)算可行域,留出失誤的空間。
在高摩擦和低摩擦情況下的算法都已經(jīng)展示了。在這兩種情況下,算法產(chǎn)生“僅僅丟失”非可行域的軌跡,不管丟失的非可行域部分是一個(gè)孤島還是有較高的速度限制形成的域。
假設(shè)機(jī)器人的輸入轉(zhuǎn)矩被約束,我們得到一個(gè)測(cè)試機(jī)器人沿給定的空間路徑運(yùn)動(dòng)的最小時(shí)間開環(huán)控制的算法。但是,對(duì)不同的輸入?yún)?shù)也應(yīng)該可能獲得解。因?yàn)樵撍惴óa(chǎn)生真正的最小時(shí)間解,而不是一個(gè)近似值,所以該算法的結(jié)果能夠?yàn)槠渌穆窂皆O(shè)計(jì)算法提供一個(gè)絕對(duì)的測(cè)量參考。
參考文獻(xiàn)
[1] D. E. Whitney, "Resolved motion rate control for manipulators and human prostheses", IEEE Trans on Man-Manchine Systems, vol. MMS-10, pp. 47-53, June 1969.
[2] J. Y. S Luh, M. W. Walker, and R. P. C. Paul, "Resolved acceleration control of mechanical manipulators", IEEE Trans on Automatic Control, vol. AC-25, no. 3, pp. 468-474, June 1980.
[3] S. Dubowsky and D. T. DesForges, 'The application of model-referenced adaptive control to robot manipulators",ASME J DSUC, vol. 101, pp. 193-200, September 1979.
[4] A.J. Koivo, and T. -H. Guo, "Adaptive linear controller for robotic manipulators", IEEE Trans. on Automatic Control.vol. AC-28, no. 2, pp. 162-1 70, February 1983.
[5] B.K. Kim, and K. G. Shin, "An adaptive podel following control of robotic manipulators", to appear in IEEE Trans Aerospace and Electronic Systems.
[6] J.Y. S. Luh and M. W. Walker, "Minimum-time aiong the path for a mechanical manipulator", Proc . of the IEEE CDC, Dec. 7-9, 1977, New Orleans, pp. 755-759.
[7] J.Y. S. Luh, and C. S. Lin, "Optimum path planning for mechanical manipulators", .4,5,VE Jounzal 3f Dynarzic Systems, Mearurement and Control , vol. 2, pp. 330-335, June 1981.
[8] M.E. Kahn and B. E. Roth, "The near minimum-time control of open-loop articulated kinematic chains", .ASME J . DSMC, vol. 93, no. 3, pp. 164-1 72, September 1971.
[9] B.K. Kim and K. G. Shin, "Near-optimal control of industrial manipulators with a weighted minimum time fuel criterion", to appear in Proc. 22nd CDC: San Antonio, TX., Dec. 1983.
[10] C.-S. Lin, P.-R. Chang, and J. Y. S. Luh, "Formulation and optimization of cubic polynomial joint trajectories for mechanical manipulators", Proc . 21 CDC, Orlando, FL., Dec. 1982.
[11] D. E. Kirk, Optimal control theory: an introduction , Prentice-Hall, Englewood Cliffs, New Jersey, 1971, pp, 227-238.
[12] R. P. C. Paul, Robot manipulators: Mathematics. programming. and control, MIT Press, Cambridge, Mass., 1981, pp. 157-1 95.
[13] D. Ter Haar, Elements of Hamiltonian mechanics , Secondedition, Pergamon Press, 1971, pp. 35-49.
附圖:
附件2
外文資料
機(jī)械工程機(jī)械工程系系 機(jī)械設(shè)計(jì)制造及自動(dòng)化專業(yè)機(jī)械設(shè)計(jì)制造及自動(dòng)化專業(yè)論文答辯論文答辯工業(yè)機(jī)械手設(shè)計(jì)工業(yè)機(jī)械手設(shè)計(jì)液壓原理及傳動(dòng)設(shè)計(jì)液壓原理及傳動(dòng)設(shè)計(jì)學(xué)生:李剛學(xué)生:李剛指導(dǎo)老師:丁蘭指導(dǎo)老師:丁蘭英英目錄引言引言第一章第一章機(jī)械手設(shè)計(jì)要求分析機(jī)械手設(shè)計(jì)要求分析 第二章第二章液壓系統(tǒng)設(shè)計(jì)液壓系統(tǒng)設(shè)計(jì) 第三章第三章集成塊的設(shè)計(jì)集成塊的設(shè)計(jì) 第四章第四章液壓集成塊液壓集成塊CAD技術(shù)技術(shù) 參考文獻(xiàn)參考文獻(xiàn)引言引言工業(yè)機(jī)器人一般指用于機(jī)械制造業(yè)中代替人完成具有大批量、高質(zhì)量要求的工作,如汽車制造、摩托車制造、艦船制造、某些家電產(chǎn)品(電視機(jī)、電冰箱、洗衣機(jī))、化工等行業(yè)自動(dòng)化生產(chǎn)線中的點(diǎn)焊、弧焊、噴漆、切割、電子裝配及物流系統(tǒng)的搬運(yùn)、包裝、碼垛等作業(yè)第一章第一章機(jī)械手設(shè)計(jì)要求分析機(jī)械手設(shè)計(jì)要求分析 1.設(shè)計(jì)目的和要求設(shè)計(jì)目的和要求 上下料用機(jī)械手能在不同高度與不連續(xù)的工作臺(tái)之間實(shí)現(xiàn)機(jī)械零件的重復(fù)取放,代替人工勞動(dòng),減輕了人工勞動(dòng)強(qiáng)度,提高了自動(dòng)化水平和勞動(dòng)生產(chǎn)率,保證了產(chǎn)品和工人的質(zhì)量與安全。2.機(jī)械手簡(jiǎn)介與分析機(jī)械手簡(jiǎn)介與分析 1.坐標(biāo)形式分析坐標(biāo)形式分析 上下料用機(jī)械手采用圓柱坐標(biāo)的結(jié)構(gòu)形式,主要的組成部分有:升降機(jī)構(gòu),回轉(zhuǎn)機(jī)構(gòu),手臂伸縮結(jié)構(gòu)等,在這三中機(jī)構(gòu)中采用液壓驅(qū)動(dòng)傳動(dòng)方式,能保證機(jī)械手的整體結(jié)構(gòu)的緊湊性,運(yùn)動(dòng)平穩(wěn)以及可以方便的實(shí)現(xiàn)無級(jí)調(diào)速。2.運(yùn)動(dòng)分析運(yùn)動(dòng)分析 如圖所示,機(jī)械手在工作過程中需三種運(yùn)動(dòng),其中手臂的伸縮和立柱的升降為兩種直線運(yùn)動(dòng),而手臂的回轉(zhuǎn)為圓周運(yùn)動(dòng),所以采用圓柱坐標(biāo)形式。其特點(diǎn)是,結(jié)構(gòu)簡(jiǎn)單,手臂運(yùn)動(dòng)范圍大,有較高的定位準(zhǔn)確度。3.機(jī)械手的工作范圍機(jī)械手的工作范圍 機(jī)械手在水平方向上的伸縮范圍為至兩個(gè)不同高度的工作臺(tái)的距離,手臂伸縮總行程為:300-500mm,手臂回轉(zhuǎn)的運(yùn)動(dòng)范圍為:0-240度,立柱升降的垂直方向的距離為兩工作臺(tái)的高度差,總行程為:0-200mm 第二章第二章液壓系統(tǒng)設(shè)計(jì)液壓系統(tǒng)設(shè)計(jì) 1 1.根據(jù)工作要求確定一個(gè)工作循環(huán)周期根據(jù)工作要求確定一個(gè)工作循環(huán)周期的運(yùn)動(dòng)過程的運(yùn)動(dòng)過程 2.2.據(jù)工作循環(huán)過程確定系統(tǒng)工況分析圖據(jù)工作循環(huán)過程確定系統(tǒng)工況分析圖 3.3.擬訂液壓系統(tǒng)的工作原理圖擬訂液壓系統(tǒng)的工作原理圖 4.4.根據(jù)整個(gè)系統(tǒng)的液壓元件需求選擇標(biāo)根據(jù)整個(gè)系統(tǒng)的液壓元件需求選擇標(biāo)準(zhǔn)的液壓元件準(zhǔn)的液壓元件 5 5 液壓缸尺寸的確定及安全強(qiáng)度的校核液壓缸尺寸的確定及安全強(qiáng)度的校核1.1.確定一個(gè)工作循環(huán)周期的運(yùn)動(dòng)過程確定一個(gè)工作循環(huán)周期的運(yùn)動(dòng)過程 1.手臂位于初始位置(1)2.手臂伸長(zhǎng)至工作臺(tái)(1)3.手指抓取工件4.手臂縮回5.立柱升高至至工作臺(tái)6.手臂回轉(zhuǎn)角度至位置(2)7.手臂伸長(zhǎng)并釋放工件8.手臂縮回9.手臂回轉(zhuǎn)角度,至位置(1)10.立柱下降至工作臺(tái)(1)工作行程范圍:角度0-240度手作工作范圍200mm高度工作范圍200mm2.分析運(yùn)動(dòng)過程確定系統(tǒng)工況分析圖分析運(yùn)動(dòng)過程確定系統(tǒng)工況分析圖3.擬訂液壓系統(tǒng)的工作原理圖擬訂液壓系統(tǒng)的工作原理圖 1.根據(jù)整個(gè)系統(tǒng)的工作完成步驟,選擇合適的液壓缸。伸縮運(yùn)動(dòng)和升降運(yùn)動(dòng) 選擇單桿活塞液壓缸,回轉(zhuǎn)運(yùn)動(dòng)選擇擺動(dòng)液壓缸,保證整個(gè)系統(tǒng)能夠達(dá)到穩(wěn)定的運(yùn)動(dòng)效果。2.液壓回路的選擇液壓回路的選擇 確定液壓執(zhí)行元件以后,根據(jù)設(shè)備的共組特點(diǎn)和工作要求確定對(duì)主要性能起決定性影響的主要回路,機(jī)械手液壓系統(tǒng)主要有針對(duì)伸縮運(yùn)動(dòng),升降運(yùn)動(dòng)和回轉(zhuǎn)運(yùn)動(dòng)的三個(gè)主要運(yùn)動(dòng)回路。綜合以上的動(dòng)作,原理以及元件,繪制液壓系統(tǒng)原理圖。下圖為本機(jī)械手液壓系統(tǒng)的工作原理圖 2.5液壓缸尺寸的確定及安全強(qiáng)度的校核液壓缸尺寸的確定及安全強(qiáng)度的校核 1.伸縮液壓缸的設(shè)計(jì)計(jì)算2.擺動(dòng)缸的設(shè)計(jì)計(jì)算 3.升降機(jī)構(gòu)的設(shè)計(jì)計(jì)算第三章第三章 集成塊的設(shè)計(jì)集成塊的設(shè)計(jì) 1 1 設(shè)計(jì)分析設(shè)計(jì)分析 2 2 根據(jù)具體的要求進(jìn)行設(shè)計(jì)計(jì)算根據(jù)具體的要求進(jìn)行設(shè)計(jì)計(jì)算 3 3 下面為集成塊的設(shè)計(jì)步驟下面為集成塊的設(shè)計(jì)步驟 4 4 液壓集成塊的加工工藝液壓集成塊的加工工藝 2 2 根據(jù)具體要求進(jìn)行設(shè)計(jì)計(jì)算根據(jù)具體要求進(jìn)行設(shè)計(jì)計(jì)算 上下料用的機(jī)械手液壓系統(tǒng)的集成塊設(shè)計(jì)系統(tǒng)見集成塊裝配圖,它包括地板塊,升降機(jī)構(gòu)控制集成塊,回轉(zhuǎn)機(jī)構(gòu)控制集成塊,伸縮機(jī)構(gòu)控制集成塊以及頂蓋等五個(gè)集成塊組成。下面針對(duì)整個(gè)系統(tǒng)中的伸縮缸液壓控制回路集成塊為例子,具體說明整個(gè)集成塊的設(shè)計(jì)計(jì)算過程:3.液壓元件的選擇液壓元件的選擇為了能滿足整個(gè)循環(huán)的工作要求,則該回路共需四個(gè)液壓元件,有相關(guān)手冊(cè)查得它們的型號(hào)和規(guī)格,以及安裝底板在安裝這些元件時(shí)候應(yīng)考慮的油孔的相對(duì)位置情況等 3 3 下面為集成塊的設(shè)計(jì)步驟下面為集成塊的設(shè)計(jì)步驟 確定通道的孔徑,集成塊上的公用通道,即壓力油孔P,回油孔T,泄露油孔L,以及四個(gè)安裝孔,壓力油孔由液壓泵流量決定,本回路流量約為30 L/min 則取壓力油孔的孔徑為12mm,回油孔和泄露油孔也取孔徑為12mm。直接與液壓元件連接的液壓油孔由選定的液壓元件規(guī)格確定,由于所選液壓閥的通徑都為10mm,則統(tǒng)一取孔徑為12mm,方便加工。而孔與孔之間的連接孔(即工藝孔)也取12,并且要求用螺塞在集成塊表面堵死,不允許堵孔用的螺塞對(duì)其他的液壓元件和結(jié)合面有干涉作用。3.集成塊上液壓元件的布置,把做好的液壓元件樣板在集成塊各個(gè)視圖上進(jìn)行布局,有的液壓元件需要連接板,則樣板以連接板為準(zhǔn)。在布局時(shí)應(yīng)該避免電磁換向閥兩端的電磁鐵與其他部分或元件想干涉,液壓元件的布置應(yīng)以在集成塊上加工的孔最少為最佳。如圖5所示,孔道相通的液壓元件應(yīng)該盡可能布置在同一水平面上,或在直徑d的范圍內(nèi)(如圖5 a)否則要鉆中間油孔(如圖5 b,c),不通油孔之間的最小壁厚h必須進(jìn)行強(qiáng)度校核(如圖5 d)。液壓元件在水平上的孔道若與公共油孔相通,則應(yīng)盡可能地布置在同一垂直位置或在直徑d的范圍(如圖5 a,b),否則要鉆中間孔道(如圖6 c),集成塊前后與左右連接的孔道應(yīng)相互垂直,不然也要鉆中間孔道(如圖6 d)。設(shè)計(jì)專用集成塊時(shí),要注意其高度應(yīng)該比裝在其上的液壓元件最大橫向尺寸大,以避免上下集成塊上的液壓元件相互干涉,影響集成塊組之間的緊固問題。4.集成塊上液壓元件布置程序集成塊上液壓元件布置程序電磁換向閥布置在集成塊的前面和后面,先布置垂直位置,后布置水平位置,要避免電磁換向閥的固定螺孔與閥口通道、集成塊固定螺孔相通。液壓元件泄漏孔可考慮與回油孔合并。水平位置孔道可分為三層進(jìn)行布置。根據(jù)水平孔道布置的需要,液壓元件可以上下左右移動(dòng)一段距離,具體可參見圖6。溢流閥的先導(dǎo)閥部分可伸出集成塊外,有的元件如單向閥,可以橫向布置。第四章第四章 液壓集成塊液壓集成塊CADCAD技術(shù)技術(shù) 液壓集成塊的CAD的研究與開發(fā)已為液壓工程設(shè)計(jì)提供了有力的支持,但其發(fā)展?jié)摿€沒有充分發(fā)掘。由于液壓集成塊的高附價(jià)值,液壓集成塊CAD技術(shù)的應(yīng)用開發(fā)不但能夠滿足個(gè)別企業(yè)液壓集成塊的專業(yè)急需,同時(shí)也有望走上商品化專業(yè)軟件市場(chǎng)。對(duì)液壓集成塊CAD技術(shù)的研究開發(fā)提出全面的商品化,工程化要求并采取有效的方法學(xué),技術(shù)和工具,將液壓集成塊CAD技術(shù)應(yīng)用軟件推向用戶市場(chǎng)是液壓集成塊CAD領(lǐng)域的重要工作。參考文獻(xiàn):參考文獻(xiàn):1工業(yè)機(jī)器人 徐元昌編制 中國(guó)輕工業(yè)出版社2液壓傳動(dòng)與控制 賈銘新主編 國(guó)防工業(yè)出版社3液壓與氣壓傳動(dòng) 左健民主編4機(jī)器人應(yīng)用技術(shù) 孟繁華編 哈爾濱工業(yè)大學(xué)出版社5機(jī)器人動(dòng)力學(xué) 趙錫編著 上海交通大學(xué)6.機(jī)器人學(xué) 蔡自興著 清華大學(xué)出版社7.機(jī)器人和機(jī)械手控制系統(tǒng) 劉興良著 新時(shí)代出版社8.賈竹青.液壓集成塊設(shè)計(jì)法分析.1998(1)9.濮鳳根,胡偉民.關(guān)于液壓集成塊CAD研究開發(fā)的進(jìn)一步探討.199710.Solomatine,D.Object-orientation in hydraulic modeling architectures.Journal of computing in civil engineering,1996(4)