YZ16全液壓振動(dòng)壓路機(jī)傳動(dòng)系統(tǒng)設(shè)計(jì)含5張CAD圖
YZ16全液壓振動(dòng)壓路機(jī)傳動(dòng)系統(tǒng)設(shè)計(jì)含5張CAD圖,yz16,液壓,振動(dòng),壓路機(jī),傳動(dòng)系統(tǒng),設(shè)計(jì),cad
13
YZ16全液壓振動(dòng)壓路機(jī)傳動(dòng)系統(tǒng)設(shè)計(jì)
YZ16全液壓振動(dòng)壓路機(jī)傳動(dòng)系統(tǒng)設(shè)計(jì)開題報(bào)告
目錄
1.綜述 2
1.1壓路機(jī)的定義 2
1.2 國內(nèi)壓實(shí)機(jī)械和壓實(shí)技術(shù)概況 2
1.3國外壓實(shí)機(jī)械和壓實(shí)技術(shù)現(xiàn)狀 4
2.課題研究的目的和意義 5
3.課題設(shè)計(jì)內(nèi)容 6
3.1課題設(shè)計(jì)內(nèi)容 6
3.1.1行走液壓系統(tǒng)的設(shè)計(jì) 6
3.1.2 振動(dòng)液壓系統(tǒng)設(shè)計(jì) 6
3.1.3轉(zhuǎn)向液壓系統(tǒng)設(shè)計(jì) 6
3.2設(shè)計(jì)的重點(diǎn)和難點(diǎn) 7
4.方案論證 7
4.1行走液壓系統(tǒng)的設(shè)計(jì) 7
4.1.1 全輪驅(qū)動(dòng)液壓壓路機(jī)的優(yōu)點(diǎn) 7
4.1.2 全輪驅(qū)動(dòng)液壓壓路機(jī)的缺點(diǎn) 8
4.2振動(dòng)液壓系統(tǒng)設(shè)計(jì) 8
4.2.1開始液壓振動(dòng)系統(tǒng) 8
4.2.2閉式液壓振動(dòng)系統(tǒng) 9
4.2.3工作裝置液壓振動(dòng)系統(tǒng)形式的選用 10
4.3轉(zhuǎn)向液壓系統(tǒng)設(shè)計(jì) 10
5.進(jìn)度安排 12
6.主要參考文獻(xiàn) 12
YZ16全液壓振動(dòng)壓路機(jī)傳動(dòng)系統(tǒng)設(shè)計(jì)
1.綜述
1.1壓路機(jī)的定義
壓路機(jī)在工程機(jī)械中屬于道路設(shè)備的范疇,廣泛用于高等級(jí)公路、鐵路、機(jī)場(chǎng)跑道、大壩、體育場(chǎng)等大型工程項(xiàng)目的填方壓實(shí)作業(yè),可以碾壓沙性、半粘性及粘性土壤、路基穩(wěn)定土及瀝青混凝土路面層。全液壓振動(dòng)壓路機(jī)是利用其自身的重力和振動(dòng)壓實(shí)各種建筑和筑路材料。 在公路建設(shè)中,振動(dòng)壓路機(jī)最適宜壓實(shí)各種非粘性土壤、碎石、碎石混合料以及各種瀝青混凝土而被廣泛應(yīng)用。
根據(jù)壓實(shí)機(jī)械的工作原理、結(jié)構(gòu)特點(diǎn)、傳動(dòng)形式、操作方法和用途的不同,有不同的分類方法,習(xí)慣上把壓實(shí)機(jī)械分為壓路機(jī)和夯實(shí)機(jī)兩大類: 1、壓路機(jī):按壓實(shí)原理,壓路機(jī)可分為靜作用壓路機(jī)、振動(dòng)壓路機(jī)和組合式壓路機(jī)。靜作用壓路機(jī)又可分為光輪壓路機(jī)和輪胎壓路機(jī)。振動(dòng)壓路機(jī)可分為手扶式振動(dòng)壓路機(jī)、自行式振動(dòng)壓路機(jī)、兩鋼輪串聯(lián)式振動(dòng)壓路機(jī)和拖式振動(dòng)壓路機(jī)。振動(dòng)壓路機(jī)按振動(dòng)機(jī)構(gòu)分又可分為:圓周振動(dòng);扭轉(zhuǎn)振動(dòng)即振蕩;智能振動(dòng),其中包括:垂直振動(dòng)、斜向振動(dòng)和水平振動(dòng);復(fù)式振動(dòng)即扭轉(zhuǎn)振動(dòng)和軸向振動(dòng)的疊加:混沌振動(dòng)壓路機(jī)即主頻附近的寬頻激振。2、夯實(shí)機(jī):夯實(shí)機(jī)有蛙式打夯機(jī)、振動(dòng)平板夯、振動(dòng)沖擊夯和爆炸夯四種。振動(dòng)平板夯又可分前行和可逆行振動(dòng)平板夯兩種。振動(dòng)沖擊夯又分為電動(dòng)和內(nèi)燃振動(dòng)沖擊夯兩種。
1.2 國內(nèi)壓實(shí)機(jī)械和壓實(shí)技術(shù)概況
建國以前,我國只有一些壓路機(jī)的修配工廠,直到1940年,大連仿制出了我國第一臺(tái)蒸汽壓路機(jī)。建國以后,上海市工程局廈門筑路機(jī)械廠(洛陽建筑機(jī)械廠前身)于1952年成功地制造了6t三輪壓路機(jī),1954年廈門筑路機(jī)械廠由上海遷往洛陽,改名為洛陽建筑機(jī)械廠,并于1957年試制成功了12/15t三輪壓路機(jī),洛陽建筑機(jī)械廠成為我國第一個(gè)生產(chǎn)壓路機(jī)的專業(yè)廠。
進(jìn)入20世紀(jì)60年代,徐州工程機(jī)械廠、上海工程機(jī)械廠和三明重型機(jī)械廠先后加入了壓路機(jī)生產(chǎn)廠行列,先后設(shè)計(jì)出6/8t、8/10t、10/12t、12/15t光輪壓路機(jī),淘汰了蒸汽壓路機(jī)。1961年,西安公路學(xué)院與西安筑路機(jī)械廠聯(lián)合開發(fā)了3t自行式振動(dòng)壓路機(jī),標(biāo)志著我國自行開發(fā)設(shè)計(jì)振動(dòng)壓實(shí)機(jī)械的起步。1964年,洛陽建筑機(jī)械廠設(shè)計(jì)出4.5t振動(dòng)壓路機(jī)。1966年,徐州工程機(jī)械廠設(shè)計(jì)了9/16t輪胎壓路機(jī)。
20世紀(jì)70年代,交通部系統(tǒng)的德州筑路機(jī)械廠(山東公路機(jī)械廠前身)、西安筑路機(jī)械廠、四川公路機(jī)修廠和廊坊筑路機(jī)械廠也加入到壓路機(jī)的生產(chǎn)行列。1974年,洛陽建筑機(jī)械廠與長沙建筑機(jī)械研究所合作開發(fā)了10t輪胎驅(qū)動(dòng)壓路機(jī)和14t拖式振動(dòng)壓路機(jī)。20世紀(jì)80年代,邯鄲建筑機(jī)械廠、四平建筑機(jī)械廠、義烏建筑機(jī)械廠、長春工程機(jī)械廠、中建四局機(jī)械廠、陜西水利機(jī)械廠、常州市長江工程機(jī)械廠、江陰交通工程機(jī)械廠等都先后投產(chǎn)。洛陽建筑機(jī)械廠設(shè)計(jì)了6t、10t、12t、16t振動(dòng)壓路機(jī),邯鄲建筑機(jī)械廠設(shè)計(jì)了2t振動(dòng)壓路機(jī),陜西水利機(jī)械廠設(shè)計(jì)了拖式凸塊振動(dòng)壓路機(jī)。
20世紀(jì)80年代中期,我國開始引進(jìn)國外壓路機(jī)制造技術(shù)。1983年洛陽建筑機(jī)械廠引進(jìn)了美國Hrster公司技術(shù),合作生產(chǎn)了6t鉸接式振動(dòng)壓路機(jī);1984年徐州工程機(jī)械廠引進(jìn)瑞典Dynapac公司的CA25型輪胎驅(qū)動(dòng)振動(dòng)壓路機(jī)和CC21型串聯(lián)振動(dòng)壓路機(jī)技術(shù);1985年溫州冶金機(jī)械廠設(shè)計(jì)了19t振動(dòng)壓路機(jī);1987年洛陽建筑機(jī)械廠引進(jìn)德國Bomag公司的217DBW和141AD振動(dòng)壓路機(jī)技術(shù);江麓機(jī)械廠引進(jìn)了德國Vibromax公司的W1102系列振動(dòng)壓路機(jī)技術(shù)。以后,各生產(chǎn)廠家在此基礎(chǔ)上不斷開發(fā)新的產(chǎn)品,使本廠產(chǎn)品達(dá)到多品種系列化。
20世紀(jì)80年代后期,隨著基礎(chǔ)工業(yè)的發(fā)展,特別是液壓泵、馬達(dá)、振動(dòng)輪用軸承、橡膠減振器的引進(jìn)生產(chǎn),使振動(dòng)壓路機(jī)技術(shù)總體水平和可靠性有很大的提高,在基礎(chǔ)元件支持下,振動(dòng)壓路機(jī)引進(jìn)技術(shù)不斷得到消化吸收,國內(nèi)大專院校和科研院所的科研攻關(guān),使我國自行開發(fā)和設(shè)計(jì)振動(dòng)壓路機(jī)的能力有較大的提高,1990年西安公路交通大學(xué)與徐州工程機(jī)械廠共同開發(fā)了10t振蕩壓路機(jī),標(biāo)志著我國振動(dòng)壓路科研和產(chǎn)品開發(fā)達(dá)到新的水平。
從1960年以來,夯實(shí)機(jī)械也處于蓬勃發(fā)展時(shí)期,1961年長沙建筑機(jī)械研究所在總結(jié)群眾發(fā)明的基礎(chǔ)上,設(shè)計(jì)了蛙式夯土機(jī);同時(shí),廠所合作設(shè)計(jì)成功了爆炸式夯系列產(chǎn)品。20世紀(jì)70年代,長沙建筑機(jī)械研究所與制造廠合作開發(fā)了振動(dòng)平板夯系列。20世紀(jì)80年代,長沙機(jī)械研究所、北京建筑機(jī)械綜合研究所、建研院建筑機(jī)械化研究所與工廠合作,先后設(shè)計(jì)了不同型號(hào)的振動(dòng)沖擊夯。
目前,我國30多家工廠生產(chǎn)壓路機(jī),生產(chǎn)夯實(shí)機(jī)械的工廠多達(dá)數(shù)百家,已形成6—20t光輪壓路機(jī)、6—20t輪胎壓路機(jī)、0.5—20t振動(dòng)壓路機(jī)等三大系列的壓路機(jī)的批量生產(chǎn),基本上滿足了國內(nèi)需要。
我國壓路機(jī),整體技術(shù)水平與國外相比仍有差距,主要表現(xiàn)在:產(chǎn)品型號(hào)不全、重型和超重型壓路機(jī)生產(chǎn)數(shù)量和品種仍然較少、專用壓實(shí)設(shè)備缺乏、綜合技術(shù)經(jīng)濟(jì)指標(biāo)和自動(dòng)控制方面仍低于國外先進(jìn)水平。
1.3國外壓實(shí)機(jī)械和壓實(shí)技術(shù)現(xiàn)狀
國外壓實(shí)機(jī)械比較先進(jìn)的國家有:德國、美國、瑞典、日本、法國、英國和俄羅斯。光輪壓路機(jī)的產(chǎn)量逐年下降,目前生產(chǎn)量較大的有三輪壓路機(jī)(6—12t)、二軸串聯(lián)壓路機(jī)(2—13t)、三軸串聯(lián)壓路機(jī)(12—14t)。
光輪壓路機(jī)比較先進(jìn)的結(jié)構(gòu)是大滾輪直徑、全輪驅(qū)動(dòng)、液壓傳動(dòng)、液壓轉(zhuǎn)向機(jī)構(gòu)。日本酒井公司生產(chǎn)的R1和R2型全液壓光輪三輪壓路機(jī)采用了全輪驅(qū)動(dòng)鉸接轉(zhuǎn)向機(jī)構(gòu),是比較先進(jìn)的機(jī)種。光輪壓路機(jī)的技術(shù)簡單、維修方便、壽命長、施工工藝成熟、特別是價(jià)格便宜、因而尚有一定的市場(chǎng)需求。工業(yè)發(fā)達(dá)國家,在維修高速公路的磨耗層時(shí),二輪串聯(lián)光輪壓路機(jī)是合適的機(jī)種。
輪胎壓路機(jī)的應(yīng)用始于20世紀(jì)50年代,但直到20世紀(jì)60年代才因成功地采用輪胎集中調(diào)壓系統(tǒng),使技術(shù)日臻完善。
輪胎壓路機(jī)與光輪壓路機(jī)相比,其優(yōu)越性在于使被壓實(shí)材料有非常好的封閉性。除了適宜壓實(shí)瀝青攤鋪層,幾乎還能夠完成所有的壓實(shí)工作。自行式輪胎壓路機(jī)的機(jī)動(dòng)性好,便于運(yùn)輸與工地轉(zhuǎn)移。由于20世紀(jì)70年代振動(dòng)壓路機(jī)已解決了瀝青鋪裝層的壓實(shí)工藝問題,輪胎壓路機(jī)的發(fā)展余地也比較少了。但是,在修筑高等級(jí)路面時(shí),輪胎壓路機(jī)仍是不可缺少的機(jī)種。目前世界上主要壓路機(jī)生產(chǎn)廠家都生產(chǎn)輪胎壓路機(jī)。
國外振動(dòng)壓路機(jī)發(fā)展迅速,從產(chǎn)品品種、產(chǎn)量、銷售額等方面與其它壓路機(jī)相比,都占有較大的優(yōu)勢(shì)。
由于高速公路的發(fā)展,對(duì)基礎(chǔ)的承載能力需求越來越高,振動(dòng)壓路機(jī)被視為較理想的、能滿足要求的壓實(shí)機(jī)械,因而從20世紀(jì)50年代初就引起了人們對(duì)振動(dòng)壓路機(jī)的重視。本世紀(jì)20世紀(jì)30年代,德國最早利用振動(dòng)原理壓實(shí)土壤。羅申豪森(LOSE-AUSEN)公司率先設(shè)計(jì)了一臺(tái)安裝有振動(dòng)的平板壓實(shí)機(jī)的25t履帶式拖拉機(jī)。隨后生產(chǎn)出拖式振動(dòng)壓路機(jī),工作質(zhì)量為4—6t。當(dāng)時(shí),研究的主要問題是解決振動(dòng)壓路機(jī)的參數(shù)選擇和振動(dòng)軸軸承的壽命,瑞典壓實(shí)機(jī)械專家拉斯佛斯布德(Lars Forssblad)先生發(fā)明了撥球滾道振動(dòng)機(jī)構(gòu),獲得了專利權(quán)。這個(gè)機(jī)構(gòu)解決了振動(dòng)軸軸承的使用壽命問題。
20世紀(jì)50年代,歐洲各國開發(fā)了串聯(lián)式整體車架振動(dòng)壓路機(jī),并逐步改型。20世紀(jì)60年代,隨著對(duì)振動(dòng)壓路機(jī)的深入研究,振動(dòng)軸軸承性能、減振器性能和制造工藝水平不斷提高,促使振動(dòng)壓路機(jī)得到了飛速發(fā)展。此時(shí),輪胎驅(qū)動(dòng)鉸接式振動(dòng)壓路機(jī)、雙鋼輪串聯(lián)式振動(dòng)壓路機(jī)等產(chǎn)品相繼問世,振動(dòng)壓路機(jī)形成了兩個(gè)主要系列。
20世紀(jì)70年代以后,振動(dòng)壓路機(jī)家族先后出現(xiàn)了組合式、蟹形式、凸塊式、手扶式振動(dòng)壓路機(jī);調(diào)頻、調(diào)幅技術(shù)、全輪驅(qū)動(dòng)振動(dòng)技術(shù)被廣泛應(yīng)用于振動(dòng)壓路機(jī)。進(jìn)入20世紀(jì)80年代,壓實(shí)度的自動(dòng)測(cè)量技術(shù)、“機(jī)—電—液”一體化技術(shù)逐漸應(yīng)用于振動(dòng)壓路機(jī)上。
由于振動(dòng)壓路機(jī)壓實(shí)效果好、影響深度大、生產(chǎn)率高,而且適用于各種類型土壤的壓實(shí),因此,振動(dòng)壓路機(jī)和壓實(shí)施工工藝提出了不同的要求,工程的廣泛需求,促使振動(dòng)壓路機(jī)迅速發(fā)展。壓路機(jī)制造廠商已經(jīng)提供了各種形式振動(dòng)壓路機(jī),基本上滿足工程的需要。
20世紀(jì)80年代初,瑞典喬戴納米克(Geodynamik AB)研究所提出了新的壓實(shí)理論,即利用土力學(xué)交變剪應(yīng)變?cè)?,使土壤等壓?shí)材料的顆粒重新排列而得更加密實(shí)。根據(jù)該理論,1982年德國哈姆(HAMM)公司開發(fā)出新型振動(dòng)壓路機(jī),即震蕩壓路機(jī),1984年,世界首批震蕩壓路機(jī)開始銷售市場(chǎng)。
20世紀(jì)80年代末,日本生產(chǎn)出大噸位垂直振動(dòng)壓路機(jī),其振動(dòng)輪內(nèi)部采用雙軸交叉振動(dòng)法,使壓路機(jī)壓實(shí)深度深、壓實(shí)效果好且低速直線行駛穩(wěn)定。20世紀(jì)50年代,國外開始生產(chǎn)爆炸夯,但不久就被淘汰了,國外生產(chǎn)的夯實(shí)機(jī)械產(chǎn)品品種較多,產(chǎn)量較大的有以下兩種:(1)振動(dòng)平板夯,許多廠家都進(jìn)行系列生產(chǎn),自重60—600kg,較大型的振動(dòng)平板夯都可逆行;(2)振動(dòng)沖擊夯,是輕便靈活的機(jī)型,自重60—120kg。
2.課題研究的目的和意義
現(xiàn)代公路都是在原始地面基礎(chǔ)上,自下而上由自然土石方和各種混合料逐層鋪筑起來的各種結(jié)構(gòu)層。這些結(jié)構(gòu)層除了承受上層的重量載荷和車輛的流動(dòng)變載荷外,還要遭受同曬、雨淋、冰雪、洪水、地震等自然氣候?yàn)?zāi)害的侵蝕與破壞。如果各層材料壓實(shí)不足,將直接導(dǎo)致道路面層出現(xiàn)沉陷、波浪、裂紋等缺陷。路基和路面的早期破壞,將降低運(yùn)輸效率、提高運(yùn)輸成本、誘發(fā)交通事故、危及行車安全、大幅增加道路養(yǎng)護(hù)成本。
隨著交通流量與大噸位車輛的與日俱增,對(duì)道路強(qiáng)度、剛度、平整度和氣候穩(wěn)定性要求越來越高。為了適應(yīng)這些要求,必須對(duì)各鋪層材料運(yùn)用重型壓實(shí)機(jī)械進(jìn)行逐層壓實(shí)以達(dá)到高標(biāo)準(zhǔn)的密實(shí)度。經(jīng)過良好均勻壓實(shí)的鋪層,材料顆粒問摩擦阻力和內(nèi)聚力增大,道路強(qiáng)度、剛度和承載能力大大提高;材料內(nèi)部的空隙減少,顆粒之間結(jié)合更加緊密,能抵抗水的滲透,改善道路的水穩(wěn)定性和抗冰凍的能力;路面獲得好的平整度,車輛行駛更舒適、平穩(wěn)。工程實(shí)踐證明,將筑路材料的密實(shí)度增加1%,道路的承載能力會(huì)增加10%~15%。盡管壓實(shí)所需的費(fèi)用只占總施工預(yù)算的1%,---4%,但壓實(shí)結(jié)果對(duì)道路的使用壽命是至關(guān)重要的?。
我國公路建設(shè)正逐步采用高的壓實(shí)標(biāo)準(zhǔn),為達(dá)到這樣的標(biāo)準(zhǔn),國家建設(shè)部門規(guī)定,只有裝備16噸級(jí)以上重型振動(dòng)壓路機(jī)的施工單位才具備參與高等級(jí)公路建設(shè)的資質(zhì)。因此,隨著每年大量高速公路的開工建設(shè),市場(chǎng)對(duì)于重型振動(dòng)壓路機(jī)的需求量不斷增加?!壳皣a(chǎn)振動(dòng)壓路機(jī)在壓實(shí)性能、可靠性、液壓傳動(dòng)、電器控制等方面與國外產(chǎn)品相比還存在一定的差距,產(chǎn)品系列以中小噸位機(jī)械傳動(dòng)方式為主,而性能優(yōu)良的全液壓重型振動(dòng)壓路機(jī)主要依賴于進(jìn)口n,。要徹底改變這種現(xiàn)狀,就必須研制和生產(chǎn)具有自主知識(shí)產(chǎn)權(quán)的高性能重型振動(dòng)壓路機(jī),既能滿足市場(chǎng)需求,又能為我國高等級(jí)公路建設(shè)提供現(xiàn)代化的高效壓實(shí)裝備,確保公路建設(shè)的質(zhì)量。
3.課題設(shè)計(jì)內(nèi)容
3.1課題設(shè)計(jì)內(nèi)容
3.1.1行走液壓系統(tǒng)的設(shè)計(jì)
壓路機(jī)總體設(shè)計(jì)給出的基本參數(shù)條件下,通過計(jì)算得出液壓泵和液壓馬達(dá)的應(yīng)有排量,據(jù)此選擇合適規(guī)格的系列液壓泵、液壓馬達(dá),然后驗(yàn)算所有液壓泵、液壓馬達(dá)是否能滿足整機(jī)設(shè)計(jì)的要求。
3.1.2 振動(dòng)液壓系統(tǒng)設(shè)計(jì)
液壓振動(dòng)回路是振動(dòng)壓路機(jī)液壓系統(tǒng)中的一個(gè)重要組成部分,其性能決定了振動(dòng)壓路機(jī)的使用范圍和壓實(shí)效果。液壓振動(dòng)回路中的執(zhí)行機(jī)構(gòu)為振動(dòng)液壓馬達(dá),直接驅(qū)動(dòng)振動(dòng)軸(也是振動(dòng)輪的中心軸)。壓路機(jī)作業(yè)時(shí),振動(dòng)軸帶動(dòng)其上的一組偏心塊高速旋轉(zhuǎn)產(chǎn)生離心力,強(qiáng)迫振動(dòng)對(duì)地面產(chǎn)生很大的激振沖擊力,形成沖擊壓力波,向地表內(nèi)層傳播,引起被壓層顆粒振動(dòng)或產(chǎn)生共振,達(dá)到預(yù)期的壓實(shí)目的。
3.1.3轉(zhuǎn)向液壓系統(tǒng)設(shè)計(jì)
轉(zhuǎn)向腋下系統(tǒng)主要使用蟹行轉(zhuǎn)向液壓系統(tǒng),振動(dòng)壓實(shí)機(jī)械的蟹行轉(zhuǎn)向?qū)r青路面的壓實(shí)非常重要,近幾年國內(nèi)外的振動(dòng)壓路機(jī)上都已經(jīng)采用,而且取得了很好的壓實(shí)效果。
3.2設(shè)計(jì)的重點(diǎn)和難點(diǎn)
我認(rèn)為本次設(shè)計(jì)的重點(diǎn)和難點(diǎn)是壓路機(jī)液壓系統(tǒng),因?yàn)閴郝窓C(jī)液壓系統(tǒng)一般分為液壓驅(qū)動(dòng)行走系統(tǒng)、振動(dòng)系統(tǒng)和轉(zhuǎn)向系統(tǒng),其中主要是行走和振動(dòng)系統(tǒng)。許多資料對(duì)現(xiàn)代壓路機(jī)的振動(dòng)系統(tǒng)進(jìn)行了分析和總結(jié),而很少有針對(duì)其行走液壓系統(tǒng)系統(tǒng)的。
4.方案論證
4.1行走液壓系統(tǒng)的設(shè)計(jì)
根據(jù)前期的市場(chǎng)和技術(shù)調(diào)研,發(fā)現(xiàn)在道路的修筑過程中,路面以下各基礎(chǔ)層的壓實(shí)工程量是最大的。而全輪驅(qū)動(dòng)液壓壓路機(jī)主要適用于道路基礎(chǔ)的壓實(shí),不僅具有良好的壓實(shí)效果,而且相對(duì)于前后都是光輪的壓路機(jī),具備更大的驅(qū)動(dòng)力,更適應(yīng)在坡道上碾壓,在未成形路面上行駛。這種振動(dòng)壓路機(jī)在市場(chǎng)銷售量中占據(jù)了大部分的份額,具有廣泛的市場(chǎng)前景,自身的重量更是向著重型或超重型的方向發(fā)展。因此,本次設(shè)計(jì)選用全輪驅(qū)動(dòng)液壓壓路機(jī)。
4.1.1 全輪驅(qū)動(dòng)液壓壓路機(jī)的優(yōu)點(diǎn)
壓路機(jī)的碾壓速度是根據(jù)滾動(dòng)壓實(shí)工藝規(guī)范選定的。碾壓速度對(duì)土壤鋪層的壓實(shí)效果有著顯著的影響,振動(dòng)壓路機(jī)尤其如此。在鋪層厚度一定時(shí),壓路機(jī)傳遞給填方內(nèi)的能量E與碾壓遍數(shù)n和碾壓速度"之比值成正比,即E∞r(nóng)ezo。較低的碾壓速度,能使鋪層材料在壓實(shí)力的作用下有足夠的時(shí)間產(chǎn)生不可逆變形,更好地改變被壓材料的結(jié)構(gòu)。然而,碾壓速度還與生產(chǎn)率有著密切關(guān)系,因此,碾壓速度存在一個(gè)最佳值,這個(gè)最佳值就是在不降低壓實(shí)質(zhì)量的前提下,選擇盡可能高的碾壓速度,以保證壓路機(jī)有較高的生產(chǎn)率。對(duì)于不同的鋪層材料、鋪層厚度與壓實(shí)度要求,無級(jí)調(diào)速允許選用不同的碾壓速度,能較好地克服壓實(shí)質(zhì)量與生產(chǎn)效率之問的矛盾,優(yōu)化壓實(shí)過程。由于一個(gè)系統(tǒng)內(nèi)壓力的自然平衡及液壓軟管的相對(duì)柔性,使得液壓傳動(dòng)的動(dòng)力極易分流和長距離傳輸,這對(duì)于壓路機(jī)振動(dòng)輪行走的動(dòng)力傳遞很方便,從而能實(shí)現(xiàn)全輪驅(qū)動(dòng)。全輪驅(qū)動(dòng)不僅增加了壓路機(jī)的驅(qū)動(dòng)能力,而且能增大振動(dòng)壓路機(jī)的壓實(shí)能力和提高鋪筑表層的壓實(shí)質(zhì)量,還提高了驅(qū)動(dòng)橋的工作可靠性。
全輪驅(qū)動(dòng)充分利用了兩個(gè)車輪的附著能力,在匹配得當(dāng)?shù)臈l件下,一臺(tái)全輪驅(qū)動(dòng)單輪振動(dòng)壓路機(jī)的爬坡能力可以達(dá)到50%以上。在沙漠地帶壓實(shí)施工,砂性土壤的附著系數(shù)只有粘性土的50%~60%,而滾動(dòng)阻力系數(shù)卻是粘性土的1.2~1.5倍,單輪驅(qū)動(dòng)的振動(dòng)壓路機(jī)根本不能行走。全輪驅(qū)動(dòng)允許振動(dòng)輪有較大的分配重量,其分配比可從單輪驅(qū)動(dòng)的46.5%增加到62%。振動(dòng)輪的靜線壓力和激振力相應(yīng)地增大。壓路機(jī)的全輪驅(qū)動(dòng)是以其液壓傳動(dòng)為條件實(shí)現(xiàn)的。由于液流的自動(dòng)差速作用,能使壓路機(jī)的所有車輪實(shí)現(xiàn)驅(qū)動(dòng)而不會(huì)產(chǎn)生前后輪間的循環(huán)功率損失和相對(duì)滑移。車輪滑移會(huì)搓起被碾壓材料,造成新的表面不平整。
4.1.2 全輪驅(qū)動(dòng)液壓壓路機(jī)的缺點(diǎn)
全輪驅(qū)動(dòng)液壓傳動(dòng)系統(tǒng)的缺點(diǎn)主要表現(xiàn)在:
(1)單純的液壓系統(tǒng)不能用于低速運(yùn)行,因?yàn)橐后w的可壓縮性會(huì)引起壓路機(jī)的爬行,從而降低壓實(shí)工作質(zhì)量;
(2)液壓系統(tǒng)在高壓低速時(shí)的傳動(dòng)效率低下,在系統(tǒng)壓力35 MPa與馬達(dá)轉(zhuǎn)速300 r/min時(shí)的總效率不足70%,大量的機(jī)械能轉(zhuǎn)化成熱能;
(3)液壓一機(jī)械聯(lián)合傳動(dòng)使得壓路機(jī)行走傳動(dòng)系統(tǒng)總傳動(dòng)效率僅有60%左右,能源浪費(fèi)大,還造成了機(jī)器發(fā)熱;
(4)增加了液壓油的消耗,還容易造成環(huán)境污染;
(5)液壓油的清潔度至關(guān)重要,使得壓路機(jī)對(duì)制造與使用的條件苛刻,反而使得全液壓振動(dòng)壓路機(jī)的工作可靠性大打折扣;
4.2振動(dòng)液壓系統(tǒng)設(shè)計(jì)
4.2.1開始液壓振動(dòng)系統(tǒng)
開始回路液壓系統(tǒng),如圖4.1所示?;窘M成為:齒輪泵1、電液換向閥2、齒輪馬達(dá)3、穩(wěn)壓閥4和冷卻器5.其中的穩(wěn)壓閥由減壓閥和溢流閥組成,穩(wěn)壓閥和電液換向閥集成于一體,共同組成一個(gè)振動(dòng)閥單獨(dú)安裝在壓路機(jī)車架上。此系統(tǒng)僅能得到單頻率振動(dòng)。電液換向閥用于改變馬達(dá)的旋轉(zhuǎn)方向,以實(shí)現(xiàn)壓路機(jī)雙振幅的變換。液壓閥的控制用壓力油是由壓路機(jī)行走液壓系統(tǒng)中的供油泵提供的。單換向閥處于中位時(shí),閥體的四個(gè)通道相互串通,油泵即可卸荷,振動(dòng)就停止。
當(dāng)壓路機(jī)起振或變換振幅時(shí),偏心塊將產(chǎn)生很大的慣性力矩,使液壓系統(tǒng)中的附加壓力急劇增大。當(dāng)閥在開啟0.2-0.4s的瞬間,由于閥孔的開啟面積小,而在油路中造成一個(gè)壓力峰值,這一峰值壓力增大到一定程度的瞬間,溢流閥就會(huì)開啟卸載;待壓力平穩(wěn)之后溢流閥才關(guān)閉,使激振器進(jìn)入到正常運(yùn)轉(zhuǎn),從而保護(hù)了液壓元件。
該種液壓傳動(dòng)方案適宜于中等工作壓力。溢流閥的調(diào)定壓力縱使要比實(shí)際工作壓力高出2-3MPa。
圖4.1 開式液壓振動(dòng)系統(tǒng)
1-齒輪泵;2-電液換向閥;3-齒輪馬達(dá);4-溢流閥;5-冷卻器
開式系統(tǒng)的優(yōu)點(diǎn):結(jié)構(gòu)簡單,由于系統(tǒng)本身具有油箱,因此可以發(fā)揮油箱的散熱、沉淀雜質(zhì)的作用。
4.2.2閉式液壓振動(dòng)系統(tǒng)
閉式液壓振動(dòng)系統(tǒng)如圖4.2所示,其基本組成為:冷卻器1、斜盤式軸向柱塞變量泵2、儲(chǔ)能器3、組合閥4、定量柱塞馬達(dá)5。
此系統(tǒng)是用馬達(dá)的正反轉(zhuǎn)來調(diào)節(jié)振幅,并且能很容易地得到兩種頻率,必要時(shí)還可以實(shí)現(xiàn)無級(jí)調(diào)頻。這種閉式回路的振動(dòng)液壓系統(tǒng)可以選的工作壓力較大,在使用柱塞馬達(dá)時(shí)的最大工作壓力可達(dá)25Mpa,這樣就減少了液壓元件的規(guī)格尺寸。在振動(dòng)壓路機(jī)停振或轉(zhuǎn)換振幅時(shí),工作壓力常達(dá)35Mpa,也伴有瞬時(shí)沖擊壓力產(chǎn)生,但比開式回路系統(tǒng)要好得多。解決這一問題的有效方法是在液壓馬達(dá)回路中設(shè)置蓄能器,用作緩沖裝置。
圖4.2 閉式液壓振動(dòng)系統(tǒng)
1-冷卻器;2-斜盤式軸向柱塞泵;3-蓄能器;4-組合閥;5-定量柱塞馬達(dá)
閉式系統(tǒng)的優(yōu)點(diǎn):
1、 結(jié)構(gòu)比較緊湊,泵的自吸性好,系統(tǒng)與空氣接觸的機(jī)會(huì)較少,空氣不宜滲入系統(tǒng),故傳動(dòng)的平穩(wěn)性較好;
2、工作機(jī)構(gòu)的變速和換向靠調(diào)節(jié)泵或馬達(dá)的變量機(jī)構(gòu)實(shí)現(xiàn),避免了在開式系統(tǒng)換向過程中所出現(xiàn)的液壓沖擊和能量損失;
3、馬達(dá)的旋轉(zhuǎn)方向由雙向可變量的泵控制,輸出轉(zhuǎn)速可由改變泵的排量來實(shí)現(xiàn)。因此,這種系統(tǒng)可以實(shí)現(xiàn)變頻、變幅的功能;
4、 系統(tǒng)存在背壓且對(duì)稱工作,柱塞泵、馬達(dá)具有很高的容積效率。
4.2.3工作裝置液壓振動(dòng)系統(tǒng)形式的選用
由于振動(dòng)壓路機(jī)振動(dòng),行駛工作中正反方向工作及制動(dòng)等要求,使振動(dòng)壓路機(jī)液壓系統(tǒng)中的泵、馬達(dá)大多采用閉式回路方式。閉式回路采用雙向變量液壓泵,通過泵的變量改變油路中油的流量和方向,實(shí)現(xiàn)振動(dòng)壓路機(jī)的變速和換向,可以充分體現(xiàn)液壓傳動(dòng)的優(yōu)點(diǎn)。閉式系統(tǒng)的主泵上通常帶一小排量的補(bǔ)油泵,并集成補(bǔ)油溢流閥和不郵單向閥,而沖洗冷卻閥則集成于馬達(dá)。補(bǔ)油溢流閥調(diào)定補(bǔ)油壓力,補(bǔ)油單向閥選擇補(bǔ)油方向,向主油路低壓側(cè)補(bǔ)油,以補(bǔ)償由于泵、馬達(dá)容積損失及由沖洗冷卻閥組中泄漏的流量。補(bǔ)油泵的附加功率損失比較小,僅為總傳動(dòng)功率的1%-2%。
4.3轉(zhuǎn)向液壓系統(tǒng)設(shè)計(jì)
目前,在壓路機(jī)上都是采用了液壓傳動(dòng)的鉸接式液壓轉(zhuǎn)向系統(tǒng)。與傳統(tǒng)的阿克曼式轉(zhuǎn)向比較,鉸接轉(zhuǎn)向具有轉(zhuǎn)彎半徑小、機(jī)動(dòng)性好及牽引力大等優(yōu)點(diǎn)。
見圖4.3,為整體車架的轉(zhuǎn)向示意圖,根據(jù)偏轉(zhuǎn)輪的不同,可分為前輪偏轉(zhuǎn)、后輪偏轉(zhuǎn)和前后輪偏轉(zhuǎn)三種結(jié)構(gòu)型式。
前輪偏轉(zhuǎn)是靜載壓路機(jī)常用的轉(zhuǎn)向方式,轉(zhuǎn)彎半徑較大,前后輪的軌跡重疊性不好,影響路面平整質(zhì)量,但駕駛員可以根據(jù)前輪的偏轉(zhuǎn)程度來估計(jì)壓路機(jī)的行車路線,符合操作習(xí)慣,有利于安全駕駛。
后輪偏轉(zhuǎn)在壓路機(jī)的設(shè)計(jì)中很少采用,對(duì)于只用前輪驅(qū)動(dòng)和制動(dòng)的壓路機(jī),有利于保證上坡行駛的縱向穩(wěn)定性。
圖4.3 整體車架轉(zhuǎn)向示意圖
前后輪偏轉(zhuǎn),又稱為全輪轉(zhuǎn)向。當(dāng)偏轉(zhuǎn)的方向相反時(shí),壓路機(jī)的轉(zhuǎn)彎半徑最小,機(jī)動(dòng)性好,同時(shí)前后輪的軌跡重合,易于保證路面質(zhì)量平整;當(dāng)偏轉(zhuǎn)的方向相同,角度相等,此時(shí)前后輪軸互相平行,并相互錯(cuò)開一定的距離,此稱為“蟹行”。
但“蟹行”常用于雙鋼輪振動(dòng)壓路機(jī)的轉(zhuǎn)向,以提高壓實(shí)作業(yè)的貼邊性能,對(duì)于輪胎驅(qū)動(dòng)光輪振動(dòng)的壓路機(jī)則沒有什么實(shí)際意義。
對(duì)于偏轉(zhuǎn)輪轉(zhuǎn)向的壓路機(jī),有一個(gè)很大的缺點(diǎn),那就是偏轉(zhuǎn)輪處的車架只能設(shè)計(jì)在偏轉(zhuǎn)輪的上方,尤其是全輪轉(zhuǎn)向,整個(gè)車架都在前后輪上方。這種結(jié)構(gòu)上的缺陷,必然導(dǎo)致壓路機(jī)重心偏高,從而使壓路機(jī)行駛穩(wěn)定性差,在坡道上容易傾覆,給駕駛員帶來很大的危險(xiǎn)。因此整體式車架偏轉(zhuǎn)輪轉(zhuǎn)向的結(jié)構(gòu)一般只用于小噸位的壓路機(jī)。
見圖4.4,為鉸接式車架轉(zhuǎn)向示意圖,采用這種轉(zhuǎn)向結(jié)構(gòu)的壓路機(jī),其車架分成前后兩部分,通過垂直的鉸接銷連接。轉(zhuǎn)向時(shí),前后車架繞鉸接銷發(fā)生相對(duì)轉(zhuǎn)動(dòng),通過車架折腰而實(shí)現(xiàn)轉(zhuǎn)向。這種轉(zhuǎn)向方式轉(zhuǎn)彎半徑很小,機(jī)動(dòng)性好,前后輪的軌跡重疊,利于保證路面的壓實(shí)質(zhì)量。前車架設(shè)計(jì)成框架的形式,通過減振系統(tǒng)懸掛在振動(dòng)輪的四周,重心可以很低,基本上與前輪的軸心等高。由于前輪框架位于振動(dòng)輪的四周,駕駛員具有良好的前視野,對(duì)于待壓路面和光輪表面的情況一目了然。后車架設(shè)計(jì)成如圖的結(jié)構(gòu)形式,位于兩輪胎之間,前部上方安裝駕駛室,中部安裝發(fā)動(dòng)機(jī)、油泵和后橋總成等主要部件,后部設(shè)計(jì)成燃油箱,重心位置基本與輪胎的軸心等高,甚至更低。
圖4.4鉸接式車架轉(zhuǎn)向示意圖
通過上面的比較分析,我們發(fā)現(xiàn)鉸接轉(zhuǎn)向相比于偏轉(zhuǎn)轉(zhuǎn)向雖然存在轉(zhuǎn)向阻力偏大,直線行駛性能欠佳等缺點(diǎn),但還是具有更大的優(yōu)勢(shì),尤其是對(duì)于重型或超重型壓路機(jī)。因此,本次設(shè)計(jì)的振動(dòng)壓路機(jī)采用鉸接式車架折腰轉(zhuǎn)向的方案。
5.進(jìn)度安排
時(shí)間
內(nèi)容
2013年9月13日~9月27日
閱讀文獻(xiàn),查找資料,擬設(shè)計(jì)方案,完成開題報(bào)告等;
2013年9月28日~10月11日
擬訂各部分方案,繪制振動(dòng)輪總成圖;
2013年10月12日~11月17日
翻譯外文資料, 部件設(shè)計(jì),繪制部件圖;
2013年11月18日~12月7日
進(jìn)行關(guān)鍵元件校核,完成畢業(yè)設(shè)計(jì)說明書;
2013年12月8日~ 12月27日
整理畢業(yè)論文,答辯;
2013年12月28日~ 1月8日
修改、提交畢業(yè)論文、設(shè)計(jì)圖紙及相關(guān)附件
6.主要參考文獻(xiàn)
[1] 繼瑤.壓路機(jī)設(shè)計(jì)與應(yīng)用.北京:機(jī)械工業(yè)出版社,2000
[2] Lars Forssblad.Vibratory Soil and Rock Compactions.Stockolm Sweden,1981
[3]何挺繼,朱文天,鄧世新,筑路機(jī)械手冊(cè),北京:人民交通出版社,1997.5.
[4]徐慎初,振動(dòng)壓路機(jī)的振動(dòng)機(jī)構(gòu),建筑機(jī)械,2002(8).24~26。
[5]趙昱東,我國振動(dòng)壓路機(jī)的新發(fā)展,建筑機(jī)械化,2002(2).6~9。
[6]聶福全,國外振動(dòng)壓路機(jī)設(shè)計(jì)的發(fā)展趨勢(shì),水利電力機(jī)械,2002(12).37~39。
[7]祁雋燕,葛恒安,振動(dòng)壓路機(jī)與振動(dòng)壓實(shí)的前沿技術(shù),建筑機(jī)械,2002(9).35~38。
[8]范小彬等人,新技術(shù)在振動(dòng)壓路機(jī)設(shè)計(jì)開發(fā)中的應(yīng)用,情報(bào)綜述,2003(2).40~43。
[9]周萼秋,鄧愛民,李萬莉,現(xiàn)代工程機(jī)械,北京:人民交通出版社,1997.5.
[10]鄂俊太,韓志強(qiáng),林慕義,壓路機(jī)選型及壓實(shí)技術(shù),北京:人民交通出版社,1991.6.
[11]萬佩升,鄭忠敏,筑路工程機(jī)械,西安:西安公路交通大學(xué).
[12]張光裕,許純新,工程機(jī)械地盤設(shè)計(jì),北京:機(jī)械工業(yè)出版社,1988.11.
[13]鹿世敏,YDC10型串聯(lián)式雙鋼輪振蕩壓路機(jī),北京:建筑機(jī)械,1999.11.
[14]O.P.Minaev??DEVELOPMENT OF VIBRATORY METHOD FOR SOIL COMPACTION DURING CONSTRUCTION??Russia:Soil Mechanics and Foundation Engerring.vol.48..No.5. November.2011
[15]V.I.Erem’yants and M.Uraimor??Dynamics of hydraulic vibration machine for soil compaction??Russia??:Journal of Machinery Manufacture and Reliability.2009.Vol.38.No5.PP.422-430.
機(jī)械工程學(xué)院2013屆畢業(yè)設(shè)計(jì)(論文)開題交流討論記錄表
專業(yè)及方向: 機(jī)械制造工藝及設(shè)備 班級(jí): 091021B2
學(xué)生姓名
吳佳毅
指導(dǎo)教師
紀(jì)林章
課題名稱
YZ16全液壓振動(dòng)壓路機(jī)傳動(dòng)系統(tǒng)
交流討論記錄:
1、 確定了畢業(yè)設(shè)計(jì)課題名稱,布置在開題期間的主要任務(wù)是先選題、查閱相關(guān)中外文獻(xiàn)、準(zhǔn)備與畢業(yè)設(shè)計(jì)有關(guān)的資料(包括原理、計(jì)算方法等),寫一份詳細(xì)的開題報(bào)告和翻譯。
2、 行走液壓系統(tǒng)的設(shè)計(jì)選取全輪驅(qū)動(dòng),因?yàn)槿嗱?qū)動(dòng)充分利用了兩個(gè)車輪的附著能力,在匹配得當(dāng)?shù)臈l件下,一臺(tái)全輪驅(qū)動(dòng)單輪振動(dòng)壓路機(jī)的爬坡能力可以達(dá)到50%以上。在沙漠地帶壓實(shí)施工,砂性土壤的附著系數(shù)只有粘性土的50%~60%,而滾動(dòng)阻力系數(shù)卻是粘性土的1.2~1.5倍,單輪驅(qū)動(dòng)的振動(dòng)壓路機(jī)根本不能行走。
3、 振動(dòng)液壓系統(tǒng)設(shè)計(jì)選擇閉式液壓振動(dòng)系統(tǒng),因?yàn)殚]式系統(tǒng)結(jié)構(gòu)比較緊湊,泵的自吸性好,系統(tǒng)與空氣接觸的機(jī)會(huì)較少,空氣不宜滲入系統(tǒng),故傳動(dòng)的平穩(wěn)性較好;工作機(jī)構(gòu)的變速和換向靠調(diào)節(jié)泵或馬達(dá)的變量機(jī)構(gòu)實(shí)現(xiàn),避免了在開式系統(tǒng)換向過程中所出現(xiàn)的液壓沖擊和能量損失。
4、 轉(zhuǎn)向液壓系統(tǒng)設(shè)計(jì)選取鉸接式轉(zhuǎn)向液壓系統(tǒng),因?yàn)殂q接轉(zhuǎn)向相比于偏轉(zhuǎn)轉(zhuǎn)向雖然存在轉(zhuǎn)向阻力偏大,直線行駛性能欠佳等缺點(diǎn),但還是具有更大的優(yōu)勢(shì),尤其是對(duì)于重型或超重型壓路機(jī)。
意見或結(jié)論:
基本了解開題報(bào)告內(nèi)容要求及相關(guān)進(jìn)度要求
基本了解畢業(yè)設(shè)計(jì)課題內(nèi)容及要求
班級(jí)負(fù)責(zé)教師: 紀(jì)林章
專業(yè)教研室主任: 何玉安
2013年 9 月28日
機(jī)械工程學(xué)院
畢業(yè)設(shè)計(jì)(論文)開題報(bào)告指導(dǎo)教師評(píng)語表
指導(dǎo)教師評(píng)語:
吳佳毅同學(xué)在前一階段查閱了相關(guān)的文獻(xiàn)資料,對(duì)壓路機(jī)的功用、國內(nèi)外發(fā)展情況和發(fā)展方向有了初步的了解,對(duì)課題的設(shè)計(jì)內(nèi)容、重點(diǎn)和難點(diǎn)有了一定的認(rèn)識(shí)。開題報(bào)告中,他對(duì)壓路機(jī)傳動(dòng)系統(tǒng)的各個(gè)部分進(jìn)行了一定的論述,并針對(duì)設(shè)計(jì)任務(wù)初步選定了設(shè)計(jì)方案。開題報(bào)告方案制定基本合理,具有可行性,時(shí)間安排得當(dāng),能夠按時(shí)完成畢業(yè)設(shè)計(jì)內(nèi)容,報(bào)告書寫基本規(guī)范。同意開題。
指導(dǎo)教師:紀(jì)林章
2013 年 10 月8 日
畢業(yè)設(shè)計(jì)(論文)指導(dǎo)小組意見 :
審核人:
年 月 日
YZ16全液壓振動(dòng)壓路機(jī)傳動(dòng)系統(tǒng)設(shè)計(jì)
YZ16全液壓振動(dòng)壓路機(jī)傳動(dòng)系統(tǒng)設(shè)計(jì)
摘 要
振動(dòng)壓路機(jī)是利用其自身的重力和振動(dòng)壓實(shí)各種建筑和筑路材料。在公路建設(shè)中,振動(dòng)壓路機(jī)最適宜壓實(shí)各種非粘性土壤、碎石、碎石混合料以及各種瀝青混凝土而被廣泛應(yīng)用。目前國產(chǎn)振動(dòng)壓路機(jī)以中小噸位和機(jī)械傳動(dòng)方式為主,而性能優(yōu)良的全液壓重型振動(dòng)壓路機(jī)主要依賴于進(jìn)口。之所以出現(xiàn)處于這種狀況是由于全液壓壓路機(jī)液壓傳動(dòng)系統(tǒng)結(jié)構(gòu)比較復(fù)雜并且各類液壓元件加工復(fù)雜,為徹底改變這種現(xiàn)狀本文對(duì)現(xiàn)有壓路機(jī)液壓系統(tǒng)進(jìn)行調(diào)研,研制出結(jié)構(gòu)優(yōu)良的全液壓壓路機(jī)傳動(dòng)系統(tǒng)。
本文在理論分析和計(jì)算的基礎(chǔ)上,完成了YZ16型振動(dòng)壓路機(jī)液壓系統(tǒng)的設(shè)計(jì),在方案、結(jié)構(gòu)和設(shè)計(jì)方法上進(jìn)行了創(chuàng)新:采用全液壓的傳動(dòng)方案,通過3個(gè)相互獨(dú)立的液壓回路實(shí)現(xiàn)行駛、振動(dòng)和轉(zhuǎn)向三大基本功能,與機(jī)械傳動(dòng)相比在壓實(shí)效果、爬坡能力、質(zhì)量分配、操作控制和整體布局方面具備更大優(yōu)勢(shì)。轉(zhuǎn)向結(jié)構(gòu)采用鉸接式車架折腰轉(zhuǎn)向的方案,轉(zhuǎn)彎半徑小、機(jī)動(dòng)性好、前后輪跡重疊、重心低、駕駛員視野開闊。同時(shí)本文對(duì)分動(dòng)箱的機(jī)構(gòu)進(jìn)行了詳細(xì)的設(shè)計(jì)計(jì)算,為縮小分動(dòng)箱的體積本次采用齒面硬度達(dá)60HRC的齒輪和雙列滾柱軸承的結(jié)構(gòu)。
關(guān)鍵詞:振動(dòng)壓路機(jī);設(shè)計(jì);液壓系統(tǒng);分動(dòng)箱
Abstract
Vibratory roller is to use its own gravity and vibration compaction variety of building and road construction materials . In highway construction, the most suitable vibratory roller compacted variety of non- cohesive soils , gravel, crushed stone and a variety of asphalt concrete mixture has been widely used . Current domestic vibratory roller to small and medium tonnage and mechanical transmission mode based, and excellent performance heavy-duty hydraulic vibratory roller mainly dependent on imports. The reason why this situation is due in full hydraulic roller hydraulic system structure is more complex and complicated processing all types of hydraulic components , to completely change the situation this roller hydraulic system on the existing research , developed a well-structured full hydraulic roller transmission .
Based on the theoretical analysis and calculation , based on the completed YZ16 type vibratory roller hydraulic system design, program , structure and design methods on the innovation : the use of full hydraulic transmission scheme by three independent hydraulic circuits to achieve with , vibration and steering three basic functions , compared with mechanical transmission in the compaction effect , climbing ability , quality and distribution , operation control and overall layout has a greater advantage. Articulated frame steering structure using bow steering programs , small turning radius , mobility, front and rear tracks overlap , low center of gravity , driver vision . Meanwhile this paper Transfer case institutions carried out a detailed design calculations, in order to narrow the volume Transfer case The tooth surface hardness of 60HRC using gears and double row roller bearing structure .
Keywords: Vibrating roller ; Design ; Hydraulic system ; Transfer case
目錄
摘 要 1
Abstract 2
第一章 緒論 5
1.1壓路機(jī)的定義 5
1.2課題研究的目的和意義 5
1.3 國內(nèi)壓實(shí)機(jī)械和壓實(shí)技術(shù)概況 6
1.4國外壓實(shí)機(jī)械和壓實(shí)技術(shù)現(xiàn)狀 7
第二章 傳動(dòng)系統(tǒng)總體結(jié)構(gòu)設(shè)計(jì) 9
第三章 液壓系統(tǒng)設(shè)計(jì) 10
3.1行走液壓系統(tǒng)的設(shè)計(jì) 10
3.1.1 全輪驅(qū)動(dòng)液壓壓路機(jī)的優(yōu)點(diǎn) 10
3.1.2 全輪驅(qū)動(dòng)液壓壓路機(jī)的缺點(diǎn) 11
3.2振動(dòng)液壓系統(tǒng)設(shè)計(jì) 11
3.2.1開式液壓震動(dòng)系統(tǒng) 11
3.2.2閉式液壓振動(dòng)系統(tǒng) 12
3.2.3工作裝置液壓振動(dòng)系統(tǒng)形式的選用 13
3.3轉(zhuǎn)向液壓系統(tǒng)設(shè)計(jì) 13
3.4液壓系統(tǒng)原理圖 16
第四章 液壓系統(tǒng)計(jì)算與選型 17
4.1 液壓系統(tǒng) 17
4.1.1 行走液壓系統(tǒng) 17
4.1.2 振動(dòng)液壓系統(tǒng) 17
4.1.3 轉(zhuǎn)向液壓系統(tǒng) 18
4.2各液壓系統(tǒng)所需功率計(jì)算 18
4.2.1行駛液壓系統(tǒng)所需功率計(jì)算 18
4.2.2轉(zhuǎn)向液壓系統(tǒng)所需功率計(jì)算 19
4.2.3振動(dòng)液壓系統(tǒng)所需功率計(jì)算 19
4.3 主要液壓元件計(jì)算選型 20
4.3.1 行駛液壓系統(tǒng) 20
4.3.2 振動(dòng)液壓系統(tǒng) 21
4.3.3 轉(zhuǎn)向液壓系統(tǒng) 22
第五章 分動(dòng)箱設(shè)計(jì) 25
5.1分動(dòng)箱結(jié)構(gòu)設(shè)計(jì) 25
5.2分動(dòng)箱設(shè)計(jì)計(jì)算 25
5.2.1動(dòng)力參數(shù)計(jì)算 25
5.2.2行駛級(jí)齒輪傳動(dòng)設(shè)計(jì) 26
5.2.3轉(zhuǎn)向-振動(dòng)級(jí)齒輪傳動(dòng)設(shè)計(jì) 28
5.2.4輸入軸的設(shè)計(jì) 29
5.2.5輸出軸1的設(shè)計(jì) 30
5.2.6輸出軸2的設(shè)計(jì) 30
5.2.7 軸強(qiáng)度的校核 31
第六章 傳動(dòng)系統(tǒng)的保養(yǎng)與維修 32
6.1傳動(dòng)系統(tǒng)保養(yǎng) 32
6.2傳動(dòng)系統(tǒng)的維修 33
6.2.1常見故障排除 33
結(jié) 論 36
參考文獻(xiàn) 37
致 謝 38
第一章 緒論
1.1壓路機(jī)的定義
壓路機(jī)在工程機(jī)械中屬于道路設(shè)備的范疇,廣泛用于高等級(jí)公路、鐵路、機(jī)場(chǎng)跑道、大壩、體育場(chǎng)等大型工程項(xiàng)目的填方壓實(shí)作業(yè),可以碾壓沙性、半粘性及粘性土壤、路基穩(wěn)定土及瀝青混凝土路面層。全液壓振動(dòng)壓路機(jī)是利用其自身的重力和振動(dòng)壓實(shí)各種建筑和筑路材料。在公路建設(shè)中,振動(dòng)壓路機(jī)最適宜壓實(shí)各種非粘性土壤、碎石、碎石混合料以及各種瀝青混凝土而被廣泛應(yīng)用。
根據(jù)壓實(shí)機(jī)械的工作原理、結(jié)構(gòu)特點(diǎn)、傳動(dòng)形式、操作方法和用途的不同,有不同的分類方法,習(xí)慣上把壓實(shí)機(jī)械分為壓路機(jī)和夯實(shí)機(jī)兩大類: 1、壓路機(jī):按壓實(shí)原理,壓路機(jī)可分為靜作用壓路機(jī)、振動(dòng)壓路機(jī)和組合式壓路機(jī)。靜作用壓路機(jī)又可分為光輪壓路機(jī)和輪胎壓路機(jī)。振動(dòng)壓路機(jī)可分為手扶式振動(dòng)壓路機(jī)、自行式振動(dòng)壓路機(jī)、兩鋼輪串聯(lián)式振動(dòng)壓路機(jī)和拖式振動(dòng)壓路機(jī)。振動(dòng)壓路機(jī)按振動(dòng)機(jī)構(gòu)分又可分為:圓周振動(dòng);扭轉(zhuǎn)振動(dòng)即振蕩;智能振動(dòng),其中包括:垂直振動(dòng)、斜向振動(dòng)和水平振動(dòng);復(fù)式振動(dòng)即扭轉(zhuǎn)振動(dòng)和軸向振動(dòng)的疊加:混沌振動(dòng)壓路機(jī)即主頻附近的寬頻激振。2、夯實(shí)機(jī):夯實(shí)機(jī)有蛙式打夯機(jī)、振動(dòng)平板夯、振動(dòng)沖擊夯和爆炸夯四種。振動(dòng)平板夯又可分前行和可逆行振動(dòng)平板夯兩種。振動(dòng)沖擊夯又分為電動(dòng)和內(nèi)燃振動(dòng)沖擊夯兩種。
1.2課題研究的目的和意義
現(xiàn)代公路都是在原始地面基礎(chǔ)上,自下而上由自然土石方和各種混合料逐層鋪筑起來的各種結(jié)構(gòu)層。這些結(jié)構(gòu)層除了承受上層的重量載荷和車輛的流動(dòng)變載荷外,還要遭受同曬、雨淋、冰雪、洪水、地震等自然氣候?yàn)?zāi)害的侵蝕與破壞。如果各層材料壓實(shí)不足,將直接導(dǎo)致道路面層出現(xiàn)沉陷、波浪、裂紋等缺陷。路基和路面的早期破壞,將降低運(yùn)輸效率、提高運(yùn)輸成本、誘發(fā)交通事故、危及行車安全、大幅增加道路養(yǎng)護(hù)成本。
隨著交通流量與大噸位車輛的與日俱增,對(duì)道路強(qiáng)度、剛度、平整度和氣候穩(wěn)定性要求越來越高。為了適應(yīng)這些要求,必須對(duì)各鋪層材料運(yùn)用重型壓實(shí)機(jī)械進(jìn)行逐層壓實(shí)以達(dá)到高標(biāo)準(zhǔn)的密實(shí)度。經(jīng)過良好均勻壓實(shí)的鋪層,材料顆粒問摩擦阻力和內(nèi)聚力增大,道路強(qiáng)度、剛度和承載能力大大提高;材料內(nèi)部的空隙減少,顆粒之間結(jié)合更加緊密,能抵抗水的滲透,改善道路的水穩(wěn)定性和抗冰凍的能力;路面獲得好的平整度,車輛行駛更舒適、平穩(wěn)。工程實(shí)踐證明,將筑路材料的密實(shí)度增加1%,道路的承載能力會(huì)增加10%~15%。盡管壓實(shí)所需的費(fèi)用只占總施工預(yù)算的1%,---4%,但壓實(shí)結(jié)果對(duì)道路的使用壽命是至關(guān)重要的?。
我國公路建設(shè)正逐步采用高的壓實(shí)標(biāo)準(zhǔn),為達(dá)到這樣的標(biāo)準(zhǔn),國家建設(shè)部門規(guī)定,只有裝備16噸級(jí)以上重型振動(dòng)壓路機(jī)的施工單位才具備參與高等級(jí)公路建設(shè)的資質(zhì)。因此,隨著每年大量高速公路的開工建設(shè),市場(chǎng)對(duì)于重型振動(dòng)壓路機(jī)的需求量不斷增加?!壳皣a(chǎn)振動(dòng)壓路機(jī)在壓實(shí)性能、可靠性、液壓傳動(dòng)、電器控制等方面與國外產(chǎn)品相比還存在一定的差距,產(chǎn)品系列以中小噸位機(jī)械傳動(dòng)方式為主,而性能優(yōu)良的全液壓重型振動(dòng)壓路機(jī)主要依賴于進(jìn)口n,。要徹底改變這種現(xiàn)狀,就必須研制和生產(chǎn)具有自主知識(shí)產(chǎn)權(quán)的高性能重型振動(dòng)壓路機(jī),既能滿足市場(chǎng)需求,又能為我國高等級(jí)公路建設(shè)提供現(xiàn)代化的高效壓實(shí)裝備,確保公路建設(shè)的質(zhì)量。
1.3 國內(nèi)壓實(shí)機(jī)械和壓實(shí)技術(shù)概況
建國以前,我國只有一些壓路機(jī)的修配工廠,直到1940年,大連仿制出了我國第一臺(tái)蒸汽壓路機(jī)。建國以后,上海市工程局廈門筑路機(jī)械廠(洛陽建筑機(jī)械廠前身)于1952年成功地制造了6t三輪壓路機(jī),1954年廈門筑路機(jī)械廠由上海遷往洛陽,改名為洛陽建筑機(jī)械廠,并于1957年試制成功了12/15t三輪壓路機(jī),洛陽建筑機(jī)械廠成為我國第一個(gè)生產(chǎn)壓路機(jī)的專業(yè)廠。
進(jìn)入20世紀(jì)60年代,徐州工程機(jī)械廠、上海工程機(jī)械廠和三明重型機(jī)械廠先后加入了壓路機(jī)生產(chǎn)廠行列,先后設(shè)計(jì)出6/8t、8/10t、10/12t、12/15t光輪壓路機(jī),淘汰了蒸汽壓路機(jī)。1961年,西安公路學(xué)院與西安筑路機(jī)械廠聯(lián)合開發(fā)了3t自行式振動(dòng)壓路機(jī),標(biāo)志著我國自行開發(fā)設(shè)計(jì)振動(dòng)壓實(shí)機(jī)械的起步。1964年,洛陽建筑機(jī)械廠設(shè)計(jì)出4.5t振動(dòng)壓路機(jī)。1966年,徐州工程機(jī)械廠設(shè)計(jì)了9/16t輪胎壓路機(jī)。
20世紀(jì)70年代,交通部系統(tǒng)的德州筑路機(jī)械廠(山東公路機(jī)械廠前身)、西安筑路機(jī)械廠、四川公路機(jī)修廠和廊坊筑路機(jī)械廠也加入到壓路機(jī)的生產(chǎn)行列。1974年,洛陽建筑機(jī)械廠與長沙建筑機(jī)械研究所合作開發(fā)了10t輪胎驅(qū)動(dòng)壓路機(jī)和14t拖式振動(dòng)壓路機(jī)。20世紀(jì)80年代,邯鄲建筑機(jī)械廠、四平建筑機(jī)械廠、義烏建筑機(jī)械廠、長春工程機(jī)械廠、中建四局機(jī)械廠、陜西水利機(jī)械廠、常州市長江工程機(jī)械廠、江陰交通工程機(jī)械廠等都先后投產(chǎn)。洛陽建筑機(jī)械廠設(shè)計(jì)了6t、10t、12t、16t振動(dòng)壓路機(jī),邯鄲建筑機(jī)械廠設(shè)計(jì)了2t振動(dòng)壓路機(jī),陜西水利機(jī)械廠設(shè)計(jì)了拖式凸塊振動(dòng)壓路機(jī)。
20世紀(jì)80年代中期,我國開始引進(jìn)國外壓路機(jī)制造技術(shù)。1983年洛陽建筑機(jī)械廠引進(jìn)了美國Hrster公司技術(shù),合作生產(chǎn)了6t鉸接式振動(dòng)壓路機(jī);1984年徐州工程機(jī)械廠引進(jìn)瑞典Dynapac公司的CA25型輪胎驅(qū)動(dòng)振動(dòng)壓路機(jī)和CC21型串聯(lián)振動(dòng)壓路機(jī)技術(shù);1985年溫州冶金機(jī)械廠設(shè)計(jì)了19t振動(dòng)壓路機(jī);1987年洛陽建筑機(jī)械廠引進(jìn)德國Bomag公司的217DBW和141AD振動(dòng)壓路機(jī)技術(shù);江麓機(jī)械廠引進(jìn)了德國Vibromax公司的W1102系列振動(dòng)壓路機(jī)技術(shù)。以后,各生產(chǎn)廠家在此基礎(chǔ)上不斷開發(fā)新的產(chǎn)品,使本廠產(chǎn)品達(dá)到多品種系列化。
20世紀(jì)80年代后期,隨著基礎(chǔ)工業(yè)的發(fā)展,特別是液壓泵、馬達(dá)、振動(dòng)輪用軸承、橡膠減振器的引進(jìn)生產(chǎn),使振動(dòng)壓路機(jī)技術(shù)總體水平和可靠性有很大的提高,在基礎(chǔ)元件支持下,振動(dòng)壓路機(jī)引進(jìn)技術(shù)不斷得到消化吸收,國內(nèi)大專院校和科研院所的科研攻關(guān),使我國自行開發(fā)和設(shè)計(jì)振動(dòng)壓路機(jī)的能力有較大的提高,1990年西安公路交通大學(xué)與徐州工程機(jī)械廠共同開發(fā)了10t振蕩壓路機(jī),標(biāo)志著我國振動(dòng)壓路科研和產(chǎn)品開發(fā)達(dá)到新的水平。
從1960年以來,夯實(shí)機(jī)械也處于蓬勃發(fā)展時(shí)期,1961年長沙建筑機(jī)械研究所在總結(jié)群眾發(fā)明的基礎(chǔ)上,設(shè)計(jì)了蛙式夯土機(jī);同時(shí),廠所合作設(shè)計(jì)成功了爆炸式夯系列產(chǎn)品。20世紀(jì)70年代,長沙建筑機(jī)械研究所與制造廠合作開發(fā)了振動(dòng)平板夯系列。20世紀(jì)80年代,長沙機(jī)械研究所、北京建筑機(jī)械綜合研究所、建研院建筑機(jī)械化研究所與工廠合作,先后設(shè)計(jì)了不同型號(hào)的振動(dòng)沖擊夯。
目前,我國30多家工廠生產(chǎn)壓路機(jī),生產(chǎn)夯實(shí)機(jī)械的工廠多達(dá)數(shù)百家,已形成6—20t光輪壓路機(jī)、6—20t輪胎壓路機(jī)、0.5—20t振動(dòng)壓路機(jī)等三大系列的壓路機(jī)的批量生產(chǎn),基本上滿足了國內(nèi)需要。
我國壓路機(jī),整體技術(shù)水平與國外相比仍有差距,主要表現(xiàn)在:產(chǎn)品型號(hào)不全、重型和超重型壓路機(jī)生產(chǎn)數(shù)量和品種仍然較少、專用壓實(shí)設(shè)備缺乏、綜合技術(shù)經(jīng)濟(jì)指標(biāo)和自動(dòng)控制方面仍低于國外先進(jìn)水平。
1.4國外壓實(shí)機(jī)械和壓實(shí)技術(shù)現(xiàn)狀
國外壓實(shí)機(jī)械比較先進(jìn)的國家有:德國、美國、瑞典、日本、法國、英國和俄羅斯。光輪壓路機(jī)的產(chǎn)量逐年下降,目前生產(chǎn)量較大的有三輪壓路機(jī)(6—12t)、二軸串聯(lián)壓路機(jī)(2—13t)、三軸串聯(lián)壓路機(jī)(12—14t)。
光輪壓路機(jī)比較先進(jìn)的結(jié)構(gòu)是大滾輪直徑、全輪驅(qū)動(dòng)、液壓傳動(dòng)、液壓轉(zhuǎn)向機(jī)構(gòu)。日本酒井公司生產(chǎn)的R1和R2型全液壓光輪三輪壓路機(jī)采用了全輪驅(qū)動(dòng)鉸接轉(zhuǎn)向機(jī)構(gòu),是比較先進(jìn)的機(jī)種。光輪壓路機(jī)的技術(shù)簡單、維修方便、壽命長、施工工藝成熟、特別是價(jià)格便宜、因而尚有一定的市場(chǎng)需求。工業(yè)發(fā)達(dá)國家,在維修高速公路的磨耗層時(shí),二輪串聯(lián)光輪壓路機(jī)是合適的機(jī)種。
輪胎壓路機(jī)的應(yīng)用始于20世紀(jì)50年代,但直到20世紀(jì)60年代才因成功地采用輪胎集中調(diào)壓系統(tǒng),使技術(shù)日臻完善。
輪胎壓路機(jī)與光輪壓路機(jī)相比,其優(yōu)越性在于使被壓實(shí)材料有非常好的封閉性。除了適宜壓實(shí)瀝青攤鋪層,幾乎還能夠完成所有的壓實(shí)工作。自行式輪胎壓路機(jī)的機(jī)動(dòng)性好,便于運(yùn)輸與工地轉(zhuǎn)移。由于20世紀(jì)70年代振動(dòng)壓路機(jī)已解決了瀝青鋪裝層的壓實(shí)工藝問題,輪胎壓路機(jī)的發(fā)展余地也比較少了。但是,在修筑高等級(jí)路面時(shí),輪胎壓路機(jī)仍是不可缺少的機(jī)種。目前世界上主要壓路機(jī)生產(chǎn)廠家都生產(chǎn)輪胎壓路機(jī)。
國外振動(dòng)壓路機(jī)發(fā)展迅速,從產(chǎn)品品種、產(chǎn)量、銷售額等方面與其它壓路機(jī)相比,都占有較大的優(yōu)勢(shì)。
由于高速公路的發(fā)展,對(duì)基礎(chǔ)的承載能力需求越來越高,振動(dòng)壓路機(jī)被視為較理想的、能滿足要求的壓實(shí)機(jī)械,因而從20世紀(jì)50年代初就引起了人們對(duì)振動(dòng)壓路機(jī)的重視。本世紀(jì)20世紀(jì)30年代,德國最早利用振動(dòng)原理壓實(shí)土壤。羅申豪森(LOSE-AUSEN)公司率先設(shè)計(jì)了一臺(tái)安裝有振動(dòng)的平板壓實(shí)機(jī)的25t履帶式拖拉機(jī)。隨后生產(chǎn)出拖式振動(dòng)壓路機(jī),工作質(zhì)量為4—6t。當(dāng)時(shí),研究的主要問題是解決振動(dòng)壓路機(jī)的參數(shù)選擇和振動(dòng)軸軸承的壽命,瑞典壓實(shí)機(jī)械專家拉斯佛斯布德(Lars Forssblad)先生發(fā)明了撥球滾道振動(dòng)機(jī)構(gòu),獲得了專利權(quán)。這個(gè)機(jī)構(gòu)解決了振動(dòng)軸軸承的使用壽命問題。
20世紀(jì)50年代,歐洲各國開發(fā)了串聯(lián)式整體車架振動(dòng)壓路機(jī),并逐步改型。20世紀(jì)60年代,隨著對(duì)振動(dòng)壓路機(jī)的深入研究,振動(dòng)軸軸承性能、減振器性能和制造工藝水平不斷提高,促使振動(dòng)壓路機(jī)得到了飛速發(fā)展。此時(shí),輪胎驅(qū)動(dòng)鉸接式振動(dòng)壓路機(jī)、雙鋼輪串聯(lián)式振動(dòng)壓路機(jī)等產(chǎn)品相繼問世,振動(dòng)壓路機(jī)形成了兩個(gè)主要系列。
20世紀(jì)70年代以后,振動(dòng)壓路機(jī)家族先后出現(xiàn)了組合式、蟹形式、凸塊式、手扶式振動(dòng)壓路機(jī);調(diào)頻、調(diào)幅技術(shù)、全輪驅(qū)動(dòng)振動(dòng)技術(shù)被廣泛應(yīng)用于振動(dòng)壓路機(jī)。進(jìn)入20世紀(jì)80年代,壓實(shí)度的自動(dòng)測(cè)量技術(shù)、“機(jī)—電—液”一體化技術(shù)逐漸應(yīng)用于振動(dòng)壓路機(jī)上。
20世紀(jì)80年代初,瑞典喬戴納米克(Geodynamik AB)研究所提出了新的壓實(shí)理論,即利用土力學(xué)交變剪應(yīng)變?cè)?,使土壤等壓?shí)材料的顆粒重新排列而得更加密實(shí)。根據(jù)該理論,1982年德國哈姆(HAMM)公司開發(fā)出新型振動(dòng)壓路機(jī),即震蕩壓路機(jī),1984年,世界首批震蕩壓路機(jī)開始銷售市場(chǎng)。
20世紀(jì)80年代末,日本生產(chǎn)出大噸位垂直振動(dòng)壓路機(jī),其振動(dòng)輪內(nèi)部采用雙軸交叉振動(dòng)法,使壓路機(jī)壓實(shí)深度深、壓實(shí)效果好且低速直線行駛穩(wěn)定。20世紀(jì)50年代,國外開始生產(chǎn)爆炸夯,但不久就被淘汰了,國外生產(chǎn)的夯實(shí)機(jī)械產(chǎn)品品種較多,產(chǎn)量較大的有以下兩種:(1)振動(dòng)平板夯,許多廠家都進(jìn)行系列生產(chǎn),自重60—600kg,較大型的振動(dòng)平板夯都可逆行;(2)振動(dòng)沖擊夯,是輕便靈活的機(jī)型,自重60—120kg。
第二章 傳動(dòng)系統(tǒng)總體結(jié)構(gòu)設(shè)計(jì)
振動(dòng)壓路機(jī)傳動(dòng)系將動(dòng)力裝置的機(jī)械能進(jìn)行傳遞和轉(zhuǎn)換后傳至振動(dòng)壓路機(jī)行駛元件驅(qū)動(dòng)輪、工作裝置振動(dòng)馬達(dá)、轉(zhuǎn)向元件轉(zhuǎn)向油缸等,行駛、振動(dòng)壓實(shí)、轉(zhuǎn)向等,典型的全液壓壓路機(jī)傳動(dòng)系統(tǒng)原理圖如下:
全液壓壓路機(jī)傳動(dòng)系統(tǒng)
1-分動(dòng)箱;2,11-變量泵;3-齒輪油泵;4-變速器;5-液壓馬達(dá);6-行走液壓馬達(dá);7-減速器;8-振動(dòng)液壓馬達(dá);9-振動(dòng)輪;10-轉(zhuǎn)向器;12-輪邊減速器;13-輪胎;14-后橋
第三章 液壓系統(tǒng)設(shè)計(jì)
3.1行走液壓系統(tǒng)的設(shè)計(jì)
根據(jù)前期的市場(chǎng)和技術(shù)調(diào)研,發(fā)現(xiàn)在道路的修筑過程中,路面以下各基礎(chǔ)層的壓實(shí)工程量是最大的。而全輪驅(qū)動(dòng)液壓壓路機(jī)主要適用于道路基礎(chǔ)的壓實(shí),不僅具有良好的壓實(shí)效果,而且相對(duì)于前后都是光輪的壓路機(jī),具備更大的驅(qū)動(dòng)力,更適應(yīng)在坡道上碾壓,在未成形路面上行駛。這種振動(dòng)壓路機(jī)在市場(chǎng)銷售量中占據(jù)了大部分的份額,具有廣泛的市場(chǎng)前景,自身的重量更是向著重型或超重型的方向發(fā)展。因此,本次設(shè)計(jì)選用全輪驅(qū)動(dòng)液壓壓路機(jī)。
全輪驅(qū)動(dòng)液壓系統(tǒng)原理圖
3.1.1 全輪驅(qū)動(dòng)液壓壓路機(jī)的優(yōu)點(diǎn)
壓路機(jī)的碾壓速度是根據(jù)滾動(dòng)壓實(shí)工藝規(guī)范選定的。碾壓速度對(duì)土壤鋪層的壓實(shí)效果有著顯著的影響,振動(dòng)壓路機(jī)尤其如此。在鋪層厚度一定時(shí),壓路機(jī)傳遞給填方內(nèi)的能量E與碾壓遍數(shù)n和碾壓速度"之比值成正比,即E∞r(nóng)ezo。較低的碾壓速度,能使鋪層材料在壓實(shí)力的作用下有足夠的時(shí)間產(chǎn)生不可逆變形,更好地改變被壓材料的結(jié)構(gòu)。然而,碾壓速度還與生產(chǎn)率有著密切關(guān)系,因此,碾壓速度存在一個(gè)最佳值,這個(gè)最佳值就是在不降低壓實(shí)質(zhì)量的前提下,選擇盡可能高的碾壓速度,以保證壓路機(jī)有較高的生產(chǎn)率。對(duì)于不同的鋪層材料、鋪層厚度與壓實(shí)度要求,無級(jí)調(diào)速允許選用不同的碾壓速度,能較好地克服壓實(shí)質(zhì)量與生產(chǎn)效率之問的矛盾,優(yōu)化壓實(shí)過程。由于一個(gè)系統(tǒng)內(nèi)壓力的自然平衡及液壓軟管的相對(duì)柔性,使得液壓傳動(dòng)的動(dòng)力極易分流和長距離傳輸,這對(duì)于壓路機(jī)振動(dòng)輪行走的動(dòng)力傳遞很方便,從而能實(shí)現(xiàn)全輪驅(qū)動(dòng)。全輪驅(qū)動(dòng)不僅增加了壓路機(jī)的驅(qū)動(dòng)能力,而且能增大振動(dòng)壓路機(jī)的壓實(shí)能力和提高鋪筑表層的壓實(shí)質(zhì)量,還提高了驅(qū)動(dòng)橋的工作可靠性。
全輪驅(qū)動(dòng)充分利用了兩個(gè)車輪的附著能力,在匹配得當(dāng)?shù)臈l件下,一臺(tái)全輪驅(qū)動(dòng)單輪振動(dòng)壓路機(jī)的爬坡能力可以達(dá)到50%以上。在沙漠地帶壓實(shí)施工,砂性土壤的附著系數(shù)只有粘性土的50%~60%,而滾動(dòng)阻力系數(shù)卻是粘性土的1.2~1.5倍,單輪驅(qū)動(dòng)的振動(dòng)壓路機(jī)根本不能行走。全輪驅(qū)動(dòng)允許振動(dòng)輪有較大的分配重量,其分配比可從單輪驅(qū)動(dòng)的46.5%增加到62%。振動(dòng)輪的靜線壓力和激振力相應(yīng)地增大。壓路機(jī)的全輪驅(qū)動(dòng)是以其液壓傳動(dòng)為條件實(shí)現(xiàn)的。由于液流的自動(dòng)差速作用,能使壓路機(jī)的所有車輪實(shí)現(xiàn)驅(qū)動(dòng)而不會(huì)產(chǎn)生前后輪間的循環(huán)功率損失和相對(duì)滑移。車輪滑移會(huì)搓起被碾壓材料,造成新的表面不平整。
3.1.2 全輪驅(qū)動(dòng)液壓壓路機(jī)的缺點(diǎn)
全輪驅(qū)動(dòng)液壓傳動(dòng)系統(tǒng)的缺點(diǎn)主要表現(xiàn)在:
(1)單純的液壓系統(tǒng)不能用于低速運(yùn)行,因?yàn)橐后w的可壓縮性會(huì)引起壓路機(jī)的爬行,從而降低壓實(shí)工作質(zhì)量;
(2)液壓系統(tǒng)在高壓低速時(shí)的傳動(dòng)效率低下,在系統(tǒng)壓力35 MPa與馬達(dá)轉(zhuǎn)速300 r/min時(shí)的總效率不足70%,大量的機(jī)械能轉(zhuǎn)化成熱能;
(3)液壓一機(jī)械聯(lián)合傳動(dòng)使得壓路機(jī)行走傳動(dòng)系統(tǒng)總傳動(dòng)效率僅有60%左右,能源浪費(fèi)大,還造成了機(jī)器發(fā)熱;
(4)增加了液壓油的消耗,還容易造成環(huán)境污染;
(5)液壓油的清潔度至關(guān)重要,使得壓路機(jī)對(duì)制造與使用的條件苛刻,反而使得全液壓振動(dòng)壓路機(jī)的工作可靠性大打折扣;
3.2振動(dòng)液壓系統(tǒng)設(shè)計(jì)
閉式系統(tǒng)結(jié)構(gòu)比較緊湊,泵的自吸性好,系統(tǒng)與空氣接觸的機(jī)會(huì)較少,空氣不宜滲入系統(tǒng),故傳動(dòng)的平穩(wěn)性較好;工作機(jī)構(gòu)的變速和換向靠調(diào)節(jié)泵或馬達(dá)的變量機(jī)構(gòu)實(shí)現(xiàn),避免了在開式系統(tǒng)換向過程中所出現(xiàn)的液壓沖擊和能量損失。本設(shè)計(jì)選擇閉式液壓振動(dòng)系統(tǒng)。
3.2.1開式液壓震動(dòng)系統(tǒng)
開始回路液壓系統(tǒng),如圖4.1所示?;窘M成為:齒輪泵1、電液換向閥2、齒輪馬達(dá)3、穩(wěn)壓閥4和冷卻器5.其中的穩(wěn)壓閥由減壓閥和溢流閥組成,穩(wěn)壓閥和電液換向閥集成于一體,共同組成一個(gè)振動(dòng)閥單獨(dú)安裝在壓路機(jī)車架上。此系統(tǒng)僅能得到單頻率振動(dòng)。電液換向閥用于改變馬達(dá)的旋轉(zhuǎn)方向,以實(shí)現(xiàn)壓路機(jī)雙振幅的變換。液壓閥的控制用壓力油是由壓路機(jī)行走液壓系統(tǒng)中的供油泵提供的。單換向閥處于中位時(shí),閥體的四個(gè)通道相互串通,油泵即可卸荷,振動(dòng)就停止。
當(dāng)壓路機(jī)起振或變換振幅時(shí),偏心塊將產(chǎn)生很大的慣性力矩,使液壓系統(tǒng)中的附加壓力急劇增大。當(dāng)閥在開啟0.2-0.4s的瞬間,由于閥孔的開啟面積小,而在油路中造成一個(gè)壓力峰值,這一峰值壓力增大到一定程度的瞬間,溢流閥就會(huì)開啟卸載;待壓力平穩(wěn)之后溢流閥才關(guān)閉,使激振器進(jìn)入到正常運(yùn)轉(zhuǎn),從而保護(hù)了液壓元件。
該種液壓傳動(dòng)方案適宜于中等工作壓力。溢流閥的調(diào)定壓力縱使要比實(shí)際工作壓力高出2-3MPa。
開式液壓振動(dòng)系統(tǒng)
1- 齒輪泵;2-溢流閥;3-齒輪馬達(dá); 4-電液換向閥;5-冷卻器;
開式系統(tǒng)的優(yōu)點(diǎn):結(jié)構(gòu)簡單,由于系統(tǒng)本身具有油箱,因此可以發(fā)揮油箱的散熱、沉淀雜質(zhì)的作用。
3.2.2閉式液壓振動(dòng)系統(tǒng)
閉式液壓振動(dòng)系統(tǒng)如圖4.2所示,其基本組成為:冷卻器1、斜盤式軸向柱塞變量泵2、儲(chǔ)能器3、組合閥4、定量柱塞馬達(dá)5。
此系統(tǒng)是用馬達(dá)的正反轉(zhuǎn)來調(diào)節(jié)振幅,并且能很容易地得到兩種頻率,必要時(shí)還可以實(shí)現(xiàn)無級(jí)調(diào)頻。這種閉式回路的振動(dòng)液壓系統(tǒng)可以選的工作壓力較大,在使用柱塞馬達(dá)時(shí)的最大工作壓力可達(dá)25Mpa,這樣就減少了液壓元件的規(guī)格尺寸。在振動(dòng)壓路機(jī)停振或轉(zhuǎn)換振幅時(shí),工作壓力常達(dá)35Mpa,也伴有瞬時(shí)沖擊壓力產(chǎn)生,但比開式回路系統(tǒng)要好得多。解決這一問題的有效方法是在液壓馬達(dá)回路中設(shè)置蓄能器,用作緩沖裝置。
閉式液壓振動(dòng)系統(tǒng)
1-變量泵;2-伺服閥;3-定量馬達(dá);4-組合閥;5-蓄能器;6-濾油器
閉式系統(tǒng)的優(yōu)點(diǎn):
結(jié)構(gòu)比較緊湊,泵的自吸性好,系統(tǒng)與空氣接觸的機(jī)會(huì)較少,空氣不宜滲入系統(tǒng),故傳動(dòng)的平穩(wěn)性較好;
2、工作機(jī)構(gòu)的變速和換向靠調(diào)節(jié)泵或馬達(dá)的變量機(jī)構(gòu)實(shí)現(xiàn),避免了在開式系統(tǒng)換向過程中所出現(xiàn)的液壓沖擊和能量損失;
3、馬達(dá)的旋轉(zhuǎn)方向由雙向可變量的泵控制,輸出轉(zhuǎn)速可由改變泵的排量來實(shí)現(xiàn)。因此,這種系統(tǒng)可以實(shí)現(xiàn)變頻、變幅的功能;
系統(tǒng)存在背壓且對(duì)稱工作,柱塞泵、馬達(dá)具有很高的容積效率。
3.2.3工作裝置液壓振動(dòng)系統(tǒng)形式的選用
由于振動(dòng)壓路機(jī)振動(dòng),行駛工作中正反方向工作及制動(dòng)等要求,使振動(dòng)壓路機(jī)液壓系統(tǒng)中的泵、馬達(dá)大多采用閉式回路方式。閉式回路采用雙向變量液壓泵,通過泵的變量改變油路中油的流量和方向,實(shí)現(xiàn)振動(dòng)壓路機(jī)的變速和換向,可以充分體現(xiàn)液壓傳動(dòng)的優(yōu)點(diǎn)。閉式系統(tǒng)的主泵上通常帶一小排量的補(bǔ)油泵,并集成補(bǔ)油溢流閥和不郵單向閥,而沖洗冷卻閥則集成于馬達(dá)。補(bǔ)油溢流閥調(diào)定補(bǔ)油壓力,補(bǔ)油單向閥選擇補(bǔ)油方向,向主油路低壓側(cè)補(bǔ)油,以補(bǔ)償由于泵、馬達(dá)容積損失及由沖洗冷卻閥組中泄漏的流量。補(bǔ)油泵的附加功率損失比較小,僅為總傳動(dòng)功率的1%-2%。
3.3轉(zhuǎn)向液壓系統(tǒng)設(shè)計(jì)
目前,在壓路機(jī)上都是采用了液壓傳動(dòng)的鉸接式液壓轉(zhuǎn)向系統(tǒng)。與傳統(tǒng)的阿克曼式轉(zhuǎn)向比較,鉸接轉(zhuǎn)向具有轉(zhuǎn)彎半徑小、機(jī)動(dòng)性好及牽引力大等優(yōu)點(diǎn)。
見圖4.3,為整體車架的轉(zhuǎn)向示意圖,根據(jù)偏轉(zhuǎn)輪的不同,可分為前輪偏轉(zhuǎn)、后輪偏轉(zhuǎn)和前后輪偏轉(zhuǎn)三種結(jié)構(gòu)型式。
前輪偏轉(zhuǎn)是靜載壓路機(jī)常用的轉(zhuǎn)向方式,轉(zhuǎn)彎半徑較大,前后輪的軌跡重疊性不好,影響路面平整質(zhì)量,但駕駛員可以根據(jù)前輪的偏轉(zhuǎn)程度來估計(jì)壓路機(jī)的行車路線,符合操作習(xí)慣,有利于安全駕駛。
后輪偏轉(zhuǎn)在壓路機(jī)的設(shè)計(jì)中很少采用,對(duì)于只用前輪驅(qū)動(dòng)和制動(dòng)的壓路機(jī),有利于保證上坡行駛的縱向穩(wěn)定性。
整體車架轉(zhuǎn)向示意圖
前后輪偏轉(zhuǎn),又稱為全輪轉(zhuǎn)向。當(dāng)偏轉(zhuǎn)的方向相反時(shí),壓路機(jī)的轉(zhuǎn)彎半徑最小,機(jī)動(dòng)性好,同時(shí)前后輪的軌跡重合,易于保證路面質(zhì)量平整;當(dāng)偏轉(zhuǎn)的方向相同,角度相等,此時(shí)前后輪軸互相平行,并相互錯(cuò)開一定的距離,此稱為“蟹行”。
但“蟹行”常用于雙鋼輪振動(dòng)壓路機(jī)的轉(zhuǎn)向,以提高壓實(shí)作業(yè)的貼邊性能,對(duì)于輪胎驅(qū)動(dòng)光輪振動(dòng)的壓路機(jī)則沒有什么實(shí)際意義。
對(duì)于偏轉(zhuǎn)輪轉(zhuǎn)向的壓路機(jī),有一個(gè)很大的缺點(diǎn),那就是偏轉(zhuǎn)輪處的車架只能設(shè)計(jì)在偏轉(zhuǎn)輪的上方,尤其是全輪轉(zhuǎn)向,整個(gè)車架都在前后輪上方。這種結(jié)構(gòu)上的缺陷,必然導(dǎo)致壓路機(jī)重心偏高,從而使壓路機(jī)行駛穩(wěn)定性差,在坡道上容易傾覆,給駕駛員帶來很大的危險(xiǎn)。因此整體式車架偏轉(zhuǎn)輪轉(zhuǎn)向的結(jié)構(gòu)一般只用于小噸位的壓路機(jī)。
見圖4.4,為鉸接式車架轉(zhuǎn)向示意圖,采用這種轉(zhuǎn)向結(jié)構(gòu)的壓路機(jī),其車架分成前后兩部分,通過垂直的鉸接銷連接。轉(zhuǎn)向時(shí),前后車架繞鉸接銷發(fā)生相對(duì)轉(zhuǎn)動(dòng),通過車架折腰而實(shí)現(xiàn)轉(zhuǎn)向。這種轉(zhuǎn)向方式轉(zhuǎn)彎半徑很小,機(jī)動(dòng)性好,前后輪的軌跡重疊,利于保證路面的壓實(shí)質(zhì)量。前車架設(shè)計(jì)成框架的形式,通過減振系統(tǒng)懸掛在振動(dòng)輪的四周,重心可以很低,基本上與前輪的軸心等高。由于前輪框架位于振動(dòng)輪的四周,駕駛員具有良好的前視野,對(duì)于待壓路面和光輪表面的情況一目了然。后車架設(shè)計(jì)成如圖的結(jié)構(gòu)形式,位于兩輪胎之間,前部上方安裝駕駛室,中部安裝發(fā)動(dòng)機(jī)、油泵和后橋總成等主要部件,后部設(shè)計(jì)成燃油箱,重心位置基本與輪胎的軸心等高,甚至更低。
鉸接式車架轉(zhuǎn)向示意圖
通過上面的比較分析,我們發(fā)現(xiàn)鉸接轉(zhuǎn)向相比于偏轉(zhuǎn)轉(zhuǎn)向雖然存在轉(zhuǎn)向阻力偏大,直線行駛性能欠佳等缺點(diǎn),但還是具有更大的優(yōu)勢(shì),尤其是對(duì)于重型或超重型壓路機(jī)。因此,本次設(shè)計(jì)的振動(dòng)壓路機(jī)采用鉸接式車架折腰轉(zhuǎn)向的方案。
鉸接式車架折腰轉(zhuǎn)向系統(tǒng)原理圖
3.4液壓系統(tǒng)原理圖
綜合以上選擇的全輪驅(qū)動(dòng)行走液壓系統(tǒng)、閉式振動(dòng)液壓系統(tǒng)和鉸接式轉(zhuǎn)向液壓系統(tǒng)可以得到本次設(shè)計(jì)的全液壓震動(dòng)壓路機(jī)液壓傳動(dòng)系統(tǒng)原理圖如下:
全液壓振動(dòng)壓路機(jī)液壓傳動(dòng)系統(tǒng)原理圖
1-轉(zhuǎn)向液壓缸;2-轉(zhuǎn)向器;3-手動(dòng)液壓泵;4-回油過濾器;5-行駛液壓馬達(dá)(帶閥組);6-行駛液壓變量泵(帶閥組、補(bǔ)油液壓泵);7-分動(dòng)箱;8-柴油機(jī);9-雙聯(lián)液壓泵;10-振動(dòng)系統(tǒng)控制閥;11-振動(dòng)系統(tǒng)液壓馬達(dá)
第四章 液壓系統(tǒng)計(jì)算與選型
4.1 液壓系統(tǒng)
根據(jù)本文第三章,YZ16 型振動(dòng)壓路機(jī)采用全液壓的傳動(dòng)方案,前、后輪驅(qū)動(dòng),壓路機(jī)的行駛、振動(dòng)和轉(zhuǎn)向三大功能均通過靜液壓傳動(dòng)來實(shí)現(xiàn)。整機(jī)液壓系統(tǒng)包括三個(gè)基本相互獨(dú)立的系統(tǒng),即行走液壓系統(tǒng)、振動(dòng)液壓系統(tǒng)和轉(zhuǎn)向液壓系統(tǒng),每個(gè)系統(tǒng)都有自己的油泵和執(zhí)行元件,避免了相互之間的干擾。三個(gè)系統(tǒng)的油泵采用串聯(lián)結(jié)構(gòu),直接通過彈性聯(lián)軸器與發(fā)動(dòng)機(jī)的飛輪連接,結(jié)構(gòu)非常緊湊,大大節(jié)約了內(nèi)部空間,方便了壓路機(jī)的整機(jī)布置。
4.1.1 行走液壓系統(tǒng)
行駛油泵與前、后行走馬達(dá)并聯(lián)連接,構(gòu)成閉式回路。行駛油泵為機(jī)械伺服斜盤式變量柱塞油泵,通過操縱油泵上的機(jī)械搖臂,可相應(yīng)改變內(nèi)部斜盤的傾斜角度和方向,從而改變油泵的排量大小和高壓油流動(dòng)的方向,實(shí)現(xiàn)無級(jí)變速和換向功能。前行走馬達(dá)通過前輪減速器與振動(dòng)輪連接,后行走馬達(dá)與后橋總成連接,分別驅(qū)動(dòng)前、后輪旋轉(zhuǎn),實(shí)現(xiàn)全輪驅(qū)動(dòng)。后行走馬達(dá)為斜盤式變量馬達(dá),通過 Y6電磁閥的通、斷電,使其具有兩種設(shè)定好的排量,可實(shí)現(xiàn)兩檔行走速度。
當(dāng)行駛油泵搖臂的角度回到零位時(shí),輸出排量為零,并且兩根高壓油管之間相互隔斷,可完成行車制動(dòng)。后橋總成和前輪減速器上裝有常閉式摩擦片制動(dòng)器,壓路機(jī)行駛時(shí),用于系統(tǒng)補(bǔ)油的壓力油進(jìn)入制動(dòng)器,克服彈簧力量,將制動(dòng)器打開。壓路機(jī)行駛過程中,可通過控制 Y7 和 Y2 電磁閥,將行駛油泵斜盤迅速回零并將制動(dòng)器卸壓,完成緊急制動(dòng)。
行駛油泵自帶一個(gè)小的齒輪油泵,與轉(zhuǎn)向系統(tǒng)的回油一起,完成對(duì)行走和振動(dòng)兩個(gè)閉式回路的補(bǔ)油,并用于制動(dòng)器的開啟。
4.1.2 振動(dòng)液壓系統(tǒng)
振動(dòng)油泵與振動(dòng)馬達(dá)并聯(lián),構(gòu)成閉式回路。振動(dòng)油泵為電控斜盤式變量柱塞油泵,通過 Y3 和 Y4 電磁閥的通、斷電,使振動(dòng)油泵的斜盤在兩種狀態(tài)下工作,此時(shí)的振動(dòng)油泵輸出的液壓油具有不同的流動(dòng)方向和排量,從而使定量振動(dòng)馬達(dá)具有正反兩種旋轉(zhuǎn)方向和相應(yīng)的轉(zhuǎn)速。振動(dòng)馬達(dá)再通過聯(lián)軸器與振動(dòng)輪內(nèi)的激振器連接,相互配合實(shí)現(xiàn)雙頻雙幅的功能。
前、后行走馬達(dá)和振動(dòng)馬達(dá)內(nèi)都安裝有沖洗閥組,由液控?fù)Q向閥,節(jié)流閥和溢流閥組成,在閉式回路運(yùn)行的過程中,系統(tǒng)內(nèi)不斷有熱的舊油通過沖洗閥組排入油箱,又不斷有新油補(bǔ)入,從而持續(xù)完成散熱和過濾的功能。
4.1.3 轉(zhuǎn)向液壓系統(tǒng)
轉(zhuǎn)向液壓系統(tǒng)采用開式回路,包括兩個(gè)轉(zhuǎn)向油缸、全液壓轉(zhuǎn)向器、組合閥塊和轉(zhuǎn)向齒輪油泵。轉(zhuǎn)向器通過轉(zhuǎn)向立柱與方向盤連接,左右轉(zhuǎn)動(dòng)方向盤,便可帶動(dòng)轉(zhuǎn)向器內(nèi)的閥芯左右旋轉(zhuǎn),從而控制壓力油的流動(dòng)方向。
轉(zhuǎn)向器選用開心無反應(yīng)型。開心是指轉(zhuǎn)向器在中位時(shí),齒輪泵的供油能直接排回油箱,從而節(jié)省了動(dòng)力;無反應(yīng)是指前輪在行駛和轉(zhuǎn)向過程中碰到的阻力不會(huì)反映到方向盤上面去,減輕了駕駛員的勞動(dòng)強(qiáng)度。
組合閥塊中有兩個(gè)緩沖閥,用來消除行駛和轉(zhuǎn)向過程中前輪受到?jīng)_擊而引起的瞬時(shí)峰值壓力,壓力設(shè)定值為 20MPa。一個(gè)溢流閥用來限制整個(gè)系統(tǒng)的工作壓力,設(shè)定值為 14MPa。
轉(zhuǎn)向油缸采用平衡式雙液壓缸的布置形式,關(guān)于車軸對(duì)稱,活塞桿一端與鉸接架上的耳板鉸接,缸筒一端則與后車架上的支架鉸接。當(dāng)方向盤向左旋轉(zhuǎn)時(shí),壓力油進(jìn)入右側(cè)油缸的無桿腔和左側(cè)油缸的有桿腔,右側(cè)油缸伸出,左側(cè)油缸縮回,使前輪繞鉸接軸向左偏轉(zhuǎn),實(shí)現(xiàn)左轉(zhuǎn)向;而當(dāng)方向盤向右旋轉(zhuǎn)時(shí),則相反,實(shí)現(xiàn)右轉(zhuǎn)向。
該系統(tǒng)性能穩(wěn)定可靠,操縱輕便靈活,總體布置方便,并能實(shí)現(xiàn)發(fā)動(dòng)機(jī)熄火轉(zhuǎn)向,在壓路機(jī)和許多工程機(jī)械上應(yīng)用廣泛。
4.2各液壓系統(tǒng)所需功率計(jì)算
參數(shù)要求:振動(dòng)頻率30/40Hz,行駛速度0~10km/h
其他相關(guān)參數(shù):
整機(jī)工作質(zhì)量:16t
振動(dòng)輪直徑×寬度:Ф1600×2000mm
激振力:337kN/112kN
整機(jī)長寬高:6150×2420×3250mm
4.2.1行駛液壓系統(tǒng)所需功率計(jì)算
壓路機(jī)在最困難條件下時(shí)產(chǎn)生以下阻力:
運(yùn)行阻力
上坡阻力
式中:
f-壓路機(jī)滾動(dòng)阻力系數(shù),取f=0.1
G-壓路機(jī)工作質(zhì)量,G=16000kg
-道路坡度,根據(jù)交通部《公路工程技術(shù)標(biāo)準(zhǔn)》,各種公路的最大坡度值為11%,即:;
本壓路機(jī)設(shè)計(jì)的理論爬坡度為30%,即:
壓路機(jī)上坡壓實(shí)工作中的阻力:
壓路機(jī)在上坡壓實(shí)工況時(shí)的行駛功率:N1
式中:
-壓路機(jī)工作時(shí)行駛速度,
-發(fā)動(dòng)機(jī)至驅(qū)動(dòng)輪之間的機(jī)械傳動(dòng)效率,
即:行駛液壓系統(tǒng)所需功率:
4.2.2轉(zhuǎn)向液壓系統(tǒng)所需功率計(jì)算
轉(zhuǎn)向功率:N2
式中:
-轉(zhuǎn)向泵壓力,
-轉(zhuǎn)向泵排量,
-發(fā)動(dòng)機(jī)轉(zhuǎn)速,
-傳動(dòng)箱速比,
-轉(zhuǎn)向泵效率,
即:轉(zhuǎn)向液壓系統(tǒng)所需功率:
4.2.3振動(dòng)液壓系統(tǒng)所需功率計(jì)算
振動(dòng)功率:N3
式中:
-高振幅的偏心力矩,
-角速度,
-振動(dòng)輪振動(dòng)阻力系數(shù),
-振動(dòng)泵效率,
-振動(dòng)馬達(dá)效率,
即:振動(dòng)液壓系統(tǒng)所需功率:
4.3 主要液壓元件計(jì)算選型
4.3.1 行駛液壓系統(tǒng)
行駛油泵的選擇:參照YZ16型全液壓振動(dòng)壓路機(jī)選A4VG125HWDL1/32R
廠商:德國力士樂
式中:-進(jìn)入前行走馬達(dá)的流量(L/min)
-進(jìn)入后行走馬達(dá)的流量(L/min)
-行駛油泵總的輸出流量(L/min)
-油泵和馬達(dá)的容積效率,
-前輪的滾動(dòng)半徑,
-前輪的滾動(dòng)半徑,
-行駛油泵的最大排量,
-前行走馬達(dá)的排量,
-后行走馬達(dá)的排量,
-前輪減速器的減速比,
-后橋總成的減速比,
-分動(dòng)箱行駛級(jí)的減速比,
-發(fā)動(dòng)機(jī)工作時(shí)的設(shè)定轉(zhuǎn)速,
-壓路機(jī)的最高行駛速度,
將各已知參數(shù)帶入以上公式得:
則:
得:
因此前后行走馬達(dá)選用:
(1)后行走馬達(dá)
型號(hào):A6VM107EZ4/48W
廠商:德國力士樂
排量:兩檔,107 ml/r 和 21ml/r
(2)前行走馬達(dá)
型號(hào):A6VE55HZ3/48W
廠商:德國力士樂
排量:55ml/r
因?yàn)樾旭傆捅脼樗欧兞坑捅?,起排量可?~125ml/min之間無極變速,所以YZ16型振動(dòng)壓路機(jī)行駛速度可在0~10km/h范圍內(nèi)無極變速,滿足設(shè)計(jì)要求。
4.3.2 振動(dòng)液壓系統(tǒng)
振動(dòng)油泵:參照YZ16-5選用A4VG71EZ2DM1/32R,
式中:-振動(dòng)油泵排量,
-振動(dòng)馬達(dá)排量,
-分動(dòng)箱振動(dòng)級(jí)減速比,
-振動(dòng)馬達(dá)轉(zhuǎn)速,高頻率時(shí):,
低頻率時(shí):
將已知參數(shù)帶入上式得:取56ml/r
當(dāng)?shù)皖l率振動(dòng)時(shí):
取54ml/r
綜上述:振動(dòng)油泵排量:高頻率時(shí);低頻率時(shí)
振動(dòng)馬達(dá)排量:
(1)振動(dòng)油泵
型號(hào):選用A4VG71EZ2DM1/32R ,排量71ml/r 和58ml/r
廠商:德國力士樂
(2)振動(dòng)馬達(dá)
型號(hào):A2FM56/42W,排量56ml/r
廠商:德國力士樂
4.3.3 轉(zhuǎn)向液壓系統(tǒng)
(1)轉(zhuǎn)向阻力矩計(jì)算
式中:M-轉(zhuǎn)向阻力矩,N.m
-前輪對(duì)地面摩擦阻力系數(shù),
-前輪分配質(zhì)量,
B-振動(dòng)輪寬度,B=2m
鉸接中心到振動(dòng)輪軸線的垂直距離,a=1.2m
將已知參數(shù)代入上述公式計(jì)算得:
(1) 轉(zhuǎn)向油缸直徑及流量計(jì)算
式中:D-轉(zhuǎn)向油缸直徑,m
-轉(zhuǎn)向角度,
-轉(zhuǎn)向油缸工作壓力,
-轉(zhuǎn)向油缸工作行程,
-轉(zhuǎn)向油缸數(shù)量程,
-活塞桿直徑d與缸徑D之比,暫取
-油缸傳動(dòng)效率,
將已知參數(shù)代入上述公式,得:
選用缸徑,桿徑,,油缸走完全程的時(shí)間因?yàn)椴捎秒p轉(zhuǎn)向油缸,轉(zhuǎn)向時(shí)油缸的工作容積是一側(cè)油缸有桿腔加上另一側(cè)油缸無桿腔容積之和,所以:
轉(zhuǎn)向所需的液壓油流量:
(2) 全液壓轉(zhuǎn)向器的計(jì)算和選擇
式中:-轉(zhuǎn)向器排量,ml/r
-轉(zhuǎn)向角度從-35°到+35°,方向盤轉(zhuǎn)動(dòng)總?cè)?shù),取
-轉(zhuǎn)向器的容積效率,
將已知參數(shù)代入上述式中,得:
根據(jù)丹弗斯公司的轉(zhuǎn)向器產(chǎn)品樣本,選擇排量為350ml/r的開心無反應(yīng)型全液壓轉(zhuǎn)向器,OSPC 350 ON,廠商:丹佛斯(DANFOSS)。
第五章 分動(dòng)箱設(shè)計(jì)
5.1分動(dòng)箱結(jié)構(gòu)設(shè)計(jì)
根據(jù)上述傳動(dòng)系統(tǒng)可知分動(dòng)箱由發(fā)動(dòng)機(jī)驅(qū)動(dòng)動(dòng)力一分為二,一路用于驅(qū)動(dòng)壓路機(jī)行駛(后文稱行駛級(jí)),另一路用于驅(qū)動(dòng)壓路機(jī)轉(zhuǎn)向與振動(dòng)(后文稱轉(zhuǎn)向-振動(dòng)級(jí)),因此可知分動(dòng)箱結(jié)構(gòu)如下:
分動(dòng)箱結(jié)構(gòu)簡圖
5.2分動(dòng)箱設(shè)計(jì)計(jì)算
由以上章節(jié)可知,已知分動(dòng)箱參數(shù)如下:
(1)輸入轉(zhuǎn)速:
(2)輸出功率:
(3)傳動(dòng)比:
5.2.1動(dòng)力參數(shù)計(jì)算
(1)轉(zhuǎn)速n
(2)功率P
(3)轉(zhuǎn)矩T
將上述數(shù)據(jù)列表如下:
軸號(hào)
功率
P/kW
n /(r.min-1)
/
(N﹒m)
i
輸入軸
103.43
2500
395.1
輸出軸1
47.7
1666.67
273.32
輸出軸2
49.65
2000
237.08
5.2.2行駛級(jí)齒輪傳動(dòng)設(shè)計(jì)
按輸入的轉(zhuǎn)速2500r/min,傳動(dòng)比1.5計(jì)算,
傳動(dòng)功率50.68kw()
(1) 選定齒輪材料、熱處理方式和精度等級(jí)
因載荷有輕微沖擊,大小齒輪均選硬齒面,大小齒輪的材料均為40Cr鋼滲氮淬火處理,大齒面硬度均為60HRC。
齒輪精度初選7級(jí)
(2) 初選齒數(shù)和齒寬系數(shù)。
取ψd=1
(3)按齒面接觸疲勞強(qiáng)度計(jì)算
小齒輪傳遞的轉(zhuǎn)矩為
確定各參數(shù)值:
載荷系數(shù):因K取值在1.2~2.4之間,由于載荷有中等沖擊,取K=1.75
許用應(yīng)力:σHlim1=σHlim2=1500MPa ;σFlim1=σFlim2=920MPa
按一般可靠要求取安全系數(shù)為:SH=1.5 SF=1,
則許用接觸應(yīng)力:
許用齒根彎曲應(yīng)力:
取兩式計(jì)算中的較小值,即:
(4)計(jì)算小齒輪分度圓直徑
齒數(shù)比=36/24=1.5
(5)確定模數(shù)和齒寬
取第一系列標(biāo)準(zhǔn)模數(shù)值
(6)按齒根彎曲接觸強(qiáng)度校核計(jì)算
校核
式中:
a) 小輪分度圓直徑
b) 齒輪嚙合寬度
查手冊(cè)得兩齒輪的齒形系數(shù)和應(yīng)力修正系數(shù)
YFa1=2.63 Ysa1=1.59
YFa2=2.19 Ysa2=1.80
將數(shù)據(jù)帶入公式得:σF1=107.34MPa σF2=101.19MPa
由于[σF1]≥σF1 [σF2] ≥σF2,故滿足齒根彎曲疲勞強(qiáng)度要求
(7)齒輪幾何尺寸的確定
分度圓直徑:
齒頂圓直徑:
齒根圓直徑:
中心距:
齒寬:;
5.2.3轉(zhuǎn)向-振動(dòng)級(jí)齒輪傳動(dòng)設(shè)計(jì)
按輸入的轉(zhuǎn)速2500r/min,傳動(dòng)比1.25計(jì)算,
傳動(dòng)功率52.75kw()
(1) 選定齒輪材料、熱處理方式和精度等級(jí)
因載荷有輕微沖擊,大小齒輪均選硬齒面,大小齒輪的材料均為40Cr鋼滲氮淬火處理,大齒面硬度均為60HRC。
齒輪精度初選7級(jí)
(2) 初選齒數(shù)和齒寬系數(shù)。
取ψd=1
(3)按齒面接觸疲勞強(qiáng)度計(jì)算
小齒輪傳遞的轉(zhuǎn)矩為
確定各參數(shù)值:
載荷系數(shù):因K取值在1.2~2.4之間,由于載荷有輕微沖擊,取K=1.75
許用應(yīng)力:σHlim1=σHlim2=1500MPa ;σFlim1=σFlim2=920MPa
按一般可靠要求取安全系數(shù)為:SH=1.5 SF=1,
則許用接觸應(yīng)力:
許用齒根彎曲應(yīng)力:
取兩式計(jì)算中的較小值,即:
(4)計(jì)算小齒輪分度圓直徑
齒數(shù)比=30/24=1.25
(5)確定模數(shù)和齒寬
取第一系列標(biāo)準(zhǔn)模數(shù)值,這與按照行駛級(jí)齒輪設(shè)計(jì)計(jì)算得出的模數(shù)相同,故滿足兩級(jí)齒輪嚙合要求。
(6)按齒根彎曲接觸強(qiáng)度校核計(jì)算
校核
式中:
a) 小輪分度圓直徑
b) 齒輪嚙合寬度
c) 查手冊(cè)得兩齒輪的齒形系數(shù)和應(yīng)力修正系數(shù)
YFa1=2.63 Ysa1=1.59
YFa2=2.19 Ysa2=1.80
將數(shù)據(jù)帶入公式得:σF1=205.3MPa σF2=182.6MPa
由于[σF1]≥σF1 [σF2] ≥σF2,故滿足齒根彎曲疲勞強(qiáng)度要求
(7)齒輪幾何尺寸的確定
分度圓直徑:
齒頂圓直徑:
齒根圓直徑:
中心距:
齒寬:;
5.2.4輸入軸的設(shè)計(jì)
(1)小齒輪材料用40Cr鋼,調(diào)質(zhì),σb=750MPa;
(2)按扭轉(zhuǎn)強(qiáng)度估算軸的直徑
選用45號(hào)鋼調(diào)質(zhì),硬度217~255HBS
軸的輸入功率為
轉(zhuǎn)速為n1=2500 r/min
根據(jù)課本查表計(jì)算取 a=79mm b=49mm c=49mm
d≥
考慮有一個(gè)鍵槽,將直徑增大5%,
則d=40.5×(1+5%)mm=42.5mm 圓整為45mm
以上計(jì)算的軸徑作為輸入軸外伸端最小直徑。
5.2.5輸出軸1的設(shè)計(jì)
(1)小齒輪材料用40Cr鋼,調(diào)質(zhì),σb=750MPa;
(2)按扭轉(zhuǎn)強(qiáng)度估算軸的直徑
選用45號(hào)鋼調(diào)質(zhì),硬度217~255HBS
軸的輸入功率為
轉(zhuǎn)速為n1=1666.67 r/min
根據(jù)課本查表計(jì)算取 a=79mm b=49mm c=49mm
d≥
考慮有一個(gè)鍵槽,將直徑增大5%,
則d=36.5×(1+5%~10%)mm=38.3~40.1mm,圓整為40mm
以上計(jì)算的軸徑作為輸入軸外伸端最小直徑
5.2.6輸出軸2的設(shè)計(jì)
(1)小齒輪材料用40Cr鋼,調(diào)質(zhì),σb=750MPa;
(2)按扭轉(zhuǎn)強(qiáng)度估算軸的直徑
選用45號(hào)鋼調(diào)質(zhì),硬度217~255HBS
軸的輸入功率為
轉(zhuǎn)速為n1=2000 r/min
根據(jù)課本查表計(jì)算取 a=79mm b=49mm c=49mm
d≥
考慮有兩個(gè)鍵槽,將直徑增大5%~10%,
則d=40.5×(1+5%~10%)mm=36.5~38.3mm ,圓整為38mm
以上計(jì)算的軸徑作為輸入軸外伸端最小直徑
5.2.7 軸強(qiáng)度的校核
按扭轉(zhuǎn)合成應(yīng)力校核軸強(qiáng)度,由軸結(jié)構(gòu)簡圖及彎矩圖知Ⅰ處當(dāng)量彎矩最大,是軸的危險(xiǎn)截面,故只需校核此處即可。
強(qiáng)度校核公式:σe=/W≤[σ-1]
輸入軸:
軸是直徑為45的是實(shí)心圓軸,W=0.1d3=9112.5N.mm
軸材料為45號(hào)鋼,調(diào)質(zhì),許用彎曲應(yīng)力為[σ-1]=65MPa
則σe=/W=53.2≤[σ-1]= 65MPa
故軸的強(qiáng)度滿足要求
輸出軸1:
軸是直徑為40的是實(shí)心圓軸,W=0.1d3=6400Nmm
軸材料為45號(hào)鋼,正火,許用彎曲應(yīng)力為[σ-1]=65MPa
則σe= MΙ2/W=34.1≤[σ-1]= 65MPa
故軸的強(qiáng)度滿足要求
輸出軸2:
軸是直徑為38的是實(shí)心圓軸,W=0.1d3=5487.2Nmm
軸材料為45號(hào)鋼,正火,許用彎曲應(yīng)力為[σ-1]=65MPa
則σe= MΙ2/W=39.6≤[σ-1]= 65MPa
故軸的強(qiáng)度滿足要求
第六章 傳動(dòng)系統(tǒng)的保養(yǎng)與維修
6.1傳動(dòng)系統(tǒng)保養(yǎng)
加強(qiáng)設(shè)備的維護(hù)保養(yǎng)是確保設(shè)備正常工作十分重要的環(huán)節(jié)。目前液壓設(shè)備經(jīng)常出現(xiàn)四種毛?。?
一為"精神病",指液壓系統(tǒng)工作時(shí)好時(shí)壞,執(zhí)行機(jī)構(gòu)動(dòng)作時(shí)有時(shí)無;
二為"冒虛汗",指系統(tǒng)泄漏嚴(yán)重;
三為"抖動(dòng)病",指執(zhí)行機(jī)構(gòu)運(yùn)動(dòng)時(shí)有跳動(dòng),振動(dòng)或爬行;
四為"高燒病",指液壓系統(tǒng)工作油液溫升過高。
如果對(duì)上述四種病情進(jìn)行分析與診斷,尋找產(chǎn)生病根的原因,同時(shí)對(duì)液壓設(shè)備進(jìn)行科學(xué)管理,對(duì)常見故障提出預(yù)防措施,液壓系統(tǒng)的故障就可以減少或避免。
液壓設(shè)備的維護(hù)保養(yǎng)應(yīng)注意下列要點(diǎn):
① 控制油液污染,保持油液清潔,是確保液壓系統(tǒng)正常工作的重要措施。據(jù)某大型工廠統(tǒng)計(jì),液壓系統(tǒng)的故障有80%是由于油液污染引發(fā)的。油液污染還加速液壓元件的磨損。
② 控制液壓系統(tǒng)中工作油液的溫升是減少能源消耗、提高系統(tǒng)效率的一個(gè)重要環(huán)節(jié)。
③ 控制液壓系統(tǒng)泄漏極為重要,因?yàn)樾孤┖臀帐且簤合到y(tǒng)常見的故障。要控制泄漏,首先是提高液壓元件零部件的加工精度和元件的裝配質(zhì)量以及管道系統(tǒng)的安裝質(zhì)量;其次是提高密封件的質(zhì)量,注意密封件的安裝使用與定期更換;最后是加強(qiáng)日常維護(hù)。
④ 防止液壓系統(tǒng)振動(dòng)與噪聲。振動(dòng)影響液壓元件的性能,它使螺釘松動(dòng),管接頭松脫,從而引起漏油,甚至使油管破裂。一旦出現(xiàn)螺釘斷裂等故障,又會(huì)造成人身和設(shè)備事故。因此要防止和排除振動(dòng)現(xiàn)象。
⑤ 嚴(yán)格執(zhí)行日常點(diǎn)檢和定檢制度。點(diǎn)檢和定檢是設(shè)備維修工作的基礎(chǔ)之一。液壓系統(tǒng)故障存在著隱蔽性、可變性和難于判斷性的三大難關(guān)。因此對(duì)液壓系統(tǒng)的工作狀態(tài)進(jìn)行點(diǎn)檢和定檢,把可能產(chǎn)生的故障現(xiàn)象記錄在日檢維修卡上,并將故障排除在萌芽狀態(tài),減少重大事故的發(fā)生,同時(shí)也為設(shè)備檢修提供第一手資料。
⑥ 嚴(yán)格執(zhí)行定期緊固、清洗、過濾和更換制度。液壓設(shè)備在工作過程中,由于沖擊振動(dòng),磨損、污染等因素,使管件松動(dòng),金屬件和密封件磨損,因此必須對(duì)液壓件及油箱等實(shí)行定期清洗和維修,對(duì)油液、密封件、執(zhí)行延期更換制度。
⑦ 嚴(yán)格貫徹工藝紀(jì)律。在自動(dòng)化程度較高的大批量生產(chǎn)的現(xiàn)代化機(jī)械加工工廠里,機(jī)械設(shè)備專業(yè)化生產(chǎn)程度較高,生產(chǎn)的節(jié)拍性很強(qiáng),需按照加工要求和生產(chǎn)節(jié)拍來調(diào)節(jié)液壓系統(tǒng)的壓力和流量,防止操作者為了加快節(jié)拍,而將液壓系統(tǒng)工作壓力調(diào)高和運(yùn)動(dòng)速度加快的現(xiàn)象。不合理的調(diào)節(jié)不僅增加功率消耗,油溫升高,而且會(huì)導(dǎo)致液壓系統(tǒng)出現(xiàn)故障。
⑧ 建立液壓設(shè)備技術(shù)檔案。設(shè)備技術(shù)檔案是"管好、用好、修好"設(shè)備的技術(shù)基礎(chǔ),是備件管理、設(shè)備檢修和技術(shù)改造的原始依據(jù)。所以認(rèn)真建立液壓設(shè)備技術(shù)檔案將有助于分析和判斷液壓故障的產(chǎn)生原因,并為采取果斷措施排除故障提供依據(jù)。
⑨ 要建立液壓元件修理試驗(yàn)場(chǎng)所。為確保修理過的液壓元件達(dá)到原有技術(shù)性能要求,或?qū)齑嬉簤涸M(jìn)行質(zhì)量抽查,或?qū)M(jìn)口液壓元件在測(cè)繪試制之前進(jìn)行性能測(cè)試等,都需要有一個(gè)修理試驗(yàn)場(chǎng)所。
6.2傳動(dòng)系統(tǒng)的維修
6.2.1常見故障排除
液壓轉(zhuǎn)向系統(tǒng)故障原因和排除方法
故障
現(xiàn)象
發(fā)生原因
排除方法
漏油
1.閥體、隔盤、定子及后蓋結(jié)合面漏油
2.軸徑處膠圈損壞
3.安裝在轉(zhuǎn)向器閥體的法蘭盤上的配套隔盤漏油
4.限位螺栓處墊圈不平
1.結(jié)合面間有臟物,重新清洗;用力矩扳手重新按照要求均勻緊固螺栓;檢查更換有關(guān)密封圈
2.更換膠圈
3.拆下調(diào)節(jié)螺釘,更換膠圈
4.磨平和更換墊圈
轉(zhuǎn)向沉重
慢轉(zhuǎn)方向盤輕,快轉(zhuǎn)方向盤沉,油中有泡沫,發(fā)出不規(guī)則的響聲,方向盤轉(zhuǎn)動(dòng)而液壓缸時(shí)動(dòng)時(shí)不動(dòng),快慢轉(zhuǎn)方向盤均沉重,轉(zhuǎn)向無壓力,空負(fù)荷或輕負(fù)荷轉(zhuǎn)向輕,重負(fù)荷轉(zhuǎn)向沉。
1.油泵供油量不足
2.轉(zhuǎn)向系統(tǒng)中有空氣
3.閥體內(nèi)鋼球單向閥失效
4.油液粘度太大
5.油箱不滿
6.閥塊中溢流閥壓力低于工作壓力,溢流閥被臟污卡住或彈簧失效;密封圈損壞
1.選擇合適油泵或檢查油泵是否正常
2.排除系統(tǒng)空氣,檢查吸油管路是否漏氣
3.如鋼球丟失,則裝入直徑78.31mm鋼球(BZZ轉(zhuǎn)向器);如有臟污卡住鋼球,應(yīng)進(jìn)行清洗;如閥體單向閥密封帶與鋼球接觸不良,應(yīng)用鋼球沖擊之
4.使用推薦粘度油液
5.加油至規(guī)定的液面高度
6.調(diào)整溢流閥壓力或清洗溢流閥,更換彈簧或密封圈
轉(zhuǎn)向失靈
隨動(dòng)閥不能自動(dòng)回中和定位,中間位置壓力降增加,壓力振擺明顯增加,甚至不能轉(zhuǎn)動(dòng),配油關(guān)系錯(cuò)亂,方向盤自傳活左右擺動(dòng),壓力擺動(dòng)明顯增加,甚至不能轉(zhuǎn)動(dòng),車輛跑偏活轉(zhuǎn)動(dòng)方向盤時(shí)液壓缸不動(dòng)(也可
收藏
編號(hào):12868017
類型:共享資源
大小:770.85KB
格式:ZIP
上傳時(shí)間:2020-06-01
45
積分
- 關(guān) 鍵 詞:
-
yz16
液壓
振動(dòng)
壓路機(jī)
傳動(dòng)系統(tǒng)
設(shè)計(jì)
cad
- 資源描述:
-
YZ16全液壓振動(dòng)壓路機(jī)傳動(dòng)系統(tǒng)設(shè)計(jì)含5張CAD圖,yz16,液壓,振動(dòng),壓路機(jī),傳動(dòng)系統(tǒng),設(shè)計(jì),cad
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請(qǐng)勿作他用。