2952 交流永磁直線電機(jī)及其伺服控制系統(tǒng)的設(shè)計(jì)
2952 交流永磁直線電機(jī)及其伺服控制系統(tǒng)的設(shè)計(jì),交流,交換,永磁,直線,電機(jī),機(jī)電,及其,伺服,控制系統(tǒng),設(shè)計(jì)
Linear motor with magnetic bearing preload機(jī) 0405—36 何金樹Abstract: A positioning table includes a pair of parallel rails defining an axis of motion. A movable assembly including a first linear motor assembly disposed for motion along one of the rails. An outboard linear motor assembly on the other rail is rigidly bridged to the first linear motor assembly for concerted motion therewith. The first linear motor assembly includes a plurality of permanent magnets defining a plane at a predetermined angle to the horizontal and an armature defining a plane at the same angle closely spaced from the permanent magnets. The permanent magnets may be disposed on the movable element of the linear motor assembly or on the first rail. The armature is disposed on the other of the movable element and the first rail. First and second bearings on the movable element of the linear motor assembly, which may be air bearings support loads in the vertical and horizontal directions. The predetermined angle establishes the direction of a magnetic attractive vector between the permanent magnets and the armature. The predetermined angle is adjusted to proportion the total load of the static and dynamic load and the magnetic attractive force to a desired value. The outboard linear motor assembly on the second rail includes a plurality of permanent magnets and a second armature. The outboard linear motor assembly and the second rail may include provision for magnetic attraction at the same predetermined angle as that employed in the first linear motor assembly.Description: CROSS REFERENCE TO RELATED APPLICATIONS BACKGROUND OF THE INVENTIONThe present invention relates to linear motors and, more specifically, to apparatus for guiding and supporting a movable element of a permanent magnet linear motor in a machine tool. Linear motors conventionally are used in applications requiring the application of modest force along a linear axis. One application, disclosed in US Pat. No. 4,595,870, for example, includes driving one axis of a positioning table for displacing a work piece along the axis. Such applications are characterized by high precision in positioning, and modest force and acceleration requirements. The linear motor eliminates the windup characteristic of ball-screw drives and substantially reduces the mass of the moving element.。 Both of these characteristics of linear motors provide benefits in work piece positioning precision and acceleration. The force of which linear motors are capable is limited by resistive heating in the windings of the armature of the linear motor. In my US patent application Ser. No. 859,915, I disclose several techniques for cooling a linear motor. In cooling techniques using liquid coolant, I have discovered that it is possible to attain high forces in permanent magnet DC linear motors using a moderate flow of a liquid coolant in thermal contact with the armature windings. The attainable high force permits such linear motors to be used in applications not previously considered for this a class of motors. In my US Pat. No. 4,505,464, I disclose a positioning table which takes advantage of the magnetic attraction between permanent magnets and armature iron for preloading bearing supporting the movable element of the positioning table Two sets of magnets in orthogonal planes provide bi-directional preloading. In my US patent application Ser. No. 015,680, I disclose a high-force linear motor adapted for integration into the bed of a machine tool. Certain machine-tool applications require very long travel at high speeds and accelerations. The present invention addresses one such application wherein, in addition to the foregoing requirements, long linear axes must be accommodated. OBJECTS AND SUMMARY OF THE INVENTIONIt is an object of the invention to provide a permanent magnet linear motor which overcomes the drawbacks of the prior art. It is a further object of the invention to provide a permanent magnet linear motor having first and second bearing devices with bearing forces disposed at angles to each other and a magnetic attractive force disposed at an angle intermediate the angles of the bearing forces, whereby the single magnetic force is effective for preloading both the first and the second bearing devices. It is a still further object of the invention to provide a permanent magnet linear motor with first and second bearing devices supporting bearing forces along vectors angularly spaced with respect to each other. The bearing devices are further subject to at least one load unequally applied to the two bearing devices. A magnetic attractive force between permanent magnets and magnetic metal in an armature of the linear motor is disposed at an angle between the vectors of the bearing forces such that a greater contribution of magnetic preload is applied to the one of the first and second bearing devices which bears less of the load, whereby bearing loading is adjusted toward equality. It is a still further object of the invention to provide a permanent magnet linear motor having indefinite length linear travel. It is a still further object of the invention to provide a positioning device having a first permanent magnet linear motor employing a first rail for one of its motor elements and a second permanent magnet linear motor employing a second rail parallel to the first rail for supporting an outboard end of the positioning device and for providing coordinated driving force with the first permanent magnet linear motor. First and second bearing devices, angularly spaced apart transfer bearing forces to the first rail. Magnetic attraction in the first linear motor, at an angle intermediate the bearing vectors of the first and second bearing devices preload the first and second bearing devices. At least a third bearing device in the second linear motor transfers the remainder of the load forces to the second rail. Briefly stated, the present invention provides a positioning table including a pair of parallel rails defining an axis of motion. A movable assembly including a first linear motor assembly disposed for motion along one of the rails. An outboard linear motor assembly on the other rail is rigidly bridged to the first linear motor assembly for concerted motion therewith. The first linear motor assembly includes a plurality of permanent magnets defining a plane at a predetermined angle to the horizontal and an armature defining a plane at the same angle closely spaced from the permanent magnets. The permanent magnets may be disposed on the movable element of the linear motor assembly or on the first rail. The armature is disposed on the other of the movable element and the first rail. First and second bearings on the movable element of the linear motor assembly support loads in the vertical and horizontal directions. The predetermined angle establishes the direction of a mangetic attractive vector between the permanent magnets and the armature. The predetermined angle is adjusted to proportion the total load of the static and dynamic load and the magnetic attractive force to a desired value. The outboard linear motor assembly on the second rail includes a plurality of permanent magnets and a second armature. A bearing associated with the outboard linear motor assembly acts in the vertical direction only. The outboard linear motor assembly and the second rail may include provision for magnetic attraction at the same predetermined angle as that employed in the first linear motor assembly. In one embodiment, a non-magnetic rail is employed with a magnetic metal strip affixed to a surface of the rail backing the plurality of permanent magnets. In another embodiment, a plastic insert in at least one surface of the rail facilitates the creation of a surface having a flatness sufficient for use with an air bearing. In still another embodiment, a unitary motor saddle includes first and second air bearing integrated into a saddle. In a still further embodiment, one or more auxiliary bearings are teamed with air bearings. The auxiliary bearings assume any load in excess of that which the air bearings are capable of supporting. The auxiliary bearings are spaced from an opposing surface such that they undertake mechanical support before their companion air bearings can be forced into mechanical contact with the surface. According to an embodiment of the invention, there is provided a positioning device for positioning an object along at least one axis comprising: first and second rails disposed parallel to the at least one axis, at least the first rail including a horizontal top surface, a vertical side surface and a first sloping side surface, the first sloping side surface making a predetermined angle with the horizontal, a first movable assembly, movable along the at least one axis, the first movable assembly including a linear motor assembly proximate to the first rail and an outboard linear motor assembly proximate to the second rail, means for rigidly connecting the linear motor assembly to the outboard linear motor assembly for concerted movement thereof, vertical bearing means for supporting vertical forces on the linear motor assembly on the horizontal top surface, horizontal bearing means for supporting horizontal forces on the linear motor assembly on the vertical side surface, a first plurality of permanent magnets defining a first plane parallel to the first sloping side surface, an armature having magnetically attractable material therein defining a second plane parallel to the first sloping side surface and closely spaced facing the first plane, whereby a first magnetic attraction exists there between, the first plurality of permanent magnets being disposed on one of the first sloping side surface and the first movable assembly and the armature being disposed on the other of the first sloping side surface and the first movable assembly, the second rail having a second horizontal top surface, the outboard linear motor assembly including second vertical bearing means for bearing against the second horizontal top surface, and the predetermined angle being a value effective for apportioning a total load on the vertical and horizontal bearing means in a predetermined proportion.According to a feature of the invention, there is provided a positioning device for positioning a load along first and second axes comprising: first and second rails disposed parallel to the first axis, at least the first rail including a horizontal top surface, a vertical side surface and a first sloping side surface, the first sloping side surface making a predetermined angle with the horizontal, a first movable assembly, movable along the first axis, the first movable assembly including a linear motor assembly proximate to the first rail and an outboard linear motor assembly proximate to the second rail, third and fourth rails rigidly connecting the linear motor assembly to the outboard linear motor assembly for concerted movement thereof, vertical bearing means for supporting vertical forces on the linear motor assembly on the horizontal top surface, horizontal bearing means for supporting horizontal forces on the linear motor assembly on the vertical side surface, a first plurality of permanent magnets defining a first plane parallel to the first sloping side surface, an armature having magnetically attractable material therein defining a second plane parallel to the first sloping side surface and closely spaced facing the first plane, whereby a first magnetic attraction exists therebetween, the first plurality of permanent magnets being disposed on the first sloping side surface and the armature being disposed on the first movable assembly, the second rail having a second horizontal top surface, the outboard linear motor assembly including second vertical bearing means for bearing against the second horizontal top surface, the predetermined angle being a value effective for apportioning a total load on the vertical and horizontal bearing means in a predetermined proportion, a second sloping side surface on the second rail, the second sloping side surface being at a second predetermined angle inclined in the same direction as the first sloping side surface, the second sloping side surface including magnetically attractable material, a second plurality of permanent magnets on the outboard bearing assembly, the second plurality of permanent magnets defining a third plane closely spaced facing the second sloping side surface, whereby a second magnetic attraction is exerted in the outboard linear motor assembly, the third and fourth rails defining a second axis at right angles to the at least one axis, and a second movable assembly on the third and fourth rails, whereby an XY device is provided.According to a further feature of the invention, there is provided a linear motor comprising: a rail, a plurality of permanent magnets disposed on a surface of the rail, a movable member, the movable member including an armature containing magnetically attractable material, bearing means for supporting the movable member in a position spacing a surface of the armature to a surface of the plurality of permanent magnets, the bearing means including an air bearing, the rail including a surface facing the air bearing, the air bearing being effective in normal operation for supporting the movable member with a spacing D1 between the air bearing and the surface, the bearing means including at least one auxiliary bearing, the auxiliary bearing including means for preventing the air bearing from approaching closer than a distance D2 between the air bearing and the surface, distance D2 is less than D1, and distance D2 is greater than zero.According to a still further feature of the invention, there is provided a linear motor comprising: a rail, a plurality of permanent magnets disposed on a first surface of the rail, a movable member, the movable member including an armatue containing magnetically attractable material, an air bearing affixed to the movable member, an insert in the rail forming a second surface facing the air bearing, the air bearing being effective in normal operation for supporting the movable member with a nominal spacing D1 between the air bearing and the second surface, and the insert being of a material different from a remainder of the rail and of a type permitting easier attainment of flatness of the second surface than the remainder of the rail.According to another feature of the invention, there is provided a linear motor comprising: a rail, a plurality of permanent magnets disposed on a surface of the rail, a movable member, the movable member including an armature containing magnetically attractable material, bearing means affixed to the movable member, the bearing means including means for supporting the movable member against a total load applied between the movable member and the rail, the rail including a longitudinal cavity therein, and a vibration-damping material in the longitudinal cavity.According to yet another feature of the invention, there is provided a linear motor comprising: a rail, a plurality of permanent magnets disposed on a first surface of the rail, a movable member, the movable member including a saddle, an armature containing magnetically attractable material affixed to the saddle, the armature being disposed facing the plurality of permanent magnets, a second surface on the rail, the second surface defining a first supporting plane, a third surface on the rail, the third surface defining a second supporting plane, the first and second supporting planes being non-coplanar, a first air bearing in the saddle, the first air bearing facing the first supporting plane, a second air bearing in the saddle, the second air bearing facing the second supporting plane, and at least the first air bearing being unitary with the saddle.The above, and other objects, features and advantages of the present invention will become apparent from the following description read in conjunction with the accompanying drawings, in which like reference numerals designate the same elements.
收藏