【溫馨提示】 dwg后綴的文件為CAD圖,可編輯,無水印,高清圖,,壓縮包內文檔可直接點開預覽,需要原稿請自助充值下載,請見壓縮包內的文件及預覽,所見才能所得,請細心查看有疑問可以咨詢QQ:414951605或1304139763
中文譯文
2螺桿壓縮機的幾何形狀
(2.12)
簡介部分A1D1在主轉子的圓形半徑,0<T<θ2。
(2.13)
C1D1段出現(xiàn)作為一個次擺線在主轉子所產(chǎn)生的圓的半徑r4在大門口轉子。曲線是從門轉子坐標通過相同的嚙合過程。
圓C2D2是:
(2.14)
現(xiàn)在,當主旋翼的所有片段都是已知的,它們被用來作為源曲線。門轉子葉現(xiàn)在會被完全產(chǎn)生在上一節(jié)中描述的嚙合過程。
雖然本質上是簡單的,演示文件包含所有功能用現(xiàn)代的螺桿轉子型線。壓力角同時,扁平和圓形輪廓的裂片不為零。這是至關重要的成功的制造。輪廓由曲線和不產(chǎn)生點。這進一步增強了其可制造性。通過改變其參數(shù),C,R,R0,R2,R3和R4,各種曲線可以產(chǎn)生,一些正柵極轉子力矩,有的適合低壓力比,和其他人高壓縮比壓縮。配置文件是完全計算機化,可以用于演示,教學和發(fā)展的目的。
2.4.2 SKBK剖面
圖2.6 SKBK剖面
1977 SKBK剖面是第一個在公開的俄羅斯文獻中出現(xiàn)的現(xiàn)代的輪廓,如圖2.6所示。簡介了相同的布局和序列段,除了演示文件事實上,R2和R3線段所取代AB和AF的產(chǎn)生。這可以很容易地實現(xiàn)如果在演示型R2和R3趨于零。同樣的演示文件,SKBK型材偏心圓在主旋翼的圓形葉,給出了壓力角不同在節(jié)圓的面積為零。這進一步使其易于制造和柵極轉子力矩的穩(wěn)定性。這一特點的SKBK簡介已經(jīng)至少出版了五年前的開關磁阻電機轉子的專利“D”它聲稱相同的特征。然而,由于在平面葉邊主門轉子由點和在柵極和主要產(chǎn)生轉子分別從E位于柵極轉子的齒圈,在節(jié)圓上的壓力角的平面?zhèn)葹榱恪_@是不允許的通過銑削或磨削除非型材制造該剖面。
2.4.3傅聲簡介
圖 2.7 傅聲剖面
傅聲曲線,如圖2.7所示,是幾乎一樣的示威者,但有一個特點。線段AB是一個橢圓。
2.4.4“超”的文件
“超”的配置文件幾乎是為傅聲分布相同,除了線段AB,這是在主轉子代替橢圓雙曲線傅聲原來的輪廓。然而,盡管有這樣的一個小的差異,“超”是一個更好的輪廓給較大的螺桿壓縮機的位移,一較短的密封線和較強的轉子葉柵。日立的輪廓有相同的布局為“超”的文件。
2. 4 .5“σ”剖面
“σ”是一個相對舊的配置文件。它誕生于20世紀年底年代作為對SRM授予獨占許可證的Aerzener德國。其他的德國汽車制造商,如GHH和凱瑟爾因此,需要開發(fā)自己的配置文件?!唉摇?顯示在圖。2.8是一個美麗的和高效的配置文件。然而,新的和更好的資料現(xiàn)在可用。平面一側的“σ”葉一樣的示威者概要文件,但是圓邊的概要文件生成從平面?zhèn)鹊男欧獾膱A圈,它涉及平面和圓邊,半徑的提前給予。這是一個可以接受的方法配置生成的如果沒有更多的一般是已知的,但嚴重限制了生成過程。有幾個修改“σ”剖面。其中的一個,這是這里提出,由一條直線圓邊的BC2大門口轉子。這種改性大大提高了剖面,它是比原來少有限。
圖2.8 西格瑪剖面
2.4.6“氣旋”剖面
“氣旋”顯示在圖2.9是一個概要文件由康普艾開發(fā)。布局和序列的剖面段沒有完全不同的演示,但“氣旋”介紹了parabolae代替圈在公元前片段,GH和JH。 的一個有趣特性“氣旋”剖面是“負面”轉矩在大門口轉子導致轉子接觸的平面一邊的轉子。
圖2.9 Cyclon概況
2 .4 .7對稱剖面
對稱剖面,顯示在圖。2.10是非常簡單的,由三個圈主轉子在中心位置無論是在轉子中心或在節(jié)圓的主要轉子。因為圈主轉子與轉子中心的中心要么或節(jié)圓,他們只生成圈了門轉子與中心無論是在轉子中心,或在轉子齒節(jié)圓。因此不足為奇的是這是第一次嗎螺桿轉子概要文件生成過。段D1E1是一個圓的半徑r1w?與其中心r0的轉子軸,而段E1F1是一個圓的半徑r0的。段F1A1是一個圓圈的半徑r。兩個,最后兩段有其中心在轉子螺距圓。進一步段類似于給定的對稱。
圖2.10 對稱圓形輪廓
有一個巨大的對稱剖面面積不包括它從水中憋氣任何壓縮機應用程序中一個高或中度壓力比是涉及。然而,對稱剖面表現(xiàn)令人驚奇的好低壓力壓縮機的應用程序。更詳細的圓形輪廓可以發(fā)現(xiàn)在馬戈利斯,1978.
2 4 8 SRM”“剖面
“一個”的SRM概要顯示在圖2.11。它保留了所有有利的特性的對稱剖面喜歡它的簡單,同時避免其主要缺點,即大水中憋氣區(qū)。主要的目標是降低了氣孔面積是通過允許提示點的主要和門轉子產(chǎn)生他們的同行,trochoids在門和主旋翼分別?!耙粋€”剖面主要由轉子和圈了門一行通過大門口轉子軸。主曲線的設置包括:D2C2,這是一個圓形的門轉子與中心門口節(jié)圓,C2B2,這是一個圓在大門口轉子,該中心位于外的節(jié)圓區(qū)域。這是一個新的功能實施的一些問題在一代的主旋翼同行,因為數(shù)學用于配置生成當時通用傳動裝置不足。這偏心保證壓力角的轉子球不同于零,導致它的易于制造。段是一個圓形的英航轉子以其中心門在節(jié)圓。扁平的葉邊的主要和門出現(xiàn)生成hypocycloids epi /由分G和H的門主轉子分別。是一個徑向線GF2門口的轉子。這帶來了同樣的制造業(yè)的好處前面提到的圓偏心在對面的葉側。F2E2是一個圓的中心在大門口音高和最后,E2D2是一個圓的中心在門軸。更多的細節(jié)在”一個“剖面將被Amosov et al出版。1977和剩余的,1979。
“A”配置文件是一個很好的例子,一個好的和簡單的想法如何進化成一個復雜的結果。因此,“A”剖面是不斷遭受這導致變化的“C”剖面。這主要是生成改善剖面可制造性。最后,一個完全新的配置文件,“D”剖面生成了一個新的發(fā)展介紹在剖面?zhèn)鲃友b置和增加門轉子扭矩。
盡管其最終形式的復雜性的“A”剖面出現(xiàn)的最受歡迎的螺桿壓縮機剖面,特別是在其專利過期。
圖 2.11 “A”概要SRM
2. 4 .9 SRM“D”剖面
SRM的“D”剖面,顯示在圖2.12,生成完全由圓圈從轉子的中心距圈。類似于示威者,C2D2是一個偏心圓的半徑r3上大門口轉子。B1C1是一個偏心圓的半徑r1,再加上小圓弧的半徑A1J1 r2,位置在主轉子。G2H2是一個小圓弧轉子和E2F2的門是一個圓弧的門轉子。F2G2是一個相對大的圓弧轉子產(chǎn)生的門相應的曲線的最小曲率在主轉子。兩個圓弧,B2C2和F2G2確保大曲率半徑的節(jié)圓面積。這避免了高應力在轉子接觸區(qū)。
圖 2.12 SRM“D”剖面
2.4.10 SRM“G”剖面
“G”概要的介紹,并通過SRM在年代末作為替換為“D”轉子和圖2.13所示。相比“D”的“G”轉子,轉子具有獨特特征的兩個額外的圓圈兩葉的齒頂區(qū)域的主旋翼,靠近節(jié)圓。這個特性提高了轉子接觸,此外,生成較短密封線。這可以從圖2.13,一個轉子具有“G”剖面只有在它的平的面特征通過段提出了H1I1。
圖 2.13 SRM“G”剖面
2. 4 .11城市“N”架產(chǎn)生轉子剖面
“N”是計算轉子架代過程。這種區(qū)分他們從任何其他人。在這種情況下,大水中憋氣區(qū),這是一個特點生成齒條的轉子,是克服通過生成高壓力側架通過轉子共軛過程。這削弱了單一的適當?shù)那€放在架子上。這樣一架然后用于分析兩個主要的和門的轉子。該方法及其擴展使用通過作者創(chuàng)建許多不同的轉子概要,其中一些使用通過Stosic et al。,1986年,Hanjalic和Stosic,1994。 其中一個應用程序的架在Stosic描述生成程序,1996。下面是一個簡短的描述生成一架“N”轉子剖面,典型的家庭的轉子概要設計高效的壓縮空氣,常見的制冷劑和一系列過程氣體。生成的轉子通過組合架轉子一代的過程,它的特點是這樣的它可以很容易地修改進一步優(yōu)化性能對于任何特定的應用程序。
英文原文
2 Screw Compressor Geometry
x01 = (r1i ? r3) cos ψ2 + r3 cos t
y01 = ?(r1i ? r3) sinψ2 + r3 sin t (2.12)
Profile portion A1D1 is a circle of radius r2 on the main rotor, 0 < t < θ2.
x01 = r1e ? r2 cos t
y01 = r2 sin t (2.13)
Segment C1D1 emerges as a trochoid on the main rotor generated by the circle of radius r4 on the gate rotor, ?θ4 ? τ1 < t < ?π ? τ1. The trochoid is obtained from the gate rotor coordinates through the same meshing procedure.
The circle C2D2 is:
x02 = (r2e ? r4) cos τ1 + r4 cos t
y02 = (r2e ? r4) sinτ1 + r4 sin t (2.14)
Now, when all the segments of the main rotor are known, they are used as source curves. The gate rotor lobe can now be generated completely by the meshing procedure described in the previous section. Although essentially simple, the Demonstrator profile contains all the features which characterize modern screw rotor profiles. The pressure angles on both, the flat and the round profile lobes are not zero. This is essential for successful manufacturing. The profile is generated by the curves and not by points. This further enhances its manufacturability. By changing its parameters, C, r, r0, r2, r3 and r4, a variety of profiles can be generated, some with positive gate rotor torque, some suitable for low pressure ratios, and others for high pressure ratio compression. The profile is fully computerized and can be used for demonstration, teaching and development purposes.
2.4.2 SKBK Profile
Amosov’s 1977 SKBK profile is the first modern Russian profile to be published in the open literature and it is shown in Fig. 2.6. The profile has the same layout and sequence of segments as the Demonstrator profile apart frothe fact that the circles r2 and r3 the substituted by cycloids and the segments AB and AF are generated by point generation. This can be readily achieved if r2 and r3 in the Demonstrator profile tend to zero. Similarly to the Demonstrator profile, SKBK profile has an eccentric circle on the round lobe of the main rotor, which gives a pressure angle far different from zero in the pitch circle area. This further ensures both its ease of manufacture and the gate rotor torque stability. This characteristic of the SKBK profile was published at least five years prior the SRM “D” rotor patents which claimed the same feature. However, since the flat lobe sides on the main and gate rotors are generated by points E and A on the gate and main rotor respectively and since E is positioned on the gate rotor pitch circle, the pressure angle at the pitch circle on the flat side is zero. This does not allow manufacturing of this profile by milling or grinding unless the profile is modified.
Fig. 2.6. SKBK Profile
Fig. 2.7. Fu Sheng Profile
2.4.3 Fu Sheng Profile
The Fu Sheng profile, as shown in Fig. 2.7, is practically the same as the Demonstrator, but has one distinguishing feature. The segment AB is an ellipse.
2.4.4 “Hyper” Profile
The “Hyper” profile is virtually the same as the Fu Sheng profile, apart from the segment AB, which is a hyperbola on the main rotor instead of the ellipse of the original Fu Sheng profile. However, despite such a small difference, the “Hyper” is a better profile giving larger screw compressor displacement, a shorter sealing line and stronger gate rotor lobes. The Hitachi profile has the same layout as the “Hyper” profile.
2.4.5 “Sigma” Profile
The “Sigma” is a relatively old profile. It was developed in the late nineteen seventies as a response to SRM awarding an exclusive licence to Aerzener in Germany. Other German manufacturers, such as GHH and Kaeser, therefore, needed to develop their own profiles. The “Sigma”, shown in Fig. 2.8 is a beautiful and efficient profile. However, new and better profiles are now available. The flat side of the “Sigma” lobe is the same as that of the Demonstrator profile, but the round side of the profile is generated from the flat side by an envelope of circles, which touch both the flat and the round sides, the radii of which are given in advance. This is an acceptable method of profile generation if nothing more general is known, but seriously limits the generation procedure. There are several modifications of the “Sigma” profile. One of these, which is presented here, comprises a straight line BC2 on the round side of the gate rotor. This modification significantly improves the profile, which is less limited than the original.
Fig. 2.8. Sigma Profile
2.4.6 “Cyclon” Profile
The “Cyclon” shown in Fig. 2.9 is a profile developed by Compair. The layout and sequence of profile segments are not so different from the Demonstrator, but the “Cyclon” introduces parabolae instead of circles in segments BC, GH and JH. One of the interesting features of the “Cyclon” profile is the “negative” torque on the gate rotor which results in rotor contact on the flat side of the rotors.
Fig. 2.9. Cyclon Profile
2.4.7 Symmetric Profile
The Symmetric profile, shown in Fig. 2.10 is very simple and consists of three circles on the main rotor with centres positioned either on the rotor centre or on the pitch circle of the main rotor. Since the circles are on the main rotor with centres either at the rotor centre or on the pitch circle, they only generate circles on the gate rotor with centres either in the rotor centre, or on the rotor pitch circle. Is is therefore not surprising that this was the first screw rotor profile ever generated.
Segment D1E1 is a circle of radius r1w ? r0 with its centre on the rotor axis, while segment E1F1 is a circle of radius r0. Segment F1A1 is on a circle of radius r. Both, the last two segments have their centres on the rotor pitch circle. Further segments are symmetrically similar to the given ones.
Fig. 2.10. Symmetric Circular Profile
The Symmetric profile has a huge blow-hole area which excludes it from any compressor application where a high or even moderate pressure ratio is involved. However, the symmetric profile performs surprisingly well in low pressure compressor applications. More details about the circular profile can be found in Margolis, 1978.
2.4.8 SRM “A” Profile
The SRM “A” profile is shown in Fig. 2.11. It retains all the favourable features of the symmetric profile like its simplicity while avoiding its main disadvantage, namely, the large blow-hole area. The main goal of reducing the blow hole area was achieved by allowing the tip points of the main and gate rotors to generate their counterparts, trochoids on the gate and main rotor respectively. The “A” profile consists mainly of circles on the gate rotor and one line which passes through the gate rotor axis.
The set of primary curves consists of: D2C2, which is a circle on the gate rotor with the centre on the gate pitch circle, and C2B2, which is a circle on the gate rotor, the centre of which lies outside the pitch circle region. This was a new feature which imposed some problems in the generation of its main rotor counterpart, because the mathematics used for profile generation at that time was insufficient for general gearing. This eccentricity ensured that the pressure angles on the rotor pitches differ from zero, resulting in its ease of manufacture. Segment BA is a circle on the gate rotor with its centre on the pitch circle. The flat lobe sides on the main and gate rotors were generated as epi/hypocycloids by points G on the gate and H on the main rotor respectively. GF2 is a radial line at the gate rotor. This brought the same benefits to manufacturing as the previously mentioned circle eccentricity on the opposite lobe side. F2E2 is a circle with the centre on the gate pitch and finally, E2D2 is a circle with the centre on the gate axis.
More details on the “A” profile are published by Amosov et al., 1977 and by Rinder, 1979.
The “A” profile is a good example of how a good and simple idea evolved into a complicated result. Thus the “A” profile was continuously subjected to changes which resulted in the “C” profile. This was mainly generated to improve the profile manufacturability. Finally, a completely new profile, the “D” profile was generated to introduce a new development in profile gearing and to increase the gate rotor torque.
Despite the complexity of its final form the “A” profile emerged to be the most popular screw compressor profile, especially after its patent expired.
2.4.9 SRM “D” Profile
The SRM “D” profile, shown in Fig. 2.12, is generated exclusively by circles with the centres off the rotor pitch circles. Similar to the Demonstrator, C2D2 is an eccentric circle of radius r3 on the gate rotor. B1C1 is an eccentric circle of radius r1, which, together with the small circular arc A1J1 of radius r2, is positioned on the main rotor. G2H2 is a small circular arc on the gate rotor and E2F2 is a circular arc on the gate rotor. F2G2 is a relatively large circular arc on the gate rotor which produces a corresponding curve of the smallest possible curvature on the main rotor.
Both circular arc, B2C2 and F2G2 ensure a large radius of curvature in the pitch circle area. This avoids high stresses in the rotor contact region.
Fig. 2.11. SRM “A” Profile
Fig. 2.12. SRM “D” Profile
2.4.10 SRM “G” Profile
The “G” profile was introduced by SRM in the late nineteen nineties as a replacement for the “D” rotor and is shown in Fig. 2.13. Compared with the “D” rotor, the “G” rotor has the unique feature of two additional circles in the addendum area on both lobes of the main rotor, close to the pitch circle.
This feature improves the rotor contact and, additionally, generates shorter sealing lines. This can be seen in Fig. 2.13, where a rotor featuring “G” profile characteristics only on its flat side through segment H1I1 is presented.
Fig. 2.13. SRM “G” Profile
2.4.11 City “N” Rack Generated Rotor Profile
“N” rotors are calculated by a rack generation procedure. This distinguishes them from any others. In this case, the large blow-hole area, which is a characteristic of rack generated rotors, is overcome by generating the high pressure side of the rack by means of a rotor conjugate procedure. This undercuts the single appropriate curve on the rack. Such a rack is then used for profiling both the main and the gate rotors. The method and its extensions were used by the authors to create a number of different rotor profiles, some of them used by Stosic et al., 1986, and Hanjalic and Stosic, 1994. One of the applications of the rack generation procedure is described in Stosic, 1996.
The following is a brief description of a rack generated “N” rotor profile, typical of rotor profiles designed for the efficient compression of air, common refrigerants and a number of process gases. The rotors are generated by the combined rack-rotor generation procedure whose features are such that it may be readily modified further to optimize performance for any specific application.
編號
無錫太湖學院
畢業(yè)設計(論文)
相關資料
題目:圓柱型產(chǎn)品填充粉末料的自動機設計
信機 系 機械工程及自動化專業(yè)
學 號: 0923145
學生姓名: 楊 文 浩
指導教師: 何雪明(職稱:副教授 )
(職稱: )
2013年5月25日
目 錄
一、畢業(yè)設計(論文)開題報告
二、畢業(yè)設計(論文)外文資料翻譯及原文
三、學生“畢業(yè)論文(論文)計劃、進度、檢查及落實表”
四、實習鑒定表
無錫太湖學院
畢業(yè)設計(論文)
開題報告
題目:圓柱型產(chǎn)品填充粉末料的自動機設計
信機 系 機械工程及自動化 專業(yè)
學 號: 0923145
學生姓名: 楊文浩
指導教師: 何雪明 (職稱:副教授)
(職稱: )
2012年11月25日
課題來源
自擬
科學依據(jù)(包括課題的科學意義;國內外研究概況、水平和發(fā)展趨勢;應用前景等)
(1)課題科學意義
我國在定量包裝設備的發(fā)展方面相對滯后,雖然自動定量充填包裝技術在我國發(fā)展了將近二十年,從八十年代開始,發(fā)展壯大,在定量充填的某些技術方面上發(fā)展比較成熟,但是國內的定量充填設備生產(chǎn)企業(yè)大部分以小規(guī)模為主,產(chǎn)品設備的設計和自主研發(fā)環(huán)節(jié)非常的薄弱。定量包裝行業(yè)在過去長期處于一種生產(chǎn)效率低下、關鍵技術不高的狀況,相當一部分企業(yè)的經(jīng)驗模式仍然是照搬照抄國外先進技術,以此降低生產(chǎn)成本。還有很多家庭作坊式的小企業(yè)依然依賴一套圖紙生存,從不投資研發(fā),這種單純的追求降低成本的發(fā)展模式,導致同行業(yè)之間互相抄襲,沒有自主知識產(chǎn)權,嚴重破壞國內市場秩序。
因此,我們當前的任務比較艱巨,需要加大科研開發(fā)的力度,努力采用自動化控制技術和實現(xiàn)機電一體化作業(yè),提高機器零件的加工工藝水平,盡量保證定量充填包裝商品的準確度,加強包裝新材料的研發(fā)和應用,保證被包裝商品的衛(wèi)生安全,注意減少對自然環(huán)境的破壞,注意包裝材料的二次利用,開發(fā)出運行可靠、定量精確、生產(chǎn)效率高的自動定量充填機,改變整個定量包裝機械行業(yè)的低水平發(fā)展,滿足我國廣大的市場需求,積極拓展更加廣闊的國際市場。
(2)粉末填充機的研究狀況及其發(fā)展前景
我國粉末包裝機在市場中占有重要地位,但是暫時還沒有完全取代過去的一些傳統(tǒng)的設備,主要還是因為思想先進但是技術落后,一些陳舊的設備在很大程度上制約著包裝機械的進步,很多企業(yè)已經(jīng)在嘗試研發(fā)新的粉末包裝機,但是并沒有從根本上改變設備的性能。改革開放以來,隨著大量成套設備的引進及國際間經(jīng)濟技術交流活動的開展, 我國科技工作者對我國粉體包裝機械給予了足夠的重視?,F(xiàn)在我國已經(jīng)能自行設計制造出多種大、中、小型粉體包裝機械。除了各種自動計量充填機外,自動制袋、自動上袋、封口或縫口、印字,集裝等機械也造出了樣機。有的小袋自動包裝機質量很好,不僅能滿足國內市場需要,而宜還能出口,在國際上受到了好評。有的包裝機的技術性能已趕上當代國際先進水平。但總的來看,在這一領域我國與發(fā)達國家的差距還較大。
研究內容
① 研究粉末顆粒中的某一粒子在螺桿下料過程中的運動軌跡,通過數(shù)學方程描述其運動軌跡。
② 建立數(shù)學模型,數(shù)學模型主要描述粒子在運動過程中的速度變化和加速度變化。
③ 根據(jù)螺桿的運動軌跡方程及受力情況,對螺桿充填的效率進行分析,通過效率分布曲線確定出較好的螺旋升角及螺桿轉速范圍。
④ 將粉末顆粒物料假設為流體,研究螺桿充填的機理。
擬采取的研究方法、技術路線、實驗方案及可行性分析
(1)技術路線
首先研究粉末顆粒中的某一粒子在螺桿下料過程中的運動軌跡,通過數(shù)學方程描述其運動軌跡,建立數(shù)學模型,數(shù)學模型主要描述粒子在運動過程中的速度變化和加速度變化。其次根據(jù)螺桿的運動軌跡方程及受力情況,對螺桿充填的效率進行分析,通過效率分布曲線確定出較好的螺旋升角及螺桿轉速范圍。
(2)研究方法
① 根據(jù)螺桿的運動軌跡方程及受力情況,對螺桿充填的效率進行分析。
② 對實驗數(shù)據(jù)進行分析處理,為粉末填充機的工作機構動力學模型、進行仿真與分析作了必要的準備。
(3)可行性分析
通過數(shù)學方程描述其運動軌跡,建立數(shù)學模型的方法運用成熟,因此是可行的。
研究計劃及預期成果
研究計劃:
2012年11月12日-2012年11月16日:學習并翻譯一篇與畢業(yè)設計相關的英文材料
2012年11月20日-2013年1月20日:按照任務書要求查閱論文相關參考資料,填寫畢業(yè)設計開題報告書。
2013年1月25日-2013年2月10日:填寫畢業(yè)實習報告。
2013年2月20日-2013年3月10日:按照要求修改畢業(yè)設計開題報告。
2013年3月19日-2013年3月30日:根據(jù)開題報告完成任務書。
2013年4月1日-2013年4月30日:完成總裝圖及零件圖的繪制。
2013年4月30日-2013年5月25日:畢業(yè)論文撰寫和修改工作。
預期成果:
我國市場前景廣闊,產(chǎn)品質量性能逐漸滿足要求,因此產(chǎn)品的發(fā)展必須由單純的追求技術上的完善,轉向產(chǎn)品外觀質量的提高,放到與技術改進放到同等重要的位置,通過本課題的研究,產(chǎn)品必定以合理的色彩以及人性化的結構方式提高自己的附加值,吸引到更多地客戶,加大自己產(chǎn)品的市場占有率,提高在行業(yè)中的競爭力。本文中對充填過程分析所使用的另外一個重要方法是流體力學法,因此了解粉末顆粒物料的基本性質對充填過程的分析還是有很大幫助的。
特色或創(chuàng)新之處
① 本課題采用實體建模的方式對設計結構進行強度分析。
② 利用積分法對結構進行強度、剛度分析,其結構比常規(guī)的解析法更準確、可靠。
已具備的條件和尚需解決的問題
① 實驗方案思路已經(jīng)非常明確,已經(jīng)具備建立仿真模型的能力。
② 傳動系統(tǒng)的研究還不夠完善。
指導教師意見
指導教師簽名:
年 月 日
教研室(學科組、研究所)意見
教研室主任簽名:
年 月 日
系意見
主管領導簽名:
年 月 日