【溫馨提示】 dwg后綴的文件為CAD圖,可編輯,無水印,高清圖,,壓縮包內文檔可直接點開預覽,需要原稿請自助充值下載,請見壓縮包內的文件及預覽,所見才能所得,請細心查看有疑問可以咨詢QQ:414951605或1304139763
邵陽學院畢業(yè)設計(論文)任務書
專業(yè)班級
2002機本
學生姓名
文藝苑
學 號
057
課題名稱
滌綸短纖后處理設備七輥牽伸機的牽伸輥設計
設計(論文)
起止時間
2006 年 2 月 20 日至2006 年 6 月 10 日
課題類型
工程設計、應用研究、開發(fā)研究、
軟件工程、理論研究、其他
課題性質
真實
一、 課題研究的目的與主要內容
課題研究的目的是:
1.培養(yǎng)學生綜合運用所學理論知識、解決工程問題的能力。
2.培養(yǎng)學生的工程素養(yǎng),使學生在文獻檢索,工程資料查閱及運用計算機繪圖方面得到進一步鍛煉。
課題研究的主要內容:
1.完成3000~5000個單詞以上與滌綸后處理設備有關外文資料翻譯(打印稿),譯文要求準確、文字流暢。
2.了解滌綸后處理設備加工工藝。
3.根據滌綸短纖的年產量,計算牽伸力的大小,確定牽伸軸及牽伸輥的尺寸。
4.完成牽伸輥的結構設計,畫出整套裝配圖及零件圖。
5.按統(tǒng)一格式和規(guī)范撰寫設計說明書。
二、 基本要求
1. 學生應在教師的指導下按時完成所規(guī)定的內容和工作量,編寫符合要求的設計計算說明書,并正確繪制整套機械圖表。
2. 學生依據課題任務,認真收集有關資料,熟悉有關化學纖維加工工藝,正確使用各類工具書;掌握有關工程設計的程序、方法和技術規(guī)范;鍛煉分析與解決工程實際問題的能力。
3. 在設計中應樹立正確的設計思想,培養(yǎng)嚴肅認真的科學態(tài)度,嚴謹求實的工作作風。
4. 畢業(yè)設計說明書應包括與設計題目有關的闡述說明及計算,內容完整,文字流暢,符合畢業(yè)設計規(guī)范。
5. 熟練運用CAD繪制機械圖表。
注:1、此表由指導教師填寫,經各系、教研室主任審批生效;
2、此表1式3份,學生、指導教師、教研室各1份。
三、課題研究已具備的條件(包括實驗室、主要儀器設備、參考資料)
該產品在邵陽紡織機械股份公司已開始研制,并取得一定的效果,邵陽紡織機械股份公司可提供一定的技術支持。
1.滌綸短纖生產 東南大學出版社 1999年
2.機械設計手冊(上、中、下) 化學出版社 2000年
3.化纖機械設計 中國紡織出版社 1997年
四、設計(論文)進度表
2月20日~3月10日,熟悉課題,進行調研,收集有關資料,擬訂設計方案
3月11日~4月21日,進行有關分析計算,確定設備基本結構,完成技術設計
4月22日~5月21日,進行施工設計,完成所有圖表,撰寫設計計算說明書
5月22日~6月10日,設計修改、完善,完成答辯
五、教研室審批意見
教研室主任(簽名) 年 月 日
六、院(系)審批意見
院(系)負責人(簽名) 單位(公章) 年 月 日
指導教師(簽名) 學生(簽名)
·13·
邵陽學院畢業(yè)設計(論文)
內容提要
滌綸短纖維后處理設備七輥牽伸機牽伸輥屬于牽伸機的工作部分,合理設計將提高七輥牽伸機的性能。牽伸機是紡絲后處理的主要設備之一,根據紡絲的工藝要求來確定牽伸機的數量和功率。本次設計的七輥牽伸機主要是為了提高年產量,從牽伸機組的整體設計出發(fā),按照總牽伸倍數合理布局各級牽伸倍數,按照年產量計算最大牽伸旦數,最大牽伸力;按照牽伸力求出第三牽伸機輥筒的受力情況,依據最大輥筒受力來對輥筒進行強度、剛度校核,及其螺釘的校核。
根據受力情況對牽伸輥和牽伸軸進行結構設計,要求結構簡單、加工方便、經濟可行。牽伸輥的聯接的方式采用法蘭聯接,比內夾套聯接結構簡單、裝配方便。合理設計通水牽伸輥部件,利用分配板使進水和出水流量均勻,充分帶走熱量。參照現有的七輥牽伸機設備,設計出滿足工作要求的牽伸輥,以達到大容量生產滌綸短纖維的目的,滿足現代高速紡織機械的發(fā)展。
Abstract
Polyester staple aftertreatment equipment 7-roller drawing machine’s rollers are work part of the drawing machine. And the performance of 7-roller drawing machine will be improved if it’s correctly designed. The drawing machine is one of the main equipments in the filature aftertreatment. According to the filature processing requirement we can decide the number and power of the drawing machine. This 7-roller drawing machine design is to enhance the annual output. Taking the drawing machine group as an organic whole design, through the total drawing multiple properly distributing each class drawing multiple, according to the annual output calculating the maximal drawing denier and maximal drawing tension, then on the basis of the drawing tension figuring out the force of third drawing machine roller, and according to the maximal roller force checking the intensity and rigidity and proofing the bolt.
On the basis of the roller’s force designing the frames of the drawing rollers and drawing shafts, which require simple frames, convenient manufacturing, economical and feasible. The link method of the drawing roller adopts flanges, which compares with the inner sleeve link has simple structure, convenient assemblage. Correctly designing the watering drawing roller parts, using the distributing board making the in water and out water equably flowing, and taking out the heat. Consulting the existent 7-roller drawing machine equipments, designing drawing rollers which satisfy the work requirement, and reach the objective of a large amount of polyester staple are produced, meet contemporary high-speed textile mechanical development.
II
邵 陽 學 院
畢業(yè)設計(論文)
課 題 名 稱 滌綸短纖后處理設備七輥牽伸機的牽伸輥設計
學 生 姓 名 文 藝 苑
學 號 0241118057
院(系)、專業(yè) 機械與能源工程系 02機制本科
指 導 教 師 姜 宏 陽
職 稱 高級工程師
2006年 06 月 2 日
邵 陽 學 院
畢業(yè)設計(論文)開題報告書
課題名稱 滌綸短纖后置處理設備七輥牽伸機的牽伸輥設計
學生姓名 文 藝 苑
學 號 0241118057
院(系)、專業(yè) 機械與能源工程系 02機制本科
指導教師 姜 宏 陽
2006年 2 月 28 日
一、 課題的來源、目的意義(包括應用前景)、國內外現狀及水平
課題來源:
本課題來源于邵陽紡織機械有限公司。據《中國紡織報》報道,滌綸在強力、耐磨等性能上明顯超過人造纖維和天然纖維,表現出巨大的市場需求和增長空間,再加上生產流程較短,成本較低,使我國迅速成為世界上滌綸產量最大的國家。2005年,我國化學纖維產量達1424萬噸,比2003年增長20%,產量居世界之首,年增幅比世界平均增幅高出13個百分點,成就喜人。中國化纖協會預計,2003年我國滌綸產量可占化纖產量的79%,到2010年滌綸在紡織纖維總量中的比重可能提高到50%左右。市場拉動了化纖產品的迅速增加,化纖產品的生產促進了化纖機械的發(fā)展。牽伸機是滌綸短纖后置處理設備之一。
目的意義:
目前國際上滌綸短纖維大型成套裝置的單線產能最高為年產5萬噸,攻克此技術已成為各國權威專家和各大生產廠家的目標。一項滌綸短纖維重大科技攻關項目——年產6萬噸成套滌綸短纖維工程技術開發(fā)項目,經過6個月的精心準備和試驗,7月7日在上海石化公司獲得突破性進展,其攻關的核心技術——中心吹風的絲束準確成型技術達到了預期目標。此試驗成功,標志著我國滌綸短纖維大型成套生產技術在國際上處于領先地位。我國年產6萬噸短纖維國產化工程技術和軟件包項目是以技術開發(fā)為主。中心吹風的絲束冷卻成型技術是年產6萬噸短纖維成套生產技術中的核心,全套技術設備國產化率達到80%,大大降低了投資,帶來可貴的經濟效益和社會效益。
國內外現狀及水平:
國產長絲紡絲與后置處理設備已經比較成熟,大量占有國內市場。年產3萬噸的滌綸短纖紡絲及后處理成套設備已供國內70多條線并投入生產,成套出口到國際市場上的項目也陸續(xù)投產,贏得了好評。年產5萬噸的滌綸短纖成套設備國內建設項目已經安裝完畢,近期即將投入生產。年產6萬噸的成套設備正在現場安裝近期也將投產。
二、 課題研究的主要內容、研究方法或工程技術方案和準備采取的措施
課題研究主要內容:
1. 完成3000單詞以上與畢業(yè)設計有關的英文資料翻譯(打印稿),譯文要求準確,文字流暢
2. 了解滌綸后處理加工工藝
3. 根據滌綸短纖的年產量,計算牽伸力,確定牽伸軸及牽伸輥的尺寸
4. 完成牽伸輥的結構設計,畫出整裝配圖及零件圖
5. 撰寫說明書(打印稿),格式和內容符合邵陽學院的統(tǒng)一格式和規(guī)范要求
研究方法或工程技術方案:
1. 工作運動分析
2. 部件聯結方式
3. 產品結構設計
準備采取的措施:
1. 進入邵陽紡織機械有限公司對該牽伸機進行調研
2. 搜索和統(tǒng)計相關資料和數據
3. 結合邵陽紡織機械有限公司的實際零件進行分析
4. 完成七輥牽伸機輥筒設計
三、現有基礎和具備的條件
現有的基礎:
通過四年的理論學習和幾次課程設計及多次工廠實地參觀,我對機械設計的設計內容、設計方法和設計步驟有了一定的了解,掌握了機械設計設計的基本知識,如設計計算、工程繪圖、查閱資料和手冊,熟悉標準和規(guī)范等,有一定的獨立工作能力。
具備的條件:
1. 專業(yè)資深指導老師一位
2. 設計數據一份
3. 個人電腦一臺
4. AutoCAD2004設計軟件
5. WORD辦公軟件
6. 圖書館有關資料
四、總的工作任務,進度安排以及預期結果
總的工作任務:
應用自己所學的理論知識,結合自己掌握的資料,在指導老師的指導和同學討論確定牽伸機輥筒的設計方案,完成設計計算,繪出零件圖、裝配圖,編寫一份說明書,準備答辯。
進度安排:
1. 2月20日-3月10日,熟悉課題,進行調研、收集資料、方案擬訂
2. 3月11日-4月21日,計算、分析、編寫說明書
3. 4月22日-5月21日,完成圖紙,修改說明書、刻錄光盤
4. 5月22日 -6月10日,準備答辯
五、指導教師審查意見
指導教師(簽名)
年 月 日
六、教研室審查意見
教研室主任(簽名)
年 月 日
七、院(系)審查意見
院(系)主任(簽名)
年 月 日
備 注
邵陽學院畢業(yè)設計(論文)
目錄
前言 1
1 概述 2
1.1 拉伸的目的和作用 2
1.2 牽伸機組原理 2
2 設計參數的確定 4
2.1 年產2萬噸滌綸短纖后處理工藝流程 4
2.2 設計基礎 4
2.3確定牽伸旦數D 5
3 牽伸機構受力分析 5
4 第三牽伸機功率估算 6
5 七輥牽伸機的整體分析 8
5.1 第一牽伸機設計 8
5.2 第二牽伸機設計 9
5.3 第三牽伸機設計 10
6 牽伸輥受力分析 11
7 牽伸輥筒的設計 16
8 法蘭聯接螺釘性能等級和材料確定 18
9 通水牽伸軸設計 20
10 牽伸輥的校核計算 25
10.1 強度計算 25
10.2 撓度計算 26
11 潤滑方式與密封裝置 28
總結 30
參考文獻 31
致謝 32
附表1 33
附表2 34
附表3 35
邵陽學院畢業(yè)設計(論文)進度考核表
設計(論文)課題 滌綸短纖后處理設備七輥牽伸機的牽伸輥設計
院(系) 機械與能源工程系 年級專業(yè) 02機制本科
學生姓名 文藝苑 學號 0241118057 指導教師 姜宏陽
起止日期
畢業(yè)設計(論文)各階段工作任務
完成情況
指導教師簽字
2.20~3.10
熟悉課題,收集資料
3.11~3.20
擬訂設計方案
3.21~3.31
進行總體分析計算,確定基本結構
4.1~4.5
牽伸輥受力分析
4.6~4.10
牽伸輥筒的設計
4.11~4.15
通水牽伸軸設計
4.16~4.18
潤滑方式與密封裝置
4.19~5.10
繪畫圖紙
5.11~5.25
撰寫設計計算說明書
5.26~5.31
修改計算說明書
6.1~6.4
說明書排版
6.5~6.8
準備答辯
備
注
注:本表用于考核學生畢業(yè)設計(論文)的進度及完成情況,是學生畢業(yè)答辯資格認定和成績評定
的依據之一。
·12·
邵陽學院畢業(yè)設計(論文)
On the profile design of transmission splines and keys
Daniel C.H. Yang, Shih-Hsi Tong
Abstract: Splines and keys are machinery components placed at the interface between shafts and hubs of power-transmitting elements. A spline (or key) is usually machined (or attached) onto the shaft of a power-transmitting pair, and the corresponding groove is cut into the hub. The influence of spline profiles on the performance of power transmission is investigated in this paper. The optimal design of spline profiles for three different design criteria is presented. The method of calculus of variation is used to determine profile functions for maximum value. Analytical results are successfully obtained. They show that the splines with involute profiles lead to uniform deformation on the hub, in addition they can carry the maximum transmission load capacity. On the other hand, radial straight profiles result in optimum transmission efficiency. We think that these findings are worthy reporting and also believe that this approach could be used for the spline design with other performance criteria imposed.
Keywords: Splines; Keys
1 Introduction
A key is a machinery component placed at the interface between a shaft and the hub of a power-transmitting element such as gear and sprocket . A spline performs the same function as a key in transmitting torque from the shaft to the mating element . The main difference between splines and keys is that splines are integral with the shaft but keys are inserted between shaft and hub. As compared with one or two keys used for load transmission, there are usually four or more splines on a shaft. Therefore, the transmission torque is more uniform and the loading for each spline is lower. Splines play an important role in transmitting torque and their profiles do have the influence on the performance of power transmission. Unlike the conjugate profiles, the shaft with splines and hub have the same rotation axis and they are in surface contact without relative motion, they are connected together and have the same angular velocity. Therefore, it seems that any profiles except the shaft surface can be used for the design of splines. However, the load between the spline and hub is not evenly distributed over the entire contact surface in practice. The load may always concentrate on a small portion of contact surface and deformthe hub surface. This results in undesired clearance between the shaft and hub and will lead to serious damage of hub surface as the working cycles increase. To solve these problems, how the profiles of splines affect the torque transmission needs to be further investigated to find out the suitable design of spline profiles.
Currently there are two main types of splines used, namely, straight-sided and involute splines. The involute splines provide the mating element with self-centering and can be machined with standard hob cutter used to cut gear teeth. To date, the related research work focuses on conjugate profiles and gear design as well as the design of profile curvatures for reducing the wear of contact surfaces. However, none of them can be applied to the profiles of splines directly due to different working conditions. Also, there is no research work on how to design spline profiles under given requirements. In this paper, the basic equations for spline profiles are established and used to synthesize desired profiles for different design objectives. Three design objectives, uniform deformation, maximum torque transmission, and optimum efficiency, are used to determine spline profiles. Analytical solutions are successfully obtained.
2 Problem description and basic assumptions
As shown in fig .1, The hub is driven by the shaft and the spline is fixed on the shaft. The radius of the shaft, the height of the spline, and the number of spline teeth are determined by the design requirements and cannot be altered. Only the spline profile can be modified to improve the performance of transmission. To simplify the design problem for analysis, the following assumptions were made:
(1) The spline is a rigid body.
Compared with the hub, the spline is made of hard material and assumed no deformation after applying the load.
(2) The hub is under elastic deformation
The surface deformation of the hub is within the range of elasticity and the surface stress is proportional to the normal deformation.
(3) There is no beam deformation on the spline.
For spline keys, usually the height of tooth shape is small relative to its width. Therefore, we assume there is no accumulated deformation at the free end. The only deformation is the normal deformation on the hub surface.
(4) There is no clearance between the spline and hub when they are in contact. (Surface contact)
The profile of the spline is exactly the same as that of the hub without considering manufacturing errors. They are in surface contact without clearance.
3 Spline profile for uniform hub deformation
The first design objective is to have the uniform deformation on the surface of the hub, which also implies the uniform stress on the hub. This design can ensure the surface stress is evenly distributed and avoid the failure of material at some weak points. Referring to fig.2, Let denote the radius of shaft and denote a small rotation angle of spline. Since we assume that the spline is a rigid body, the change between two spline positions will be the deformation of the hub.
4 It’s simply to confirmed the dangerous sections
Prerequisite that traditional design method considered whether pair influence part design variable of working state, for instance stress , intensity , safety coefficient , load , environmental factor , material performance , part size and structural factor ,etc., deal with the single value variable confirmed. Describe part mathematical model of state , i.e. variable and relation of variable , to go on single value vary and win the dangerous section through deterministic function.
There are several methods that usually the dangerous sections are determined:
4.1 Minimum diameter of the spline
Spline dangerous sectional reliability very getting high, this to confirm according to traditional design experience because of diameter of spline. If require appropriate reliability value, then the diameter of the axle can select smaller value for use .
4.2 Safety coefficient law of dependability
While adopting the safety coefficient law design of dependability , must know the distribution types of stress and intensity and be distributed estimated value of the parameter . And the accumulation of dependability data is a long-term job, therefore we must utilize the existing data materials , it is (such as the terminal theorem in the centre and " 3 rules " to use relevant theorems and rule ), to confirm the distribution types of a lot of random variables involved of design process and is distributed the parameter. In the safety coefficient of dependability is calculated , deal with all design parameters involved a random variable, link the concept of safety coefficient to concept of dependability , thus set up corresponding probability model. Because of considering the uncertainty (randomness ) of the phenomenon taking place in project reality and sign parameter, therefore can announce the original appearances of the things even more. Theory analysis and practice indicate , the dependability design is designed more than traditional machinery , can punish some problem of the design , raise product quality , reduce part size effective, thus save the raw materials , lower costs .
5 Concluding remarks
The mechanical reliability design is one kind of modern design theory and the method which in the recent several dozens years develop, it take improves the product quality as the core, take the theory of probability, the mathematical statistic as the foundation, synthesizes using the engineering mechanics, the system engineering, the operations research and so on the multi-disciplinary knowledge studies the mechanical engineering most superior design question. At present, the reliability design theory tended to the consummation, but uses in the machine parts design project actual very being actually few truly. When uses the reliable security method of correlates design, must know the stress and the intensity distributed type and the distributed parameter estimated value. But the reliable data accumulation also is a long-term work, thus we must use the existing data material, the utilization related theorem and the principle, determined in the design process involves many random variable distributed types and distributed parameter. In this paper the optimal design of spline (or key) profiles for three different design criteria is presented. The method of calculus of variation is used to determine profile functions for maximum value. Analytical results are successfully obtained. It shows that the splines with involute profiles lead to uniform deformation on the hub, in addition they can carry the maximum transmission load capacity. On the other hand radial straight profiles result in optimum transmission efficiency. We believe similar approach could be used to determine other spline profiles when new performance criteria are imposed.
References
[1] Robert L. Mott, Machine Elements in Mechanical Design, third ed., Prentice-Hall Inc., 1999.
[2] M.F. Spotts, Design of Machine Elements, third ed., Prentice-Hall Inc., 1961.
[3] Joseph E. Shigley, Larry D. Mitchell, Mechanical Engineering Design, fourth ed., McGraw-Hill Inc., 1983.
[4] D.C.H. Yang, S.H. Tong, J. Lin, Deviation-function based pitch curve modification for conjugate pair design, Transaction of ASME Journal of Mechanical Design 121 (4) (1999) 579–586.
[5] S.H. Tong, New conjugate pair design—theory and application, PhD Dissertation, Mechanical and Aerospace Engineering Department, UCLA, 1998.
[6] F.L. Litvin, Gear Geometry and Applied Theory, Prentice-Hall Inc., 1994.
[7] D.B. Dooner, A.A. Seireg, The Kinematic Geometry of Gearing, John Wiley & Sons Inc., 1995, pp. 56–63.
[8] Y. Ariga, S. Nagata, Load capacity of a new W–N gear with basic rack of combined circular and involute profile, Transaction of ASME Journal of Mechanisms, Transmissions, and Automation in Design 107 (1985) 565–572.
[9] M.J. French, Gear conformity and load capacity, in: Proc Instn Mech Engrs, vol. 180(43), Pt 1, (1965–66), pp. 1013–1024.
[10] A.O. Lebeck, E.I. Radzimovsky, The synthesis of tooth profile shapes and spur gears of high load capacity, Transaction of ASME Journal of Engineering for Industry (1970) 543–553.
[11] H. Iyoi, S. Ishimura, v-Theory in gear geometry, Transaction of ASME Journal of Mechanisms, Transmissions, and Automation in Design 105 (1983) 286–290.
[12] J.E. Beard, D.W. Yannitell, G.R. Pennock, The effects of the generating pin size and placement on the curvature and displacement of epitrochoidal gerotors, Mechanism and Machine Theory 27 (4) (1992) 373–389.
[13] H.C. Liu, S.H. Tong, D.C.H. Yang, Trapping-free rotors for high sealing lobe pumps, Transaction of ASME Journal of Mechanical Design 122 (4) (2000) 536–542.
[14] Charles Fox, Calculus of Variations, Oxford University Press, 1954.
ARTICLE IN PRESS
7