【溫馨提示】====【1】設計包含CAD圖紙 和 DOC文檔,均可以在線預覽,所見即所得,,dwg后綴的文件為CAD圖,超高清,可編輯,無任何水印,,充值下載得到【資源目錄】里展示的所有文件======【2】若題目上備注三維,則表示文件里包含三維源文件,由于三維組成零件數(shù)量較多,為保證預覽的簡潔性,店家將三維文件夾進行了打包。三維預覽圖,均為店主電腦打開軟件進行截圖的,保證能夠打開,下載后解壓即可。======【3】特價促銷,,拼團購買,,均有不同程度的打折優(yōu)惠,,詳情可咨詢QQ:1304139763 或者 414951605======
1.外文資料翻譯譯文
打包機
摘要 打包機是一種農業(yè)機械,它用于壓縮已切割和傾斜的作物(如草、稻草或青貯飼料)成易于處理、運輸和儲存的小包。常用的打包機有幾個不同類型,分別生產不同類型的包-矩形的、圓柱形的,大小各不相同,用麻繩、網(wǎng)或金屬絲纏繞起來。工業(yè)打包機還可以用在材料回收設備上,主要用于包裝需要運輸?shù)慕饘?、塑料或紙?
關鍵詞 打包機 撿拾 處理方法
一、圓形打包機
在工業(yè)化國家最常用的打包機是這種又大又圓的打包機。它生產圓柱狀的“圓”或“筒狀”的包。草在打包機內被捲起,使用橡膠帶、固定滾筒,或兩者的組合。當包達到規(guī)定尺寸時,用網(wǎng)或麻繩裹住它,以保持其固有的形狀。打包機的后面打開,包被排出。包在這個階段完成,但也可以用塑料薄膜包裹,當在室外儲存時能保持干草的干燥或者將潮濕的草變成青貯飼料。可變倉打包機通常生產直徑為48至72英寸(120~ 180厘米)、寬達60英寸(150厘米)的包。無論在任何地區(qū),這些包可以重達1100至2200磅(500 -1000公斤),包的重量取決于大小,材料,和水分含量。
最初,圓形打包機的構思由Ummo Luebbens于大約1910年提出,第一臺圓形打包機才生產出來,一直到1947年Allis-Chalmers 引進了旋轉打包機之后。由于它的干草包脫水干燥和重量輕的特點從而得以推向市場,到1960年生產結束時,AC已經銷售了近70000臺
接下來的一個重大創(chuàng)新是在1972年,當時Vermeer公司開始出售其型號為605的第一臺現(xiàn)代圓形打包機。以前,圓的干草包僅僅是干草縛在一起的腫塊,但Vermeer設計使用皮帶將干草緊密結合起來形成一個圓柱體,正如今天所看到的樣子。
二、大型矩形打包機
另一種常用類型的打包機生產大型的矩形包,每個包纏繞半打左右的麻繩,然后再打結。這樣的包非常緊湊,重量又普遍比圓形的包大幾分。在加拿大的草原,它們被稱為草原猛禽。
三、小型矩形打包機
這種打包機現(xiàn)今是不常見的,但在許多國家卻是相當流行,如新西蘭和澳大利亞,除了大型包的生產,還生產小型矩形 (通常被稱為“正方形的”) 包。每個包大約是15英寸 x 18英寸 x 40英寸(40 x 45 x 100厘米)。這種包是用二股、三股、或有時四股麻繩捆綁。這種包非常的輕,一人就能舉起,大小約45至60英寸(1.1到1.5米)。
為了形成捆包,料堆中需要打包的原料 (經常干草或稻草)被打包機撿拾器的齒舉起。然后這些原料被拖進或鉆進一個長達打包機一個邊長的打捆室內。活塞和刀在打捆室的前端來回地移動。刀恰好在活塞的前面,它可以當場切斷從撿拾器進入打捆室內的原料?;钊麑⑦@些原料向后推移,壓縮成捆包。一個測量裝置測量被壓縮的原料的數(shù)量,并在適當?shù)拈L度,觸發(fā)捆綁麻繩并且將其打結的機械裝置(打結器)來捆綁包裝并將其打結。當下一個捆包加工成型時,這個打結完的捆包就從打捆室的后面排出到地上或推送到一個用鉤固定在打包機后部的特殊的貨車上。只要有原料需要打包,并且有麻繩來捆綁包裝,這一過程就會一直連續(xù)進行。
這種形狀的捆包不太適用于大規(guī)模商業(yè)性農業(yè),因為處理許多小捆的成本比較高。然而在一些小規(guī)模,低機械化的農業(yè)和養(yǎng)馬業(yè)享有一些名氣。除了使用簡單的機械設備及容易處理外,這些小包也可用來絕緣和當作草捆建筑中的建筑材料。正方形捆包一般也會比圓捆包要好,因為他們可以更密集地堆放在一起。
便利也是農民決定繼續(xù)使用正方形包的一個主要因素,因為它們使得飼養(yǎng)和在狹窄的地方(馬廄,倉庫等)堆放容易得多。
這些舊式打包機,現(xiàn)如今在農場還有許多可以找得到,特別是在干旱地區(qū),在那里,捆包可以長期在室外儲存。
小型方捆自動打包機成型于1940年。它首先是由New Holland Ag生產制造的,并采用了小型汽油發(fā)動機提供運行動力。它是基于1937年一個具有自動拾取功能的麻繩打結打包機發(fā)明創(chuàng)造出來的。
線材打包機
在1937年以前,捆包是用兩股包裝線材人工包裹的。甚至在更早以前,打包機是一個固定的打包設備,由動力輸出裝置(PTO)和傳送帶驅動。干草被加進打包機處并人工用手塞進去。自1940年之后,這種打包機最大的改變是通過動力輸出裝置(PTO)由拖拉機驅動,而不是通過內置式內燃機。
在目前的生產中,人們可以選擇使用麻繩打結器或者是金屬絲纏繞打結器的小型方捆打包機。
四、撿拾和處理方法
在20世紀40年代,大多數(shù)農民將會使用一輛20馬力甚至更小馬力的小型拖拉機在田地里捆干草,并且當打包機從田地里走過時,捆綁包將會掉落在地上。另一組工人驅使馬拉著平板貨車從旁邊走過來。他們用尖銳的金屬鉤來鉤起捆綁包,并把它們扔到平板貨車上,同時另外一個助手好這些捆綁包,以便運輸?shù)焦葌}。
后來,一個節(jié)約時間的發(fā)明是直接將平板拖車接在打包機之后,這樣草捆包就可以順著舷梯推送給馬車上的助手。等待在馬車上的助手用鉤子鉤住草捆包,從舷梯上移開,并在馬車上摞好,同時等待下一個生產好的草捆包。
最后,隨著拖拉機馬力的增大,拋擲打包機就成為了可能。拋擲打包機消除了需要有人站到馬車上來撿起草捆包。第一個投擲機械使用了兩個快速移動的粗糙傳送帶來抓取草捆包,并把它們以一個角度向上拋起落到馬車上。馬車是由平板車改造成的前端開口的三角架,以此來充當捕捉拋出的草捆包的網(wǎng)。
隨著拖拉機馬力的進一步增大,拋擲打包機的下一代更新產品是液壓投擲打包機。這種打包機在包打結器的后面采用了一個平板。當打好的草捆包從打包機的后面出來時,它們依次被推送到平板上。當草捆包完全移動到平板上時,在一個大型液壓缸的推動下,平板就會突然自動彈起,將草捆包拋擲到馬車上,就像彈射器一樣。
這種平板投擲方法與傳動帶投擲方法相比,大大減少了施加在草捆包上的壓力。在抓取并投擲草捆包時,傳送帶投擲運輸機的粗糙的傳送帶給予草捆包的捆帶繩結很大摩擦力,并且有時在投擲運輸機上或者是草捆包降落到馬車上時,會導致草捆包的破損。
紐荷蘭發(fā)明了一種新的機器命名為堆垛機。小型方包從打包機中出來后,捆繩朝外,堆垛機將開到草捆包處,將他們撿拾起并放在相當于三個草捆包寬的桌子上(現(xiàn)在草捆包的捆繩朝上)。當三個草捆包放到桌上時,桌子就會被舉起,并后退,造成三個草捆包再次捆繩朝向一側;這種情況再接著發(fā)生三次,直到有16個草捆包放在主桌上。之后,主桌就會像小桌子一樣抬起,使草捆包正對一個垂直的桌子。這種機器可以裝160個草捆包(10層),通常靠近中心的部位會有交叉層疊,以免再有重量加到草垛頂上時,草垛會搖晃,不穩(wěn)定,甚至坍塌。之后滿載的堆垛機會被運送到谷倉,堆垛機的整個后部會傾斜向上,直到垂直。當堆垛機離開谷倉時,從機器延伸出的兩個推動助手會扶著草垛的底部,把草垛從堆垛機上移出。
在英國,如果小型方包仍在使用,那么當它們從打包機出來后,它們通常是被收集到跟在打包機后的一個草捆包雪橇上。這種雪橇有4個通道,由自動機械天平,掛鉤和彈簧控制,每一個通道劃分容納八個草捆包。當雪橇裝滿后,掛鉤會自動彈起,后面的門就會打開,把這八個草捆包整齊的放在地上。之后這些草捆包也許會人工一個個拾起,或者人們用拖拉機上的草捆包抓取工具,將這八個草捆包一起拾起。這種草捆包抓取工具是一種特殊的安置在拖拉機前端的裝貨機,含有許多液壓驅動的向下彎曲的長釘。之后,這些草捆包要么堆垛在拖車上運走,要么在田地里堆砌成8層或10層高的立方體草垛。然后這個立方體草垛由更大的機器運走。這種機器連接在拖拉機后,可以夾住草垛側面,將其整體托起運走。
處理大型和小型圓形草捆包的一個簡單的方法可以在文章《Hay Delivery》(《干草遞送》)中看到。相對于拖拉機而言,這是一種僅僅自己動手的改進。兩個掛鉤被焊接到拖拉機前端裝載機的頂端,還有一個14英尺(4.3米)的日志鏈,它可以使用戶呆在拖拉機上來抓取草捆包,運輸,堆砌以及再把草捆包放在外面喂養(yǎng)動物。形成一條龍作業(yè)。這個簡單的操作系統(tǒng)的優(yōu)點是它不必使用昂貴的設備,也不用在拖拉機上來回交換應用這些工具。這使得小農戶避免了額外器械的花銷,不用僅僅因為這樣一個功能而另買一臺拖拉機。通過一些小練習,人們就可以和專業(yè)的液壓捆包抓取機一樣,快速的拾取草捆包。由糖山農場(Sugar Mountain Farm)的沃爾特?杰弗里斯(Walter Jeffries)改進的這種方法同樣只需要較少的維修養(yǎng)護,并且比包矛和鉗子更安全。
參考文獻:
1.KERH T, LEE J J, WELLFORD L C. Transient fluid-structure interaction in a control valve [J]. Journal of Fluids Engineering, 1997, 119(2): 354-359.
2.MERATI P, MACELT M J, ERICKSON R B. Flow investigation around a V-sector ball valve [J]. Journal of Fluids Engineering, 2001, 123:662-671.
DAVIS J A, STEWART M. Predicting globe control valve performance—part II: Experimental validation [J]. Journal of Fluids Engineering, 2002, 124: 778-783.
3.CHERN M J, WANG C C, MAC H. Performance test and flow visualization of ball valve [J], Experimental Thermal and Fluid Science, 2007,31(6): 505-512.
4.SONG X G WANG L, PARK Y C. Analysis and optimization of butterfly valve disc [J], Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2009, DOI: 10.1243/09544089JPME236.
5.HEDAYAT A S, SLOANE N J A, STUFKEN J. Orthogonal arrays: Theory and applications [EB/OL]. New York: Springer-Verlag, 1999.
2.外文原文
Baler
Abstrat A baler is a piece of farm machinery used to compress a cut and raked crop (such as hay, straw, or silage) into compact bales that are easy to handle, transport and store. Several different types of balers are commonly used, each producing a different type of bales – rectangular or cylindrical, of various sizes, bound with twine, netting, or wire. Industrial balers are also used in material recycling facilities, primarily for baling metal, plastic, or paper for transport.
Keywords Baler Pick-up Processing method
1.Round baler
The most frequently used type of baler in industrialized countries is the large round baler. It produces cylinder-shaped "round" or "rolled" bales. Grass is rolled up inside the baler using rubberized belts, fixed rollers, or a combination of the two. When the bale reaches a predetermined size, either netting or twine is wrapped around it to hold its shape. The back of the baler swings open, and the bale is discharged. The bales are complete at this stage, but they may also be wrapped in plastic sheeting by a bale wrapper, either to keep hay dry when stored outside or convert damp grass into silage. Variable-chamber balers typically produce bales from 48 to 72 inches (120 to 180 cm) in diameter and up to 60 inches (150 cm) in width. The bales can weigh anywhere from 1,100 to 2,200 pounds (500 to 1,000 kg), depending upon size, material, and moisture content.
Originally conceived by Ummo Luebbens circa 1910, the first round baler did not see production until 1947, when Allis-Chalmers introduced the Roto-Baler. Marketed for the water-shedding and light weight properties of its hay bales, AC had sold nearly 70,000 units by the end of production in 1960.
The next major innovation came in 1972, when the Vermeer Company began selling its model 605 - the first modern round baler. Previously, round hay bales had been little more than lumps of grass tied together, but the Vermeer design used belts to compact hay into a cylindrical shape as is seen today.
2.Large rectangular baler
Another type of baler in common use produces large rectangular bales, each bound with a half dozen or so strings of twine which are then knotted. Such bales are highly compacted and generally weigh somewhat more than round bales. In the prairies of Canada they are called prairie raptors.
Small rectangular baler
A type of baler which is less common today in some places but which is still prevalent in many countries such as New Zealand and Australia to the exclusion of large bales produces small rectangular (often called "square") bales. Each bale is about 15 in x 18 in x 40 in (40 x 45 x 100 cm). The bales are wrapped with two, three, or sometimes four strands of knotted twine. The bales are light enough for one person to handle, about 45 to 60 inches (1.1 to 1.5 m).
To form the bale, the material to be baled, (which is often hay or straw) in the windrow is lifted by tines in the baler's pickup. This material is then dragged or augered into a chamber that runs the length of one side of the baler. A combination plunger and knife moves back and forth in the front end of this chamber. The knife, positioned just ahead of the plunger, cuts off the material at the spot where it enters the chamber from the pickup. The plunger rams the material rearwards, compressing it into the bales. A measuring device measures the amount of material that is being compressed and, at the appropriate length it triggers the mechanism (the knotter) that wraps the twine around the bale and ties it off. As the next bale is formed the tied one is driven out of the rear of the baling chamber onto the ground or onto a special wagon hooked to the rear of the baler. This process continues as long as there is material to be baled, and twine to tie it with.
This form of bale is not much used in large-scale commercial agriculture, because of the costs involved in handling many small bales. However, it enjoys some popularity in small-scale, low-mechanization agriculture and horse-keeping. Besides using simpler machinery and being easy to handle, these small bales can also be used for insulation and building materials in straw-bale construction. Square bales will also generally weather better than round bales because a more much dense stack can be put up.
Convenience is also a major factor in farmers deciding to continue putting up square bales, as they make feeding and bedding in confined areas (stables, barns, etc.) much easier.
Many of these older balers are still to be found on farms today, particularly in dry areas, where bales can be left outside for long periods.
The automatic-baler for small square bales took on most of its present form in 1940. It was first manufactured by the New Holland Ag and it used a small petrol engine to provide operating power. It is based on a 1937 invention for a twine-tie baler with automatic pickup.
3.Wire balers
Bales prior to 1937 were manually wire-tied with two baling wires. Even earlier, the baler was a stationary implement, driven by power take-off (PTO) and belt, with the hay being brought to the baler and fed in by hand. The biggest change to this type of baler since 1940 is being powered by the tractor through its PTO, instead of by a built-in internal combustion engine.
In present day production, small square balers can be ordered with twine knotters or wire tie knotters.
4.Pickup and handling methods
In the 1940s most farmers would bale hay in the field with a small tractor with 20 or less horsepower, and the tied bales would be dropped onto the ground as the baler moved through the field. Another team of workers with horses and a flatbed wagon with would come by and use a sharp metal hook to grab the bale and throw it up onto the wagon while an assistant stacks the bale, for transport to the barn.
A later time-saving innovation was to tow the flatbed wagon directly behind the baler, and the bale would be pushed up a ramp to a waiting attendant on the wagon. The attendant hooks the bale off the ramp and stacks it on the wagon, while waiting for the next bale to be produced.
Eventually, as tractor horsepower increased, the thrower-baler became possible, which eliminated the need for someone to stand on the wagon and pick up the finished bales. The first thrower mechanism used two fast-moving friction belts to grab finished bales and throw them at an angle up in the air onto the bale wagon. The bale wagon was modified from a flatbed into a 3-sided skeleton frame open at the front, to act as a catcher's net for the thrown bales.
As tractor horsepower further increased, the next innovation of the thrower-baler was the hydraulic tossing baler. This employs a flat pan behind the bale knotter. As bales advance out the back of the baler, they are pushed onto the pan one at a time. When the bale has moved fully onto the pan, the pan suddenly pops up, pushed by a large hydraulic cylinder, and tosses the bale up into the wagon like a catapult.
The pan-thrower method puts much less stress on the bales compared to the belt-thrower. The friction belts of the belt-thrower stress the twine and knots as they grip the bale, and would occasionally cause bales to break apart in the thrower or when the bales landed in the wagon.
New Holland has invented a machine named the "Stackcruiser", or a stacker. Small "square" bales are dropped by the baler with the strings facing outward, the stacker will drive up to the bales and it will pick it up and set it on a three-bale-wide table (the strings are now facing upwards). Once three bales are on the table, the table lifts up and back, causing the three bales to face strings to the side again; this happens 3 more times until there are 16 bales on the main table. This table will lift like the smaller one, and the bales will be up against a vertical table. The machine will hold 160 bales (ten tiers), usually there will be cross-tiers near the center to keep the stack from swaying or collapsing if any weight is applied to the top of the stack. The full load will be transported to a barn, the whole rear of the stacker will tilt upwards until it is vertical. There will be two pushers that will extend through the machine and hold the bottom of the stack from being pulled out from the stacker while it is driven out of the barn.
In Britain (if small square bales are still to be used), they are usually collected as they fall out of the baler in a bale sledge dragged behind the baler. This has four channels, controlled by automatic mechanical balances, catches and springs, which sort each bale into its place in a square eight. When the sledge is full, a catch is tripped automatically, and a door at the rear opens to leave the eight lying neatly together on the ground. These may be picked up individually and loaded by hand, or they may be picked up all eight together by a bale grab on a tractor, a special front loader consisting of many hydraulically-powered downward-pointing curved spikes. The square eight will then be stacked, either on a trailer for transport, or in a roughly cubic field stack eight or ten layers high. This cube may then be transported by a large machine attached to the three-point hitch behind a tractor, which clamps the sides of the cube and lifts it bodily.
References
1.KERH T, LEE J J, WELLFORD L C. Transient fluid-structure interaction in a control valve [J]. Journal of Fluids Engineering, 1997, 119(2): 354-359.
2.MERATI P, MACELT M J, ERICKSON R B. Flow investigation around a V-sector ball valve [J]. Journal of Fluids Engineering, 2001, 123:662-671.
DAVIS J A, STEWART M. Predicting globe control valve performance—part II: Experimental validation [J]. Journal of Fluids Engineering, 2002, 124: 778-783.
3.CHERN M J, WANG C C, MAC H. Performance test and flow visualization of ball valve [J], Experimental Thermal and Fluid Science, 2007,31(6): 505-512.
4.SONG X G WANG L, PARK Y C. Analysis and optimization of butterfly valve disc [J], Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2009, DOI: 10.1243/09544089JPME236.
5.HEDAYAT A S, SLOANE N J A, STUFKEN J. Orthogonal arrays: Theory and applications [EB/OL]. New York: Springer-Verlag, 1999.