【溫馨提示】====【1】設計包含CAD圖紙 和 DOC文檔,均可以在線預覽,所見即所得,,dwg后綴的文件為CAD圖,超高清,可編輯,無任何水印,,充值下載得到【資源目錄】里展示的所有文件======【2】若題目上備注三維,則表示文件里包含三維源文件,由于三維組成零件數(shù)量較多,為保證預覽的簡潔性,店家將三維文件夾進行了打包。三維預覽圖,均為店主電腦打開軟件進行截圖的,保證能夠打開,下載后解壓即可。======【3】特價促銷,,拼團購買,,均有不同程度的打折優(yōu)惠,,詳情可咨詢QQ:1304139763 或者 414951605======
以LabVIEW為合成橡膠彈簧試驗機的液壓控制
博爾達 王旭永
(機電研究所,上海交通大學,上海,200030,中國)
摘錄:該應用程序是一個液壓缸同步運動控制運動。本文的主要目的是顯示一個短的編程代 碼中的LabVIEW來控制兩個氣缸與自動控制程序僅使用從壓力傳感器和線性位移傳感器的模擬輸入和從所述液壓閥的數(shù)字輸出的運動。這是專為這種合成橡膠彈簧試驗機的試驗之一。
關鍵詞:橡膠彈性;多層橡膠彈簧;層疊式順序結構
文獻標識碼:A
簡介
合成橡膠試驗機是檢測地鐵車的橡膠彈簧。實際使用這臺機器是為了使預防維護,這樣我們就可以準確了解橡膠彈簧的消費生活。每一個橡膠彈簧是一種周期或工作時間的主題,這一時期的彈簧橡膠測試必須根據(jù)制造商的規(guī)格,這種試驗機是被用來測試四種橡膠彈簧;用于此測試的一個是所謂的多層橡膠彈簧。本試驗的主要特征,與其它橡膠彈簧相比,是,這是結合了兩個氣缸的力成為唯一一個:一個垂直和一個水平。
1. 結構組件
這種試驗機的結構組件是非常簡單的。該測試平臺具有上框架,移動框架,下框架,裝框架試件垂直柱,卡盤框架支撐上的工作平臺,液壓系統(tǒng)安裝下至工作平臺。該平臺最高液壓為150KN,它是一個簡單的機械結構,只需使用兩個垂直列來支持它。同時,這個設計是在多層橡膠彈簧元件的剛性橫向測量條件下。此外,也有不同的試件,測量是不一樣的。
這種臥式液壓缸是固定到框架結構里的。該基地的高度可以通過試驗件根據(jù)試驗只是改變底座支撐來修改。它的垂直壓力傳感器被固定在垂直圓柱的頭部。垂直缸的運動總是向下推施加壓縮力成試片。垂直傳感器被安裝在底框結構中的一個固定位置正好平行于垂直列。垂直力傳感器被安裝在垂直缸的頭部的基極,水平位移傳感器安裝在水平筒的右側的這個底部(查看圖1)的背面。
一個多層橡膠彈簧的彈性試驗期間,水平力必須申請65 kN然后水平缸必須移位土30毫米,在這個過程中,我們獲得了從模擬信號的水平缸的力傳感器,然后我們要衡量的橡膠彈簧常數(shù)K為使用此公式K =(F1 + F2)/ 60(牛頓/毫米)的這個原因。
圖1試驗機的概貌
1-上部框架;2-垂直缸;3-移動框架;4-垂直力傳感器;5-力柱;6-垂直位移傳感器;7-試件;8-工具板;9-下部框架;10-組件框架;11-水平力傳感器;12-臥式圓筒;13-水平位移傳感器
2.壓力系數(shù)
壓力系統(tǒng)的原理可以被視為在圖2系統(tǒng)使用兩個液壓泵連接電機,所述液壓泵不超16兆帕,6毫升/轉和16毫升/轉流的工作壓力。泵站設計有一個壓力表計,過濾器等。泵的工作壓力(水平和垂直氣缸)是通過四個電磁閥分開。泵1被設計為三個不同的工作壓力(150,100,50 KN)。因此,為測定試驗高頻即液壓泵的速度可以用一個閥門來調(diào)節(jié)。試驗加載速度約為1mm/s,這也是在卸載工藝流程中。速度可以調(diào)整到大約2mm/ s,系統(tǒng)具有兩個閥來關閉,這些也是用于保護液壓泵。液壓系統(tǒng)的示意圖,可以理解在圖2中,電磁閥的控制和改變可以在表1可以看出。
圖2液壓原理圖
1,2,3,4-減壓閥;5,6-電磁整流閥;7,8-單向收縮藥;9-流量控制的單向閥,電磁閥;10,11,12-整流器;13-單向閥;14-閘閥;15-過濾器;16-壓力計;17-空氣濾清器
表1液壓系統(tǒng)動作圖
標準態(tài)
主缸快速前進
主缸緩慢前進
主缸緩慢返回
主缸快速返回
臥式液壓缸左前進
臥式液壓缸右前進
主缸液壓1
主缸液壓2
主缸液壓3
3.采集卡和驅動控制
對于數(shù)據(jù)的控制和采集我們使用了兩個不同的卡:一個模擬卡收集從傳感器的信號以及另一個收集數(shù)字卡控制的開關閥信號。這兩種卡是研華卡,這些卡都是臺灣制造,他們也控制使用LabVIEW,該驅動程序的LabVIEW必須下載從Advantechl公司的網(wǎng)站。這種模擬卡是由PCL 818 L16路單端或8路差分模擬量輸入,40千赫,12比特的A/ D轉換器(轉換時間25微秒)??删幊淘鲆鎸τ诿總€輸入通道(最多8個)與DMA的自動通道/增益進行掃描。這種數(shù)字I/O卡有32個隔離的PCL-730 DIO信道(16個輸入和16個輸出),硬件結構,你可以在圖3看出。
顯示屏
↓↑
模擬傳感器 → PCL818LS →控制計算機→輸出
16頻 A/D ↓ ↑
PCL730(I/O 16頻)
↑ ↓
AVDAM3920 ADAM3920
數(shù)字輸入 ↓ ↓
24伏 4頻 AVDAM3920 AVDAM3920
數(shù)字輸出 數(shù)字輸出
24伏 4頻 24伏 4頻
圖3硬件系統(tǒng)結構
4.控制程序的編程
一旦我們安裝驅動程序為研華卡程序可以啟動。該程序的配置是以LabVIEW為它顯示在圖4的一種基本的控制。
垂直圓柱體
最后階段 開始階段
第二階段
第三階段 第一階段
臥式圓筒
初始點
圖4. 氣缸的控制過程視圖
在開始階段,垂直氣缸壓縮橡膠彈簧,到它檢測的65千牛的力,然后臥式筒體必須移動+ 30毫米到右側,然后返回到左邊-60mm的,然后移動到右邊+30毫米和停止,和垂直氣缸回到它原來的點(圖4看到)。在這個組合過程中的難點之一是控制運動,因為這種運動必須同步,以避免兩個油缸碰撞。在這種情況下,我們將只顯示氣缸控制由于這個程序的完全控制,也擴展到本報告中表明我們也只會顯示背面板程序控制測試。這LabVIEW程序主要是通過使用所謂的層疊順序結構的元件,該元件由一個或更多的子圖或幀,即按順序執(zhí)行設計的。使用堆疊式順序結構以確保一個子圖的另一個子圖的之前或之后執(zhí)行。
4.1起步階段
你可以在圖5中看到,在第一階段,在當垂直圓筒下來直到垂直力傳感器獲得的力65KN相對于橡膠彈簧則氣缸停止,并保持在這個位置,直到測試完成時(參見圖4)。
4.2第一階段
對于水平缸的控制,我們必須首先使用水平位移傳感器獲得初始位置,然后我們可以標記在這個初始點我們的起點和基礎,可以使我們的位移與氣缸數(shù)有+ 30毫米(查看圖6)的控制。
4.3第二階段
在第二階段的水平氣缸的返回必須擴展 - 60mm到左側然后停止,在這個過程中,我們必須取得氣缸施加在橡膠彈簧(參見圖7)力的測量。
4.4第三階段
在第三階段,氣缸必須返回+30mm到右邊,然后停止到原始點(第一階段)(參見圖8)。
4.5最后階段
一旦水平氣缸已經(jīng)返回到原始點(第一階段)并且程序已關閉水平圓柱所有的閥門,然后垂直油缸必須開始工作。在這種情況下,垂直氣缸使用的垂直位移傳感器,使氣缸回到原來的工作點,但在開始時,因為我們需要控制施加到彈簧橡膠的力,我們必須使用力傳感器來做到這一點(參見圖9)。
圖5.立式汽缸的開始階段
圖6.臥式氣缸的第一階段
圖7.臥式氣缸的第二階段
圖8.臥式氣缸的第三階段
圖9.立式氣缸的最后階段
堆疊的序列結構為多幀序列,以便序列的運行,我們用10序列在該程序過程中從0到9;在這篇報告中我們只顯示主要的階段,對于介質(zhì)階段主要是控制閥門最后階段的關閉。這是因為我們使用的是閥的通斷閥和保留的最后一個進程的內(nèi)存,所以我們必須小心,當我們利用堆疊順序結構來編程的時候。例如,你可以看到圖10,這表明最后階段9是當垂直缸停在初始點時。
圖10.立式氣缸的最后一幀
從水平位移傳感器和水平力傳感器獲得的信號被用于繪制使用該橡膠彈簧的彈性的曲線,在測試過程中,我們可以測量橡膠彈簧的常數(shù)k。這讓我們知道生命周期的同事也讓我們知道了橡膠彈簧的情況,為了能夠對這個程序有個清晰的理念,我們可以查看圖11,如你所見,F(xiàn)y,是水平方向的力信號(KN)和施水平位移信號(毫米),F(xiàn)1和F2分別是第一和第二級的測量結束時獲得的最終的力。在程序的最后階段能夠告訴我們多層橡膠彈簧的狀態(tài),你可以在圖12中看到
圖11.橡膠彈簧的試驗過程中的數(shù)據(jù).
圖12. 應用程序數(shù)據(jù)的橡膠彈性曲線最后的基址圖
5.總結
虛擬儀器軟件LabVIEW被用來液壓缸的控制程序。這是一個簡單而可靠的軟件,而無需使用編碼程序來做這個。我們必須注意,唯一的問題是有圖書館的采集卡,我們要使用,如果這些都不是NI控制卡采集卡。這臺機器的發(fā)展有助于我們做出預防保養(yǎng)。控制的元素都不難獲得,但該軟件可能是一個艱難的一步來完成它。但是,使用LabVIEW這步是簡單的一步。LabVIEW的其中一個優(yōu)勢就是在工作中可以以一種直觀的方式看出,當我們使用Visual看到并糾正程序中的任何錯誤時,不需要調(diào)試主要代碼C + +或其他編程語言。
參考文獻
【1】 艾斯克J. 高級視圖試驗【M】. 紐約州,美國;Prentince Hall出版社.1999。
【2】 理查德,馬特,Lab VIEW:?高級編程技術[M]。第二版博卡拉頓:CRS出版社,2001。
【3】 王雄冰,王旭勇,謝文華。發(fā)展橡膠彈簧綜合測試床研究[J]。電力機車與城軌車輛,2003,26(6):41-43。
【4】 王雄兵,王煦勇,橡膠彈簧的數(shù)據(jù)測試和資料分析[J],電力機車&大眾運輸車輛,2003,26(4):56。
參考文獻
【1】 劉CR,米塔爾S,單步超精加工硬切削:可行性與可行的切削條件研究[J]。機器人計算集成制造,1995,12(1):15-27。
【2】 頓肖夫,阿倫特C,阿莫爾R B.切削淬硬鋼[J]。機械工程研究所的活動年報,2000,49(2);547-566。
【3】 劉CR。米塔爾s.單步執(zhí)行超精加工用硬質(zhì)加工造成表面完整性研究[上]。J制造系統(tǒng),1995,14(2):124-133。
【4】 瑞希,梅森,表面完整性的情況下完成硬車削淬硬鋼[J]。國際機床與制造學報,2003,43(3):543-550
【5】 阿布拉AM,阿斯平沃爾DK. 集體的表面完整性的車削和磨削淬硬軸承鋼[J]。磨損,1996,196(2):279-284。
【6】 周YK, 伊萬斯C J。白層和硬車削表面的熱建模研究[J]。國際機床與制造學報,1999,39(2):1863-1881。
【7】 Sasahara H,Obikawa T,T有限元分析切削加工層[J],力學特性的影響[J]。序列,材料的專業(yè)技術公司。1996.62(4):448-453。
【8】 雅各布森M,達爾曼P,岡恩F。切割速度的影響在硬貝氏體鋼表面完整性的研究[J]。材料科技,2002,128(3):318-323
【9】 楊文華,Tarng Y S,設計優(yōu)化車削操作的基于田口方法[J],切削參數(shù)。難加工材料的加工技術,1998,84(1):122-129。
Journal of Shanghai Jiao tong University ( Science ) , Vo 1.E一 10,No .4 ,2005 ,381~386
Article ID: 1 007 — 11 72( 2 0 05) 0 4 — 03 81 - 06
The Hydraulic Control Using LabVIEW for a Synthetic Rubber Spring Testing Machine
Alejandro Borda( 博爾達) , WANG Xu — yong ( 王旭永 )
( Mechatronic Inst .,Shanghai Jiaotong Univ .,shanghai 200030,China )
Abstract:The application is a control movement of two hydraulic cylinder for a synchronize movement. The main purpose of this paper is to show a short programming code in LabVIEW to control the movement of two cylinders with an automatic control program using only analog inputs from the sensor of pressure and linear displacement sensor and the digital output from the hydraulic valves.This is designed for one of the test of this synthetic rubber spring testing machine.
Key words:rubber elasticity; multi layer rubber spring;stacked sequence structure
Document code:A
Introduction
The synthetic rubber test machine is to test the rubber spring of the subway wagon.The practical use of this machine is to make a preventing maintenance so we can know with accuracy the spending life of the rubber spring.Every rubber spring is a subject of a cycle or working hours, after this period the testing of this spring rubber must do it according to specification of the manufacturer,the testing machine is designed to test 4 kinds of rubber springs;the one that is used for this test is called multi layer rubber spring.The main characteristic of this test,compared with the other rubber springs,is that this is the only one which combines the force of two cylinders:one vertical and one horizontal.
1. Structure Assembly
The structure assembly for the testing machine is very simple .The testing platform has an
upper frame,mobile frame,lower frame,test piece vertical column of a chucking frame,chucking frame support upper of the working platform,hydraulic system is installed down to the working platform.The platform highest hydraulic pressure is 150 KN ,and a simple mechanical structure only uses two vertical columns to hold it.At the same time the design is under the consideration of the rigid transversal measurement of the multilayer rubber spring elements.Moreover,there are different test pieces and the measurements are not the Same.
The horizontal hydraulic cylinder is fixed into the frame structure.The altitude of the base can be modified according to the testing piece just changing the base support according to the test. The vertical pressure sensor is fixed at the head of the vertical cylinder.The movement of the vertical cylinder is always pushing down applying a compression force into the testing piece.The vertical sensor is installed at the bottom frame structure in a fixed position just parallel to the vertical columns.The vertical force sensor is installed at the base of the head of the vertical cylinder and also the horizontal displacement sensor is installed at the back of the horizontal cylinder right at the bottom of this ( View Fig.1 ).
During the elasticity test of a multi layer rubber spring,a horizontal force must be apply to 65 KN and then the horizontal cylinder must displace 土30 mm,during this process we acquire the analog signal from the force sensor of the horizontal cylinder,then we have to measure the constant K of the rubber spring for this reason using this formula K=(F1+F2)/60(N/mm) .
Fig.1 General view of the testing machine
1-Upper frame;2-Vertical cylinder;3-Mobile frame;4-Vertical force sensor;5-Force column; 6-Verticl displacement sensor; 7-Test piece; 8-Tool plate;9-Lower frame; 10-Assembly frame;11- Horizontal force sensor;12-Horizontal cylinder ; 13-Horizontal displacement sensor
2. Pressure System
The pressure system principles can be seen as in the Fig .2 The system uses two hydraulic pump
connected with an electrical motor,the hydraulic pumps never exceed the working pressure of 16 MPa,a flow of 6 ml/r and 16 ml/r .The pump station is designed with a pressure gauge meter,filter etc.The pumps working pressure(horizontal and vertical cylinder)is divided through four electromagnetic valves.The pump 1 is designed for three different working pressure(150,100,50 KN).Therefore for the high frequency of measurement test the speed of both hydraulic pumps can be adjusted using a valve.During the loading test the speed is about 1mm/s,this is also during the unloading process.The speed can be adjusting around 2mm/s;the system has two close valves these are for protecting the hydraulic pumps. The schematic of the hydraulic system can be appreciated in the Fig.2 and the control and change of the electromagnetic valves can be seen in Tab.1.
Fig.2 Hydraulic pressure diagram
1,2,3,4一Pressure relief valve;5,6一Electromagnetic commute valves;7,8一One way re strictor;9一Flow control one way valve; 10, II, I2一Electromagnetic commute valves;I3一One way valve; 14-Gate valve;15 - Filter;16-Pressure gauge;17 一Air filter
Tab 1 Action chart of the hydraulic—system
Standard state
Main cylinder fast advanced
Main cylinder slow advanced
Main cylinder slow return
Main cylinder fast return
Horizontal cylinder left advanced
Horizontal cylinder right advanced
Main cylinder hydraulic pressure I
Main cylinder hydraulic pressure2
Main cylinder hydraulic pressure3
3. Acquisition Card and Control Drivers
For the control and acquisition of data we use two different cards: one analog card to collect the
signal from the sensors and the other digital card to control the on—off valves. Both cards are advantech cards,these cards are made in Taiwan and they are also controllable using LabVIEW, the drivers for LabVIEW must be downloading from the Website of Advantechl Company. The analog card is the PCL 818L 16 single—ended or 8 differential analog inputs,40 kHz,12-bit A/D converter (conversion time 25 μs).Programmable gain for each input channel(up to 8 )Automatic channel/gain scanning with DMA.The Digital I/O card is PCL-730 which has 32 isolated DIO channels(16 inputs and 16 outputs),the hardware structure you can appreciate in Fig.3.
Fig.3 The hardware system structure
4. Programming of the Control Program
Once we install the drivers for the advantech cards the program can start. The configuration of the program is a basic control using LabVIEW as it shows in Fig.4.At the beginning stage the vertical cylinder compresses the rubber spring until it senses a force of 65 KN then horizontal cylinder must start moving + 30 mm to the right and then return to the left-60mm and then move to the right+ 30 mm and stop,and the vertical cylinder returns to its original point(view Fig.4).During this combination process one of the difficulties is the control movement because this movement must be synchronized to avoid both cylinders colliding.In this case we are going to show only the control for the cylinders because the full control of this program is too extended to show it in this report also we are only going to show the back panel program to control this test.This LabVIEW program is mainly designed by using the element called stacked sequence structure which consists of one or more sub diagrams,or frames,that execute sequentially.Use the stacked sequence structure to ensure a sub diagram executes before or after another sub diagram ·
Fig.4 View of the control process of the cylinders
4.1 Beginning Stage
As you can see in Fig.5,at the first stage when the vertical cylinder is coming down until the vertical force sensor acquire 65kN of force against the rubber spring then the cylinder stops and stays in this position until the test is completed(See also Fig.4).
4.2 First Stage
For the control of the horizontal cylinder, first we have to acquire the initial posit using the
horizontal displacement sensor,and then we can mark our initial point and base on this initial point and can make our displacement and control of the cylinder counting + 30 mm (View Fig.6 ).
4.3 Second Stage
During the second stage the return of the horizontal cylinder must extend --60mm to the left
and then stop ,during this process we must acquire the measurement of the force that the cylinder exerts over the rubber spring(See Fig.7).
4 .4 Third Stage
In the third stage,the cylinder must return + 30mm to the right and then stop to the original
point( first stage )( See Fig.8) .
4 .5 Final Stage
0nce the horizontal cylinder has returned to the original point(First Stage)and the program
has shut off all the valves of the horizontal cylinder and then the vertical cylinder must start working.In this case,the vertical cylinder uses the vertical displacement sensor to make the cylinder return the original point of work,but at the beginning because we need to control the force applied to the spring rubber we have to use the force sensor to do this(See Fig.9).
Fig.5 Beginning stage of the vertical cylinder
Fig.6 First stage of the horizontal cylinder
Fig.7 Second s t a g e of t he h or i z ont al c yl i nd e r
The stacked sequence structure has many frames in order to make run a sequence we use 10 sequence during this program from 0 to 9;in this report we only show the principal stages, for the intern media stages are mainly to control the off of the valves of the last stage.This is because the valves that we are using are on—off valves and the retain memory of the last process, SO we must careful when we programming by using the stacked sequence structure.For example,you can see Fig.10. this show the last stage 9 which is when the vertical cylinder stops at the initial point. The signals acquired from the horizontal displacement sensor and the horizontal force sensor are used to plot a curve of the elasticity of the rubber spring using,during this test we can measure the K constant of the rubber spring.This allow US to know the life cycle and also the condition of this rubber spring,to have a clear idea of this process we can see Fig.11,as you see,F(xiàn)y is the horizontal force signal(KN)and the Sy horizontal displacement signal(mm),F(xiàn)1 and F2 are the final forces acquired during the end of the measurement of the first and second stage.The final plot in the program can tell us the status of the multi layer rubber spring which you can see in Fig.12.
Fig.10 Last frame of the vertical cylinder
Fig.11 Data processing of the rubber spring during the test
Fig.12 Final plot of the rubber elasticity curve using the program data
5. Conclusion
LabVIEW is used to program the control of the cylinder.This is an easy and reliable software and without using coding programming to do this.The only issue that we must take care is to have the libraries for the acquisition card that we are going to use if these are not NI control cards. The development of this machine helps us to make preventing maintenance. The elements of control are not difficult to acquire but the software could be a difficult step to do it.but using LabVIEW this step is a simple one.One of the advantages of LabVIEW is that the undergoing work can be seen in a visual way so this helps us to see and correct any mistake in the program without debugging the main code when we use Visual C+ + or another programming language.
References
[ 1 ] Essick J.Advanced Lab VIEW [M].NY,USA;Prentince Hall, 1999.
[ 2 ] Bitter R,Mohiuddin T,Nawrocki M. Lab VIEW: Advanced programming techniques [M].2nd ed.Boca Raton:CRS Press,2001.
[ 3 ] Wang Xiong—bing, Wang Xu—yong, Xie Wen—hua. Development of a rubber spring synthetic test bed [J]. Electrical Locomotives & Mass Transit Vehicles,2003,26(6):41—43.
[ 4 ] Wang Xiong—bing,Wang Xu—yong.Test and data analysis on rubber spring [ J ] .Electrical Locomotives & Mass Transit Vehicles,2003,26(4):56—59.
References
[ 1 ] Liu C R,Mittal S .Single—step superfinish hard machining :Feasibility and feasible cutting condition[ J ]. Robotics Compute Integrated Manufacturing,1995,12 (1):15—27.
[ 2 ] Tonshoff H K,Arendt C,Amor R B.C utting of hardened steel [ J ] . Annals of the CIRP, 2000,49 (2);547—566.
[ 3 ] Liu C R .Mittal S.Single—step superfinish using hard machining resulting in superior surface integrity [J] .J Manufacturing Syst ,1995,14(2):124—133.
[4] Rech J ,Moisan A.Surface integrity in finish hard turning of case—hardened steels[ J ] .International Journal of Machine Tools&Manufacture,2003,43(3):543—550 .
[5] Abrao A M ,Aspinwall D K.The surface integrity of turned and ground hardened bearing steel [J].Wear,1996,196(2):279—284.
[ 6 ] Chou Y K,Evans C J .White layers and thermal modeling of hard turned surfaces [J].International Journal of Machine Tools&Manufacture,1999,39(2):1863—1881 .
[ 7 ] Sasahara H,Obikawa T。Shirakashi T. FEM analysis of cutting sequence effect on mechanical characteristics in machined layer [ J ].J Materi PrO Tech .1996.62(4):448—453.
[ 8 ] Jacobson M ,Dahlman P,Gunnberg F .Cutting speed influence on surface integrity of hard turned bainite steel [ J ].Journal of Materials Technology,2002,128(3):318—323.
[ 9 ] Yang W H ,Tarng Y S.Design optimization of cutting parameters for turning operations based on the Taguchi method [ J ].Journal of Materials Processing Technology,1998,84 (1 ):122—129.