本科畢業(yè)設計說明書1畢業(yè)設計說明書某商用車轉向系統(tǒng)設計和分析2019 年 月 日本科畢業(yè)設計說明書2摘 要轉向系統(tǒng)是汽車的重要組成部分,也是決定汽車主動安全性的關鍵總成,它的質量嚴重影響汽車的操縱穩(wěn)定性。隨著汽車工業(yè)的發(fā)展,汽車轉向器也在不斷的得到改進,電子轉向器已開始應用,同時廣泛地被世界各國汽車及汽車零部件生產廠商所采用。而在機械式轉向器中,齒輪齒條式轉向器由于其自身的特點被廣泛應用于各級各類汽車上。本次設計主要對商用車轉向系統(tǒng)進行設計。首先對轉向器進行了結構上的設計,此轉向器選用的是側面輸入,兩端輸出的齒輪齒條式轉向器。其優(yōu)點為:結構簡單、緊湊;殼體由鋁合金或鎂合金壓鑄而成,故質量比較??;傳動效率高達 90%;齒輪齒條之間因磨損出現(xiàn)間隙后,可利用裝在齒條背部、靠近小齒輪的壓緊力可以調節(jié)的彈簧自動消除齒間間隙,在提高系統(tǒng)剛度的同時也可防止工作時產生沖擊和噪聲;轉向器占用體積小;沒有轉向搖臂和直拉桿,可以增大轉向輪轉角;制造成本低。關鍵詞:轉向系統(tǒng);EPS;橫拉桿;設計;校核本科畢業(yè)設計說明書3ABSTRACTSteering system is an important part of automobile, and also a key assembly to determine the active safety of automobile. Its quality seriously affects the handling stability of automobile. With the development of automotive industry, automotive steering gear has been constantly improved. Electronic steering gear has been applied and widely used by automotive and automotive parts manufacturers all over the world. In mechanical steering, rack-and-pinion steering gear is widely used in all kinds of automobiles because of its own characteristics. This design mainly carries on the design to the steering system. Firstly, the structure of the steering gear is designed. The steering gear is a rack-and-pinion steering gear with side input and output at both ends. Its advantages are as follows: simple structure and compact; shell made of aluminum alloy or magnesium alloy die-casting, so its quality is relatively small; transmission efficiency is as high as 90%; after the gap between the rack and gear due to wear occurs, the gap between the rack and gear can be automatically eliminated by the spring which can be adjusted by the pressure installed on the back of the rack and near the pinion, so as to improve the stiffness of the system and prevent impact and noise while working. Sound; Steering device occupies small volume; without steering rocker arm and straightening rod, steering wheel angle can be increased; low manufacturing cost. Keywords: steering system; EPS; horizontal tie rod; design; verification.本科畢業(yè)設計說明書目 錄摘 要 1ABSTRACT3第 1 章 緒 論 11.1 轉向系統(tǒng)的簡介 .11.2 課題研究的目的 11.3 常用助力轉向的優(yōu)勢與特點 .11.3.1 助力轉向的優(yōu)點 11.3.2 助力轉向的特點 .21.4 轉向器的國內外研究現(xiàn)狀 .21.5 研究的方法及技術路線 31.5.1 研究方法 41.5.2 研究技術路線 41.6 轉向系統(tǒng)的設計要求 .4第 2 章 轉向系統(tǒng)的總體方案設計 .52.1 轉向系統(tǒng)的分類 .52.2 助力轉向系統(tǒng)的工作原理 .62.3 轉向系統(tǒng)主要零部件的方案確定 .92.3.1 扭力傳感器與車速傳感器 .92.3.2 驅動電機 .92.3.3 減速執(zhí)行機構 .102.3.4 ECU 控制單元 .10第 3 章 轉向器的總體結構設計 .103.1 轉向器類型的選擇 103.2 計算載荷的確定 113.2.1 轉向力矩的計算 113.2.2 轉向器傳動比的計算 11本科畢業(yè)設計說明書3.2.3 作用在轉向盤上的力 133.2.4 轉向橫拉桿的計算 133.2.5 主動齒輪軸的計算 133.3 齒輪齒條的設計計算 143.3.1 齒輪齒條式轉向器的設計要求 143.3.2 齒輪齒條轉向器部件設計 143.4 轉向器的材料選擇及強度校核 15第 4 章 轉向器的主要零部件結構設計 .184.1 轉向器的受力分析 .184.2 齒輪軸的設計計算 184.3 齒輪軸的強度校核 20第 5 章 轉向系統(tǒng)工況校核與驗算 .235.1 選擇材料 .235.2 計算彈簧絲直徑 235.3 穩(wěn)定性驗算 .24第 6 章 轉向系統(tǒng)其他附件的選擇 .266.1 軸承的選擇 .266.2 潤滑方式的確定 266.3 密封結構的確定 27第 7 章 轉向系統(tǒng)的性能要求設計 .28結 論 33參考文獻 35致 謝 36本科畢業(yè)設計說明書1第 1 章 緒 論1.1 轉向系統(tǒng)的簡介近年來各國政府都從資金、技術方面大力發(fā)展汽車工業(yè),使其發(fā)展速度明顯比其它工業(yè)要快的多,因此汽車工業(yè)迅速成為一個國家工業(yè)發(fā)展水平的標志。改革開放以來,我國汽車工業(yè)發(fā)展迅猛。作為汽車關鍵部件之一的轉向系統(tǒng)也得到了相應的發(fā)展,基本已形成了專業(yè)化、系列化生產的局面。有資料顯示,國外有很多國家的轉向器廠,都已發(fā)展成大規(guī)模生產的專業(yè)廠,年產超過百萬臺,壟斷了轉向器的生產,并且銷售點遍布了全世界。轉向系統(tǒng)作為汽車的一個重要組成部分,其性能的好壞將直接影響到汽車的轉向特性、穩(wěn)定性、和行駛安全性。目前汽車轉向技術主要有七大類:手動轉向技術(MS) 、液壓助力轉向技術(HPS) 、電控液壓助力轉向技術(ECHPS) 、電動助力轉向技術(EPS) 、四輪轉向技術(4WS) 、主動前輪轉向技術(AFS)和線控轉向技術(SBW) 。轉向系統(tǒng)市場上以 HPS、ECHPS、EPS 應用為主。電動助力轉向具有節(jié)約燃料、有利于環(huán)境、可變力轉向、易實現(xiàn)產品模塊化等優(yōu)點,是一項緊扣當今汽車發(fā)展主題的新技術,他是目前國內轉向技術的研究熱點。1.2 課題研究的目的隨著社會的進步,人們對于汽車的需求越來越高,同時對于汽車的安全性及舒適性的要求也越來越高,為了適應社會的發(fā)展,滿足人們的使用要求,轉向器也在不斷地發(fā)展。在現(xiàn)代汽車上,轉向系統(tǒng)是必不可少的最基本的系統(tǒng)之一,也是決定汽車主動安全性的關鍵總成,汽車的轉向特性,保持汽車具備較好的操縱性能,始終是汽車檢測技術當中的一個重要課題。特別是在車輛高速化、駕駛人員非職業(yè)化、車流密集化的今天,汽車轉向系的設計工作顯得尤為重要。1.3 常用助力轉向的優(yōu)勢與特點1.3.1 助力轉向的優(yōu)點對于電動助力轉向機構(EPS),電動機僅在汽車轉向時才工作并消耗蓄電池能量;而對于常流式液壓動力轉向機構,因液壓泵處于長期工作狀態(tài)和內泄漏等原因要消耗較多的能量。兩者比較,電動助力轉向的燃料消耗率僅為液壓動力轉向的16%~20%。本科畢業(yè)設計說明書2液壓動力轉向機構的工作介質是油,任何部位出現(xiàn)漏油,油壓將建立不起來,不僅失去助力效能,并對環(huán)境造成污染。當發(fā)動機出現(xiàn)故障停止工作時,液壓泵也不工作,結果也會喪失助力效能,這就降低了工作可靠性。電動助力轉向機構不存在漏油的問題,只要蓄電池內有電提供給電動助力轉向機構,就能有助力作用,所以工作可靠。若液壓動力轉向機構的油路進入空氣或者貯油罐油面過低,工作時將產生較大噪聲,在排除氣體之前會影響助力效果;而電動助力轉向僅在電動機工作時有輕微的噪聲。電動助力轉向與液壓動力轉向比較,轉動轉向盤時僅需克服轉向器的摩擦阻力,不存在回位彈簧阻力和反映路感的油壓阻力。電動助力轉向還有整體結構緊湊、部件少、占用的空間尺寸小、質量比液壓動力轉向約輕 20%~25%以及汽車上容易布置等優(yōu)點。1.3.2 助力轉向的特點(1)EPS 節(jié)能環(huán)保。由于發(fā)動機運轉時,液壓泵始終處于工作狀態(tài),液壓轉向系統(tǒng)使整個發(fā)動機燃油消耗量增加了3%~5%,而 EPS 以蓄電池為能源,以電機為動力元件,可獨立于發(fā)動機工作,EPS 幾乎不直接消耗發(fā)動機燃油。EPS 不存在液壓動力轉向系統(tǒng)的燃油泄漏問題,EPS 通過電子控制,對環(huán)境幾乎沒有污染。(2)EPS 裝配方便。EPS 的主要部件可以集成在一起,易于布置,與液壓動力轉向相比減少了許多原件,沒有液壓系統(tǒng)所需要的油泵、油管、壓力流量控制閥、儲油罐等,原件數(shù)目少,裝配方便,節(jié)約時間。(3)EPS 效率高。液壓動力轉向系統(tǒng)效率一般在60%~70%,而 EPS 得效率較高,可高達90%以上。(4)EPS 路感好。傳統(tǒng)純液壓動力轉向系大多采用固定放大倍數(shù),工作驅動力大,但卻不能實現(xiàn)汽車在各種車速下駕駛時的輕便性和路感。而 EPS 系統(tǒng)的滯后性可以通過 EPS 控制器的軟件加以補償,是汽車在各種速度下都能得到滿意的轉向助力。(5)EPS 回正性好。EPS 系統(tǒng)結構簡單,不僅操作簡便,還可以通過調整 EPS 控制器的軟件,得到最佳的回正性,從而改善汽車的操縱穩(wěn)定性和舒適性。(6)動力性。EPS 系統(tǒng)可隨車速的高低主動分配轉向力,不直接消耗發(fā)動機功率,只在轉向時才起助力作用,保障發(fā)動機充足動力。 (不像 HPS 液壓系統(tǒng),即使在不轉向時,油泵也一直運轉處于工作狀態(tài),降低了使用壽命)1.4 轉向器的國內外研究現(xiàn)狀汽車能夠實現(xiàn)在道路上行駛轉彎,主要靠改變方向的轉向器實現(xiàn)的,但是如何本科畢業(yè)設計說明書3降低轉向過程中動力的損失,還有減少燃油的消耗這是進行汽車設計時必須要考慮的問題,同時對于購車的人來說,這也是他們選擇汽車的主要性能指標。隨著社會的發(fā)展,近幾年以來人民大眾經濟都好起來,對汽車的舒適性方面和動力性方面等要求非常高。21 世紀以來,微電子技術的發(fā)展及機電一體化技術的發(fā)展已經在人們生活當中隨處可見,汽車行業(yè)的發(fā)展,主要是向著多元化和工業(yè)化的方向發(fā)展,其中轉向器的設計和生產在汽車中具有非常重要的位置。目前汽車對車速和轉向的要求方面很高,所以轉向器的使用對性能將會有十分重要的影響。因為微型轎車上狹小的發(fā)動機艙空間給液壓助力轉向系統(tǒng)的安裝帶來了很大的麻煩,而 EPS 原件比較少,重量輕,裝配方便,比較適合在微型轎車上安裝。因此在國外,EPS 系統(tǒng)首先是在微型轎車上發(fā)展起來的。上世紀80年代初期,日本鈴木公司首次在其 Cervo 轎車上安裝了 EPS 系統(tǒng),隨后還應用在其 Alto 車上。此后,EPS 在日本得到迅速發(fā)展。出于節(jié)能環(huán)保的考慮,歐、美等國的汽車公司也相繼對 EPS 進行了開發(fā)和研究。雖然比日本晚了十年時間,但是歐美國家的開發(fā)力度比較大,所選擇的產品類型也有所不同。日本起初選擇了技術相對成熟的有刷電機。有刷電機比較成熟,在汽車上的應用較廣,比如雨刷、車窗等部分,稍作改進就適應了 EPS 的要求,因此研發(fā)周期較短,上世紀80年代末期就開始產業(yè)化,主要裝配在微型車上。而歐美則選擇了難度較大的無刷電機,但是電子控制系統(tǒng)比較復雜,延長了研發(fā)周期。直到90年代中期歐美才開始量產。從長遠發(fā)展看,有刷電機存在一定弊端,比如電機產生的噪聲較難克服,磨損較嚴重,存在電磁干擾等問題。因此,日本現(xiàn)在國內裝配的 EPS 也逐漸轉向無刷電機了。我國汽車電子行業(yè)的總體發(fā)展相對滯后,但是,隨著汽車對環(huán)保、節(jié)能和安全性要求的進一步提高,代表著現(xiàn)代汽車轉向系統(tǒng)的發(fā)展方向的 EPS 電動助力轉向系統(tǒng)已被我國列為高新科技產業(yè)項目之一,國內各大院校、科研機構和企業(yè)在進行 EPS 技術的研究,也有少數(shù)供應商能批量提供轉向軸式的 EPS 系統(tǒng)。但總的來講目前國內 EPS技術還不成熟;供應商所提供的 EPS 系統(tǒng)還未達到產品級的要求,且類型單一,還不能滿足整車廠需要。據(jù)悉,自主品牌研發(fā)的 EPS 系統(tǒng)離產業(yè)化就差整車廠批量裝車認可這一臺階了,相信很快就可以實現(xiàn)量產。EPS 系統(tǒng)是未來動力轉向系統(tǒng)的一個發(fā)展本科畢業(yè)設計說明書4趨勢。1.5 研究的方法及技術路線1.5.1 研究方法(1)通過查閱相關資料,掌握電動助力轉向系統(tǒng)的主要參數(shù)。(2)充分考慮已有電動助力轉向系統(tǒng)的優(yōu)缺點來確定電動助力轉向系統(tǒng)的總體設計方案,對現(xiàn)有裝置的不足進行分析。(3)對設計的電動助力轉向系統(tǒng)進行修改和優(yōu)化,最終設計出能滿足要求的電動助力轉向系統(tǒng)。1.5.2 研究技術路線(1)根據(jù)題目和原始數(shù)據(jù)查看相關資料,了解當今國內外電動助力轉向系統(tǒng)的發(fā)展現(xiàn)狀及發(fā)展前景,撰寫文獻綜述和開題報告。(2)根據(jù)產品功能和技術要求提出多種設計方案,對各種方案進行綜合評價,從中選擇較好的方案,再對所選擇的方案做進一步的修改或優(yōu)化,最終確定總體設計方案。(3)具體設計電動助力轉向系統(tǒng)的驅動裝置、工作裝置等。 (4)對所設計的機械結構中的重要零件進行校核計算,如齒輪、軸、軸承等,保證設計的合理性和可行性。 ;(5)繪制零件圖、裝配圖,完成要求的圖紙量;(6)整理各項設計資料,撰寫論文。1.6 轉向系統(tǒng)的設計要求根據(jù)以上轉向器的主要功能,結合轉向器的使用狀態(tài),在轉向系統(tǒng)設計過程中主要有如下幾點要求:(1)轉向器的設計過程中要保證駕駛員操作力矩適中;(2)轉向器的設計要保證方向盤與齒輪齒條的匹配;(3)軸承的設計應保證潤滑,無異響;(4)設計中要考慮減震的設置,降低整車的噪音及 NVH 性能;(5)由于轉向器一直在使用,因此在設計中要考慮到使用耐久性;(6)由于轉向涉及要駕駛員及整車的安全性,因此要保證功能的可靠;本科畢業(yè)設計說明書5(7)轉向器的設計要保證其耐久性與吸熱性。第 2 章 轉向系統(tǒng)的總體方案設計2.1 轉向系統(tǒng)的分類EPS 轉向系統(tǒng)依據(jù)電動機布置位置的不同可分為轉向軸助力式、小齒輪助力式、齒條助力式三個基本類型(圖 2-3)a) b) c)a) 轉向軸助力式 b) 齒輪助力式 c) 齒條助力式圖 2-3 EPS 系統(tǒng)的類型(1) 轉向軸助力式 轉向軸助力式電動助力轉向機構的電動機布置在靠近轉向盤下方,并經蝸輪蝸桿機構與轉向軸連接(圖 2-3a) 。這種布置方案的特點是:由于轉向軸助力式電動助力轉向的電動機布置在駕駛室內,所以有良好的工作條件;因電動機輸出的助力轉矩經過減速機構增大后傳給轉向軸,所以電動機輸出的助力轉矩相對小些,電動機尺寸也小,這又有利于在車上布置和減輕質量;電動機、轉矩傳感器、減速機構、電磁離合器等裝為一體是結構緊湊,上述部件又與轉向器分開,故拆裝與維修工作容易進行;轉向器仍然可以采用通用的典型結構齒輪齒條式轉向器;電動機距駕駛員和轉向盤近,電動機的工作噪聲和振動直接影響駕駛員;轉向軸等零件也要承受來自電動機輸出的助力轉矩的作用,為使其強度足夠,必須增大受載件的尺寸;盡管電動機的尺寸不大,但因這種布置方案的電動機靠近方向盤,為了不影響駕駛員腿部的動作,在布置時仍然有一定的困難。本科畢業(yè)設計說明書6(2)齒輪助力式 齒輪助力式電動助力轉向機構的電動機布置在與轉向器主動齒輪相連接的位置(圖 2-3b) ,并通過驅動主動齒輪實現(xiàn)助力。這種布置方案的特點是:電動機布置在地板下方、轉向器上部,工作條件比較差對密封要求較高;電動機的助力轉矩基于與轉向軸助力式相同的原因可以小些,因而電動機尺寸小,同時轉矩傳感器、減速機構等的結構緊湊、尺寸也小,這將有利于在整車上的布置和減小質量;轉向軸等位于轉向器主動齒輪以上的零部件,不承受電動機輸出的助力轉矩的作用,故尺寸可以小些;電動機距駕駛員遠些,它的動作噪聲對駕駛員影響不大,但震動仍然會傳到轉向盤;電動機、轉矩傳感器、電磁離合器、減速機構等與轉向器主動齒輪裝在一個總成內,拆裝時會因相互影響而出現(xiàn)一定的困難;轉向器與典型的轉向器不能通用,需要單獨設計、制造。(3)齒條助力式 齒條助力式電動助力轉向機構的電動機與減速機構等布置在齒條處(圖 2-3c) ,并直接驅動齒條實現(xiàn)助力。這種布置方案的特點是:電動機位于地板下方,相比之下,工作噪聲和振動對駕駛員的影響都小些;電動機減速機構等不占據(jù)轉向盤至地板這段空間,因而有利于轉向軸的布置,駕駛員腿部的動作不會受到它們的干擾;轉向軸直至轉向器主動齒輪均不承受來自電動機的助力轉矩作用,故他們的尺寸能小些;電動機、減速機構等工作在地板下方,條件較差,對密封要求良好;電動機輸出的助力轉矩只經過減速機構增扭,沒有經過轉向器增扭,因而必須增大電動機輸出的助力轉矩才能有良好的助力效果,隨之而來的是電動機尺寸增大、質量增加;轉向器結構與典型的相差很多,必須單獨設計制造;采用滾珠螺桿螺母減速機構時,會增加制造難度與成本;電動機、轉向器占用的空間雖然大一些,但用于前軸負荷大,前部空間相對寬松一些的乘用車上不是十分突出的問題。2.2 助力轉向系統(tǒng)的工作原理電動助力轉向機構由機械轉向器與電動助力部分相結合構成。電動助力部分包括電動機、電池、傳感器和控制器(ECU)及線束,有的還有減速機構和電磁離合器等(圖 2-1)本科畢業(yè)設計說明書7ECU轉 角電 流 電 動 機 轉 矩 傳 感 器轉 矩車 速 減 速 機 構齒 輪 齒 條 式 轉 向 器離 合 器圖 2-1 電動助力轉向機構示意圖目前用于乘用車的電動助力轉向機構的轉向器,均采用齒輪齒條式轉向器。其功能除用來傳遞來自轉向盤的力矩與運動以外,還有增扭、降速作用。轉向過程中,電動機將來自蓄電池的電能轉變?yōu)闄C械能向轉向系輸出而構成轉向助力矩,并完成助力作用。與電動機連接的減速機構有蝸輪蝸桿、滾珠螺桿螺母或行星齒輪機構等,其作用也是降速、增扭。裝在減速機構附近的離合器(通常為電磁離合器)是為了保證電動助力轉向機構只在預先設定的行駛速度范圍內工作。在車速達到某一設定值時,離合器分離,并暫時停止電動機的助力作用。與此同時,轉向機構也暫時轉為機械式轉向機構。當電動機發(fā)生故障時,離合器也自動分離。離合器分離后再行轉向時,可不必因帶動電動機而消耗駕駛員體力。單片式電磁離合器包括主動輪、從動軸、壓盤、磁化線圈和滑環(huán)等。本科畢業(yè)設計說明書81.主動輪 2.磁化線圈 3.壓盤 4.花鍵 5.從動軸 6 軸承 7 滑環(huán) 8 電動機圖 2-2 電磁離合器工作原理簡圖其工作原理如圖所示,裝有磁化線圈 2 的主動輪 1 與電動機軸固定連接,來自控制器的控制電流經滑環(huán) 7 輸入磁化線圈,于是主動輪產生電磁吸力,將壓盤 3 吸到主動輪上,然后電動機的動力經主動輪、壓盤及壓盤轂上的花鍵傳給從動軸 5,實現(xiàn)助力作用。汽車以較高車速轉向行駛,作用在轉向盤上的力矩將減小,以至于達到無需助力的程度,此時可設定:達到此車速時,電磁離合器停止工作。還有,在電動機停止工作以后,電磁離合器在控制器的控制下也要分離或者自動分離。此后,在進行再進行轉向將不存在助力作用,直至電動機恢復工作為止。電動助力轉向機構的工作原理如下:當駕駛員對轉向盤施力并轉動轉向盤時,位于轉向盤下方與轉向軸連接的轉矩傳感器將經扭桿彈簧連接在一起的上、下轉向軸的相對轉動角位移信號轉變?yōu)殡娦盘杺髦量刂破?,在同一時刻車速信號也傳至控制器。根據(jù)以上兩信號,控制器確定電動機的旋轉方向和助力轉矩的大小。之后,控制器將輸出的數(shù)字量經 D/A 轉換器,轉換為模擬量,并將其輸入電流控制電路。電流控制電路將來自微機的電流命令值同電動機電流的實際值進行比較后生成一個差值信號,同時將此信號送往電動機驅動電路,該電路驅動電動機,并向電動機提供控制電流,完成助力轉向作用。 本科畢業(yè)設計說明書92.3 轉向系統(tǒng)主要零部件的方案確定2.3.1 扭力傳感器與車速傳感器扭矩傳感器檢測扭轉桿扭轉變形,并將其轉變?yōu)殡娮有盘柌⑤敵鲋岭娮涌刂茊卧?,是電動助力轉向系統(tǒng)的關鍵部件之一。扭距傳感器由分相器單元 1、分相器單元 2 及扭桿組成(如圖 2-4) 。圖 2-4 扭距傳感器轉子部分的分相器單元 1 固定于轉向主軸,轉子部分的分相器單元 2 固定于轉向傳動軸。扭轉桿扭轉后,使兩個分相器單元產生一個相對角度,電子控制單元根據(jù)兩個分相器的相對位置決定對 EPS 電動機提供多少電壓。車速傳感器的功能是測量汽車的行駛速度。目前,轎車 EPS 控制器一般都從整車CAN 總線中提取車速信號。2.3.2 驅動電機電動機由轉角傳感器、定子及轉子組成(如圖 2-5) 。將電動機和減速機構布置在齒條處,并直接驅動齒條實現(xiàn)助力。通過轉角傳感器檢測電動機的旋轉角度防止扭矩波動。本科畢業(yè)設計說明書10圖 2-5 電動機結構2.3.3 減速執(zhí)行機構減速機構采用滾珠式減速齒輪機構,將其固定在電動機的轉子上。電動機的轉動傳到減速機構,經過滾珠及蝸桿傳到齒條軸上。滾珠在機構內部經過導向進行循環(huán)。2.3.4 ECU 控制單元電子控制單元(ECU)的功能是依據(jù)扭矩傳感器和車速傳感器的信號,進行分析和計算后,發(fā)出指令,控制電動機的動作。此外,ECU還有安全保護和自我診斷的功能,ECU通過采集電動機的電流、發(fā)動機轉速等信號判斷系統(tǒng)工作是否正常,一旦系統(tǒng)工作異常,電動助力被切斷;同時ECU將進行故障診斷分析,故障指示燈亮,并以故障所對應的模式閃爍。第 3 章 轉向器的總體結構設計3.1 轉向器類型的選擇汽車轉向系可按轉向能源的不同分為機械式轉向系和動力轉向系兩大類。汽車轉向器是用來保持或改變汽車行駛方向的機構,在汽車轉向行駛時,還要保證各轉向輪之間有協(xié)調的轉角關系。駕駛員通過操縱轉向系統(tǒng),使汽車保持直線或轉彎運動狀態(tài),或者上述兩種運動狀態(tài)相互轉換。本科畢業(yè)設計說明書11機械轉向系的能量來源是人力,所有傳力件都是機械的,由轉向操縱機構、轉向器、轉向傳動機構三大部分組成。其中轉向器是將操縱機構的旋轉運動變?yōu)閭鲃訖C構的直線運動的機構,是轉向系的核心部件。轉向器按結構形式可分為多種類型。歷史上曾出現(xiàn)過許多種形式的轉向器,目前較常用的有齒輪齒條式、蝸桿曲柄指銷式、循環(huán)球-齒條齒扇式、循環(huán)球曲柄指銷式、蝸桿滾輪式等。其中第二、第四種分別是第一、第三種的變形形式,而蝸桿滾輪式則更少見。如果按照助力形式,又可以分為機械式(無助力),和動力式(有助力)兩種,其中動力轉向器又可以分為氣壓動力式、液壓動力式、電動助力式、電液助力式等種類通過對不同形式的轉向器對比,最終選擇采用齒輪齒條式轉向器。3.2 計算載荷的確定為了保證行駛安全,組成轉向系的各零件應有足夠的強度。欲驗算轉向系零件的強度,需首先確定作用在各零件上的力。影響這些力的主要因素有轉向軸的負荷、路面阻力和輪胎氣壓等。為轉動轉向輪要克服的阻力,包括轉向輪繞主銷轉動的阻力、車輪穩(wěn)定阻力、輪胎變形阻力和轉向系中的內摩擦阻力等。表 3.1 設計轎車的基本參數(shù)名稱 軸距 L 前輪距 L1 后輪距 L2 方向盤直徑數(shù)值 2750mm 1425mm 1435mm 380mm名稱 整車質量 輪胎氣壓 轉彎半徑 最小離地間隙數(shù)值 1325kg 200KPa 5000mm 170mm3.2.1 轉向力矩的計算 m?N4.5931=2.0137.=1pGfMR(3.1)其中式中:f—輪胎和路面間的滑動摩擦因數(shù),一般取 f=0.7;G1—轉向軸負荷,G 1=10902.5N,單位為 N;P—輪胎氣壓,P=0.2MPa ,單位為 MPa。3.2.2 轉向器傳動比的計算轉向系的傳動比由轉向系的角傳動比 iω和轉向系的力傳動比 ip 組成.本科畢業(yè)設計說明書12從輪胎接觸地面中心作用在兩個轉向輪上的合力 2Fw 與作用在方向盤上的手力Fh 之比稱為力傳動比 ip。方向盤的轉角和駕駛員同側的轉向輪轉角之比稱為轉向系角傳動比 iω.它又由轉向器傳動比 io 轉向傳動裝置角傳動比 ip 所組成. 5.0=27sinRLαα=33.37°99975.0142537.33cos5000 2750costan ????????BRL??β=44.73° 1.6.7821.3605??KWi?式中:L—汽車軸距, L=2750,單位為 mm;R—汽車最小轉彎半徑,R=5000,單位為 mm;B—前輪輪距,B=1425,單位為 mm;ωW—轉向盤轉角(速度),ω W=1260°;ωK—轉向輪轉角(速度),ω K=78.1°;iω—轉向器傳動比,i ω=16.1。本科畢業(yè)設計說明書13圖 3.1 轉向原理圖3.2.3 作用在轉向盤上的力(3.2)式中:L1—轉向搖臂長,單位為 mm;MR—原地轉向阻力矩, MR=593951.4N·mm;L2—轉向節(jié)臂長,單位為 mm;DSW—轉向盤直徑,D SW =380mm;iω—轉向器角傳動比,i ω=16.1;η+—轉向器正效率,η +=0.9。因齒輪齒條式轉向傳動機構無轉向搖臂和轉向節(jié)臂,故 L1、L 2 不代入數(shù)值。NDLMFSWR 74.2159.0163852ih ??????本科畢業(yè)設計說明書143.2.4 轉向橫拉桿的計算 ??4.678m10261.095.343????????aMdR(3.3)式中:a=L2;[σ]=216MPa MR=593.95N·m取 dmin=15mm3.2.5 主動齒輪軸的計算 ?? m9.101406.25162max ????????Mn(3.4)式中:[τ]=140MPa取 dmin=18mm3.3 齒輪齒條的設計計算3.3.1 齒輪齒條式轉向器的設計要求齒輪齒條式轉向器若用直齒圓柱齒輪則會使運轉平穩(wěn)性降低、沖擊大、噪聲增加。齒輪齒條式轉向器的齒輪多數(shù)采用斜齒圓柱齒輪。齒輪模數(shù) m 的取值范圍多在 2-3mm之間,主動小齒輪齒數(shù) z 多數(shù)在 5-7 個齒范圍變化,壓力角 α=20°,齒輪螺旋角 β的取值范圍多在 9-15°之間。齒條齒數(shù)應根據(jù)轉向輪達到最大偏轉角時,相應地齒條移動行程應達到的值來確定。變速比的齒條壓力角,對現(xiàn)有結構在 12-35°范圍內變化。此外,設計時應驗算齒輪的抗彎強度和接觸強度。主動小齒輪選用 16MnCr5 或 15CrNi6 材料制造,而齒條常采用 45 鋼制造。為減輕質量,殼體用鋁合金壓鑄。3.3.2 齒輪齒條轉向器部件設計1.齒輪 [10]: 齒輪是一只切有齒形的軸。它安裝在轉向器殼體上并使其齒與齒條上的齒相嚙合。齒輪齒條上的齒可以是直齒也可以是斜齒。齒輪軸上端與轉向柱內的轉向軸相連。因此,轉向盤的旋轉使齒條橫向移動已操縱前輪。齒輪軸由安裝在轉向器殼體上的球軸承支承。本科畢業(yè)設計說明書15(1)選擇齒輪類型根據(jù)齒輪傳動的工作條件,選用斜齒圓柱齒輪與斜齒齒條嚙合傳動方案(2)選擇齒輪傳動精度等級選用 7 級精度(3)初選參數(shù)如下表所示表 3.2 齒輪的設計參數(shù)設計名稱 計算公式 計算結果模數(shù) mn1 - mn1=2.5齒數(shù) Z1 - Z1=6壓力角 α1 - α1=20°螺旋角 β - β=10°斜齒圓柱齒輪直徑 d ?cos1zmdn?d=15.23mm2.齒條 [11]:齒條是在金屬殼體內來回滑動的,加工有齒形的金屬條。轉向器殼體是安裝在前橫梁或前圍板的固定位置上的。齒條代替梯形轉向桿系的搖桿和轉向搖臂,并保證轉向橫拉桿在適當?shù)母叨纫允顾麄兣c懸架下擺臂平行。齒條可以比作是梯形轉向桿系的轉向直拉桿。導向座將齒條支持在轉向器殼體上。齒條的橫向運動拉動或推動轉向橫拉桿,使前輪轉向。相互嚙合的齒輪的齒距 P1=πmn1cosα1 和齒條的齒距 P2=πmn2cosα2 必須相等。即 πmn1cosα1=πmn2cosα2計算出齒條的壓力角為:α 2=20° 5.90cos5.cos22 ?????????nmLZ(3.5)式中:L—齒條行程, 95mm;mn2—齒條模數(shù),2.5;α2—齒條壓力角, α2=20°。?。篫 2=31本科畢業(yè)設計說明書16齒輪直徑:d=m n1Z1/cosβ=15.23mm取齒寬系數(shù):Ψ d=1.2齒寬:b=Ψ d×d=18.3mm所以齒條寬 b2 ?。?0mm,即:b 2=20mm齒輪寬:b 1=b2+10=30mm,即:b 1=30mm3.4 轉向器的材料選擇及強度校核1.選擇齒輪齒條材料、熱處理方式及計算許用應力(1)選擇材料及熱處理方式齒輪:40Cr C-N 共滲淬火、回火 43—53HRC齒條:45 鋼 調質處理 229—286HBS(2)確定許用應力??limHNSZ??(3.6)liFTY(3.7)1)確定 σHlim 和 σFlim經查《機械設計手冊》得:σHlim=1500MPaσFlim=300MPa2)確定壽命系數(shù) ZN、Y N 經查《機械設計手冊》得:ZN=1.4(接觸次數(shù)取 8×106 次)YN=1(接觸次數(shù)取 8×106 次)3)計算許用應力取:S Hlim=1,S Flim=1.4??MPa2104.15lim???HNSZ?(3.8) 經查《機械設計手冊》得:應力修正系數(shù):Y ST=2本科畢業(yè)設計說明書17?? MPa57.428.130lim???FNSTY?(3.9) 2.強度校核1)校核齒輪接觸疲勞強度:選取參數(shù),按 ME 級質量要求取值經查《機械設計手冊》得:σHlim=1500MPaSHlim=1ZN=1.4(接觸次數(shù)取 8×106 次)??MPa2104.15lim???HS?(3.10)經查《機械設計手冊》得:齒輪使用系數(shù):K A=1.35齒輪動載系數(shù):K V=1.05齒輪齒向載荷分布系數(shù):K β =1.12齒輪齒間載荷分配系數(shù):K α=1.0K= KAKVKβKα=1.35×1.05×1.12×1.0=1.5876 (3.11)轉矩:TZ=Fh×L2=205×0.16=32.8N·m=32800 N·m m (3.12)齒面接觸疲勞強度校核:??HZHBuKbdT???? ???121(3.13)式中:ZE—材料彈性系數(shù), ZE =189.8(由《機械設計手冊》查得)ZH—節(jié)點區(qū)域系數(shù), ZH =2.15(由《機械設計手冊 》查得)Zτ—重合度系數(shù),Z τ=0.94(計算 εα=1.165,ε β=0.55 由《機械設計手冊》查得)Zβ—螺旋角系數(shù), Zβ=0.99(由《機械設計手冊》查得)u—齒輪傳動比,u =20:6=10/3本科畢業(yè)設計說明書18得: MPa7.189645.13280769.0415.289 3??????H?σH =1896.7MPa≤ [σH]=2100 MPa 故齒輪接觸疲勞強度滿足要求。2)齒輪彎曲疲勞強度校核:經查《機械設計手冊》得:[σF]=428.57MPaSFlim=1.4YST=2YN=1(接觸次數(shù)取 8×106 次)?? MPa57.428.30lim???FST?(3.14)??FnZSdbKY????1(3.15)式中:YF—外齒輪的齒形系數(shù),Y F =2.8(由《機械設計手冊》查得)YS—外齒輪齒根應力修正系數(shù),Y S =1.5(由《 機械設計手冊》查得)Yβ—螺旋角系數(shù), Yβ=0.9(由《機械設計手冊》查得)Yτ—重合度系數(shù),Y τ=0.75(由《機械設計手冊》查得) 1F2dbmKTYnZS????MPa6.3245.308076.5.90.182 ????σF =332.6MPa≤ [σF]=428.57MPa 故齒輪彎曲疲勞強度符合要求。本科畢業(yè)設計說明書19第 4 章 轉向器的主要零部件結構設計齒輪軸指支承轉動零件并與之一起回轉以傳遞運動、扭矩或彎矩的機械零件。一般為金屬圓桿狀,各段可以有不同的直徑。機器中作回轉運動的零件就裝在軸上。4.1 轉向器的受力分析若略去齒面間的摩擦力,則作用與節(jié)點上的法向力 Fa 可以分解為徑向力 Fr 和分力 F,分力 F 又可以分為圓周力 Ft 和軸向力 Fa。受力分析如圖 4.2 所示:計算力如下:Ft=2TZ/d1=2×32800/15.23=4307.29N (4.1)Fr=Fttanα/cosβ=4307.29tan20°/cos10°=1591.1N (4.2)Fa=Fttanβ=4307.29tan10°=759.49N (4.3)式中:α—齒輪壓力角, α=20°;β—齒輪螺旋角, β=10°;TZ—轉向盤扭力矩,T Z =32800N·mm;d1—齒輪分度圓直徑,d 1=15.23mm。4.2 齒輪軸的設計計算經過分析得到:圖 4.2 齒輪軸的受力分析圖在 XY 平面上, N91.521???rRF(4.4)0)27(3.)07(21 ????????RRaF在 XZ 平面上,本科畢業(yè)設計說明書20???21RF(4.5)圖 4.3 受力分析圖 N29.430721?????FR解得: 65.121??R9.68??RF, 903??F本科畢業(yè)設計說明書21圖 4.4 軸的彎矩扭矩圖圖 4.5 齒輪軸的力矩圖4.3 齒輪軸的強度校核查得 40Cr 的機械性能:σB=750MPaστ=550MPaσ-1=350MPa本科畢業(yè)設計說明書22τ-1=200MPa[τ]=40~50MPa由《機械設計(第四版)》查得:σ0=1.6σ-1=560MPaσsb=1.4σs=770MPaτs=0.70σB=525MPa對稱循環(huán)疲勞極限:σ-1b=0.41σB307.5MPaτ-1=0.30σB=225MPa脈動循環(huán)疲勞極限:σ0b=1.7σ-1b=522.75MPaτ0=1.4τ-1=280MPa等效系數(shù): 1765.075.2320b1- ???????(4.6).801??x(4.7)彎曲應力幅: MPa6.15.037???Wa?(4.8)平均應力幅:σm=0扭轉切應力: Pa3.48152.3???TZW?(4.9)扭轉切應力和平均應力幅:τa=τm= =24.3MPa (4.10)查得:應力集中系數(shù):K σ=1.95,K x=1.48; 表面狀態(tài)系數(shù):β=1.5;本科畢業(yè)設計說明書23尺寸系數(shù):ε x=0.98, εσ=0.91;安全系數(shù):設為無限壽命,K N=1 36.158.0791.??????maKbS?????(4.11)7.24.398.0514???xaNxx???(4.12)??SSx??.2?查得許用安全系數(shù)[S]=1.3 ,顯然 S≥[S]故軸的安全系數(shù)校核符合安全標準本科畢業(yè)設計說明書24第 5 章 轉向系統(tǒng)工況校核與驗算5.1 選擇材料由彈簧工作條件可知,對材料無特殊要求,選用 C 組碳素彈簧鋼絲。因彈簧的工作次數(shù)小于 104,載荷性質屬 II 類,[τ]=0.45σ B。5.2 計算彈簧絲直徑1)選擇旋繞比 C取 C=4(查《機械設計手冊》得)2)估算 D2’按 D≤30mm、D 1>16mm,取 D2’=24mm3)計算彈簧絲直徑 d’ m62??CDd(5.1)4)計算曲度系數(shù) K 40.15.4??(5.2)5)計算彈簧絲的許用應力[τ][τ]=0.45σB=0.45×1700=765MPa (5.3)6)計算彈簧絲直徑 d ??m409.675240.16.6.1max ?????KCF(5.4)取 d=6mm1)工作圈數(shù) n 43.18503max???CFGd?(5.5)2)總圈數(shù) n1各端絲圈取 1本科畢業(yè)設計說明書25故 n1=n+2=6.53)節(jié)距 tT=πD2tanα (5.6)則 t=π×20×tan6°=7.92mm,取 α=6°4)自由高度 H0H0≈nt+1.5d=4.43×7.92+1.5×5=43.59mm (5.7)5.3 穩(wěn)定性驗算高徑比 b: 3.5129.05.42<??Db(5.8)故滿足穩(wěn)定性要求。鄰圈間隙 δ:δ=t-d=7.92-5=2.92mm (5.9)彈簧單圈的最大變形量: m81.43.max?n?(5.10)故在最大載荷作用下仍留有間隙 δ1:δ1=2.92-1.81=1.11>0.1d (5.11)彈簧外徑 D:D=D2+d=24+5=29mm (5.12)彈簧內徑 D1:D1= D2-d=24-5=19mm (5.13)τs=1.25[τ]=1.25×765=956.25MPa (5.14)彈簧的極限載荷 Flim: N16704.82591.32 ???CKdsiml??(5.15)彈簧的安裝載荷 Fmin:Fmin=0.9Fmax=0.9×1411=1269.9N (5.16)彈簧剛度 Cs: