喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,所見(jiàn)即所得,CAD圖紙均為高清圖可自行編輯,文檔WORD都可以自己編輯的哦,有疑問(wèn)咨詢(xún)QQ:1064457796,,,課題后的【XX系列】為整理分類(lèi)用,與內(nèi)容無(wú)關(guān),請(qǐng)忽視
任務(wù)書(shū)
(任務(wù)起止日期 02月 ~ 05月)
題 目 純電動(dòng)汽車(chē)動(dòng)力傳動(dòng)系統(tǒng)匹配設(shè)計(jì)
學(xué) 院
專(zhuān) 業(yè)
班 級(jí)
學(xué) 生
指導(dǎo)教師
課題內(nèi)容:
本設(shè)計(jì)題目主要針對(duì)某純電動(dòng)汽車(chē),通過(guò)相關(guān)計(jì)算完成純電動(dòng)汽車(chē)電機(jī)性能參數(shù)、傳動(dòng)系參數(shù)及動(dòng)力電池參數(shù)的匹配設(shè)計(jì),并繪制出純電動(dòng)汽車(chē)動(dòng)力傳動(dòng)系統(tǒng)的總布置圖和關(guān)鍵零部件圖。其主要內(nèi)容如下:
1.分析純電動(dòng)汽車(chē)動(dòng)力傳動(dòng)系統(tǒng)功能總成,提出動(dòng)力傳動(dòng)系統(tǒng)總布置設(shè)計(jì)方案;
2.確定純電動(dòng)汽車(chē)的主要技術(shù)參數(shù);
3.根據(jù)整車(chē)動(dòng)力性要求,對(duì)驅(qū)動(dòng)電機(jī)、電池及傳動(dòng)系主要性能參數(shù)進(jìn)行匹配設(shè)計(jì);
4.繪制動(dòng)力傳動(dòng)系統(tǒng)布置圖(0號(hào)圖幅)和關(guān)鍵零部件圖;
5.撰寫(xiě)設(shè)計(jì)說(shuō)明書(shū),總結(jié)設(shè)計(jì)方法和步驟。
本設(shè)計(jì)課題所需的計(jì)算機(jī)和MATLAB、CAD軟件已經(jīng)具備,并具備相關(guān)的參考書(shū)籍、參考手冊(cè),可以滿(mǎn)足設(shè)計(jì)需要。
課題任務(wù)要求:
1、總布置圖、關(guān)鍵零部件圖等繪圖工作量不少于2張,至少一張為0號(hào)圖紙;
2、純電動(dòng)汽車(chē)英文資料翻譯,工作量少于三千(3000)字;
3、文獻(xiàn)綜述不少于一千五百(1500)字;
4、設(shè)計(jì)計(jì)算說(shuō)明書(shū)不得少于一萬(wàn)五千(15000)字。
主要參考文獻(xiàn)(由指導(dǎo)教師選定):
[1] 熊明潔, 胡國(guó)強(qiáng), 閔建平. 純電動(dòng)汽車(chē)動(dòng)力系統(tǒng)參數(shù)選擇與匹配[J]. 汽車(chē)工程師, 2010, 5: 38-40.
[2] Aden Seaman, John Mcphee. Symbolic Math-based Battery Modeling for Electric Vehicle Simulation [C]. Proceedings of the ASME 2010 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, August 15-18, 2010, Canada, DETC 2010-28814: 1-9.
[3] 王峰, 方宗德, 祝小元. 純電動(dòng)汽車(chē)新型動(dòng)力傳動(dòng)裝置的匹配仿真與優(yōu)化[J]. 汽車(chē)工程, 2011, 33(9): 71-74.
[4] 查鴻山, 宗志堅(jiān), 劉忠途. 純電動(dòng)汽車(chē)動(dòng)力匹配計(jì)算與仿真[J]. 中山大學(xué)學(xué)報(bào), 2010, 5: 52-56.
[5] 姬芬竹, 高峰, 周榮. 純電動(dòng)汽車(chē)傳動(dòng)系參數(shù)匹配的研究[J]. 汽車(chē)科技, 2005, 6: 26-29.
[6] 黃菊花, 徐仕華, 劉淑琴. 電動(dòng)汽車(chē)動(dòng)力參數(shù)匹配及性能仿真[J]. 南昌大學(xué)學(xué)報(bào), 2011, 4: 89-92.
[7] 杜發(fā)榮, 姬芬竹. 電動(dòng)汽車(chē)動(dòng)力傳動(dòng)系統(tǒng)評(píng)價(jià)體系參數(shù)[J]. 遼寧工程技術(shù)大學(xué)學(xué)報(bào), 2008, 2: 116-119.
[8] 姜輝. 電動(dòng)汽車(chē)傳動(dòng)系統(tǒng)的匹配及優(yōu)化[D]. 重慶: 重慶大學(xué), 2006.
[9] 張新磊. 電動(dòng)汽車(chē)總體設(shè)計(jì)及性能仿真優(yōu)化[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2010.
[10] 周保華. 電動(dòng)汽車(chē)傳動(dòng)系統(tǒng)參數(shù)設(shè)計(jì)及換擋控制研究[D]. 重慶: 重慶大學(xué), 2010.
[11] 余銀輝. 微型電動(dòng)汽車(chē)傳動(dòng)系統(tǒng)匹配及驅(qū)動(dòng)優(yōu)化研究[D]. 重慶: 重慶大學(xué), 2010.
[12] 夏青松. 電動(dòng)汽車(chē)動(dòng)力系統(tǒng)設(shè)計(jì)及仿真研究[D]. 武漢: 武漢理工大學(xué), 2007.
同組設(shè)計(jì)者
無(wú)
注:1. 此任務(wù)書(shū)應(yīng)由指導(dǎo)教師填寫(xiě)。
2. 此任務(wù)書(shū)最遲必須在畢業(yè)設(shè)計(jì)開(kāi)始前一周下達(dá)給學(xué)生。
學(xué)生完成畢業(yè)設(shè)計(jì)(論文)工作進(jìn)度計(jì)劃表
序號(hào)
畢業(yè)設(shè)計(jì)(論文)工作任務(wù)
工 作 進(jìn) 度 日 程 安 排
周次
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
1
參考文獻(xiàn)收集與查閱
—
2
學(xué)習(xí)參考文獻(xiàn)
—
—
—
3
開(kāi)題報(bào)告
—
—
4
文獻(xiàn)綜述
—
—
5
外文翻譯
—
—
—
—
6
提出動(dòng)力傳動(dòng)系統(tǒng)總布置設(shè)計(jì)方案
—
—
—
7
確定純電動(dòng)汽車(chē)的主要技術(shù)參數(shù)并進(jìn)行動(dòng)力傳動(dòng)系統(tǒng)匹配設(shè)計(jì)
—
—
—
8
繪制總布置圖和關(guān)鍵零部件圖
—
—
—
9
撰寫(xiě)畢業(yè)論文
—
—
—
10
準(zhǔn)備答辯相關(guān)材料
—
—
注:1. 此表由指導(dǎo)教師填寫(xiě)。
2. 此表每個(gè)學(xué)生一份,作為畢業(yè)設(shè)計(jì)(論文)檢查工作進(jìn)度之依據(jù);
3. 進(jìn)度安排請(qǐng)用“—”在相應(yīng)位置畫(huà)出。
畢業(yè)設(shè)計(jì)(論文)階段工作情況檢查表
時(shí)間
第一階段
第二階段
第三階段
內(nèi)容
組織紀(jì)律
完成任務(wù)情況
組織紀(jì)律
完成任務(wù)情況
組織紀(jì)律
完成任務(wù)情況
檢 查 情 況
教師
簽字
簽字 日期
簽字 日期
簽字 日期
注:1. 此表應(yīng)由教師認(rèn)真填寫(xiě);
2. “組織紀(jì)律”一欄根據(jù)學(xué)生具體執(zhí)行情況如實(shí)填寫(xiě);
3. “完成任務(wù)情況”一欄按學(xué)生是否按進(jìn)度保質(zhì)保量完成任務(wù)的情況填寫(xiě);
4. 對(duì)違紀(jì)和不能按時(shí)完成任務(wù)者,指導(dǎo)教師可根據(jù)情節(jié)輕重對(duì)該生提出警告或不能參加答辯的建議。
譯文
外文翻譯
題 目 純電動(dòng)汽車(chē)動(dòng)力傳動(dòng)
系統(tǒng)匹配設(shè)計(jì)
專(zhuān) 業(yè)
班 級(jí)
學(xué) 生
指導(dǎo)教師
面向?qū)ο髷?shù)學(xué)建模蓄電池的電動(dòng)汽車(chē)仿真
Aden N. Seaman, Jone McPhee
摘要:
我們提出了一種在MapleSim軟件中基于數(shù)學(xué)模型設(shè)計(jì)出來(lái)的蓄電池電動(dòng)汽車(chē)。這個(gè)模型有個(gè)優(yōu)點(diǎn)是:模型是在一種物理一致的方式下利用因果系統(tǒng)部件進(jìn)行描述的。我們利用一個(gè)由Chen和Rincon-Mora建立的蓄電池模型來(lái)開(kāi)發(fā)了一個(gè)基于數(shù)學(xué)模型的完整蓄電池組,并開(kāi)發(fā)簡(jiǎn)單控制器,電動(dòng)機(jī)/發(fā)電機(jī),地形模型,和驅(qū)動(dòng)循環(huán)模型,以此在不同工況下測(cè)試電動(dòng)車(chē)性能。由此產(chǎn)生的微分方程是被象征性地簡(jiǎn)化的,并進(jìn)行數(shù)值模擬來(lái)給出物理一致的結(jié)果,還有便是清楚地表明了蓄電池和縱向車(chē)輛動(dòng)力學(xué)的緊密耦合。
1 簡(jiǎn)介
車(chē)輛建模是一個(gè)復(fù)雜而又極具挑戰(zhàn)性的工作。汽車(chē)公司每年發(fā)布一些新的車(chē)型,所有的這些汽車(chē)都需要模擬和測(cè)試,然后才能進(jìn)行車(chē)輛試制。
隨著推動(dòng)清潔、高效汽車(chē)的發(fā)展,傳動(dòng)系統(tǒng)正逐漸包含電機(jī)、發(fā)動(dòng)機(jī)、無(wú)級(jí)變速器、類(lèi)似電池的能量?jī)?chǔ)存裝置,以及傳統(tǒng)內(nèi)燃機(jī)等。
在此,有一項(xiàng)技術(shù)能夠降低建立復(fù)雜車(chē)輛模型難度的便是非因果數(shù)學(xué)模型,該模型是利用控制方程組內(nèi)組成部分動(dòng)作的物理方程組來(lái)描述的。在最終被求出數(shù)值解以產(chǎn)生輸出數(shù)據(jù)之前,這些方程組特征地運(yùn)行。這種方法使設(shè)計(jì)者們指定各部分動(dòng)作,并約束各部分在一個(gè)更物理一致的語(yǔ)言環(huán)境中去描述各部分變得更容易。這使得交換或是修改各部分,甚至于簡(jiǎn)化系統(tǒng)描述更為容易[1]。
Modelica[2]描述語(yǔ)言已被許多作者運(yùn)用在建立混合動(dòng)力汽車(chē)系統(tǒng)上了[3-7],并且絕大多數(shù)運(yùn)用Dymola[8]仿真環(huán)境。
我們選擇運(yùn)用MapleSoft軟件中的MapleSim[9]仿真模塊作為我們的仿真環(huán)境,因?yàn)樵撃K允許我們利用控制BEV系統(tǒng)仿真的基礎(chǔ)的數(shù)學(xué)方程組。
我們選用的這種方法產(chǎn)生一個(gè)簡(jiǎn)化了的基于方程的可有效仿真的系統(tǒng)描述。方程組也可以運(yùn)用在HIL實(shí)時(shí)仿真中,同時(shí)可以被運(yùn)用于靈敏度分析和系統(tǒng)最優(yōu)化中[10,11]。
在本文中,我們提出一個(gè)蓄電池電動(dòng)汽車(chē) (BEV),這是在軟件MapleSim中我們基于數(shù)學(xué)建模技術(shù)已經(jīng)建立的模型。如圖1中總體BEV系統(tǒng)框圖所示。這是一個(gè)更復(fù)雜的數(shù)學(xué)化的混合動(dòng)力電動(dòng)汽車(chē)整車(chē)模型建立的開(kāi)始,我們旨在建立一個(gè)可運(yùn)用的符號(hào)化數(shù)學(xué)模型。
圖1 總體BEV系統(tǒng)框圖
我們將一個(gè)Chen 和 Rincon-Mora[12]建立的鋰離子電路電池模型應(yīng)用到BEV系統(tǒng)中。我們修改電池方程來(lái)模擬一個(gè)電池組,該電池組是由單個(gè)的電池單元通過(guò)串、并聯(lián)方式組合起來(lái)的。為了將電池組和驅(qū)動(dòng)電機(jī)聯(lián)系起來(lái),我們必須建立一個(gè)能量控制器模型作為系統(tǒng)集成的一部分。我們進(jìn)一步結(jié)合一個(gè)簡(jiǎn)單的在一個(gè)斜面驅(qū)動(dòng)的一維動(dòng)力學(xué)模型,一個(gè)地形模型控制傾斜度、一個(gè)驅(qū)動(dòng)循環(huán)模型控制車(chē)輛所期望的速度。
通過(guò)改變驅(qū)動(dòng)循環(huán)和地形模型,我們?cè)诓煌鸟{駛環(huán)境下檢測(cè)了所設(shè)計(jì)BEV純電動(dòng)汽車(chē)的性能。
2 系統(tǒng)建模和仿真
我們決定使用的技術(shù)是利用MapleSim 數(shù)學(xué)化模型作為仿真環(huán)境,它有一個(gè)圖形界面互連系統(tǒng)部件。該系統(tǒng)模型通過(guò)Maple數(shù)學(xué)引擎進(jìn)行運(yùn)行,并且最后描述系統(tǒng)的微分方程(DAEs)被用于數(shù)值模擬以產(chǎn)生輸出數(shù)據(jù)。作為三維多體系統(tǒng)仿真,利用以線(xiàn)性圖論為基礎(chǔ)的DynaFlex-Pro引擎對(duì)系統(tǒng)進(jìn)行仿真[1,11]。
2.1 蓄電池
無(wú)論BEV電動(dòng)車(chē)還是HEV混合動(dòng)力汽車(chē),其中一個(gè)最重要組成部分是蓄電池。根據(jù)所需保真度和主要研究的電池參數(shù),這里有很多種建立不同電池化學(xué)物質(zhì)的方法。參考Rao所著論文[13]中總結(jié)的一些建模方法。一般來(lái)說(shuō),隨著計(jì)算設(shè)備精度的提高,模型的精度也必將隨著提高。
一些我們所回顧的電池建模技術(shù)有:Salameh建立的鉛酸蓄電池模型[14];Rong 和Pedram建立的鋰離子電池?cái)?shù)學(xué)模型[15],其考慮了電池的SOH值和溫度效應(yīng);在3.1節(jié)PNGV電池測(cè)試手冊(cè)中的集總參數(shù)模型[16];Piller發(fā)明的卡爾曼濾波技術(shù)[17];Chen 和 Rin′con-Mora建立的電氣電路模型[12];Nelson建立的阻抗模型[18]。這些不同的技術(shù)都有其優(yōu)點(diǎn)和缺點(diǎn),也有其適用范圍。
在此,我們對(duì)電動(dòng)汽車(chē)采用鋰離子電池具有極大的興趣,因?yàn)殇囯x子電池質(zhì)量輕并且具有高于鉛酸蓄電池和鎳基蓄電池的重量質(zhì)量比和能量體積比。當(dāng)司機(jī)加速和再生制動(dòng)時(shí),電池將受到持續(xù)高電流和反復(fù)充電的作用,因此,電動(dòng)汽車(chē)對(duì)電池的性能要求很高。而且,隨著駕駛環(huán)境變化,電池溫度大范圍變化可能會(huì)嚴(yán)重影響電池的性能和壽命。
因此我們需要建立一個(gè)鋰離子電池化學(xué)模型,其具有較寬范圍SOC值,能承受較大范圍電流變化,適應(yīng)較大范圍溫度變化。因此,最后我們更傾向于在HIL系統(tǒng)中建立這個(gè)電動(dòng)汽車(chē)模型,并且我們需要的是一個(gè)成本不太昂貴,保真度也不十分高的模型。
這些要求把我們注意引向Chen 和 Rin′con-Mora提出的電氣電路蓄電池模型。我們?cè)谲浖﨧apleSim中執(zhí)行這些不同部分并且在充電狀態(tài)和電器元件之間(在他們論文中方程2至6)運(yùn)用常用功能模塊代替非線(xiàn)性關(guān)系。見(jiàn)圖2 電池的框圖。
圖2 電池結(jié)構(gòu)框圖
因?yàn)樗麄兊哪P褪且粋€(gè)單一的單元,我們通過(guò)調(diào)整他們的方程用串、并聯(lián)的方式來(lái)模擬由若干單元組成的電池。Chen 和 Rin′con-Mora的電池可分為兩個(gè)線(xiàn)性電路以及兩個(gè)線(xiàn)性電路之間的非線(xiàn)性耦合關(guān)系。見(jiàn)圖2不同電路的標(biāo)簽。一個(gè)電路是一種大型的電容器并聯(lián)電阻,這一電路是模擬電池充電狀態(tài)和電池自放電。這可以稱(chēng)為“電容電路”。另一個(gè)電路是一個(gè)電壓源串聯(lián)一個(gè)電容電阻網(wǎng)絡(luò),這一電路是模擬電池時(shí)域響應(yīng)。這可以稱(chēng)為“時(shí)域響應(yīng)電路”。
調(diào)整單個(gè)單元模型來(lái)模擬整個(gè)電池組,令Nparallel是眾單元中的一個(gè)并聯(lián)單元,令Nseries 是許多并聯(lián)單元中的串聯(lián)單元,由此構(gòu)成整個(gè)電池組。在時(shí)域響應(yīng)電路中,開(kāi)路電壓乘以Nseries 。當(dāng)電流在電容電路中流動(dòng)時(shí),流經(jīng)電流在時(shí)域響應(yīng)電路中為除以Nparallel 。在時(shí)域響應(yīng)電路中,電阻為乘以Nseries Nparallel 并且電容為乘以Nparallel Nseries 。
電池模型的單個(gè)單元擁有的開(kāi)路電壓為3.3 V,并且在從100%荷電狀態(tài)以1A的恒定電流放電情況下,其容量為837.5 mAh 。將每8個(gè)電池單元并聯(lián)起來(lái)組成一個(gè)并聯(lián)單元,再將74個(gè)這樣的并聯(lián)單元串聯(lián)起來(lái)組成一個(gè)最大電壓為244.2V和容量為6.7Ah的電池組。如此得到的電池組是可以和應(yīng)用在2007款豐田凱美瑞混合動(dòng)力汽車(chē)上的電池組相媲美的[19]。
Chen和Rin′con-Mora的電池模型在短時(shí)間內(nèi)用于仿真是十分簡(jiǎn)單的,然而,在以下提供的方式中是比較復(fù)雜的,如;開(kāi)路電壓隨SOC值的變化;充電損耗和恢復(fù)的暫態(tài)效應(yīng);以及電量損耗和電量恢復(fù)對(duì)SOC值的依賴(lài)性;電池容量隨放電電流的變化等。此外,因?yàn)榇四P褪且粋€(gè)電氣電路模型,所以很容易并入BEV電動(dòng)汽車(chē)模型的電氣系統(tǒng),并且,這易于代替利用數(shù)學(xué)建模技術(shù)的方法。
該模型的一個(gè)負(fù)面因素是在沒(méi)有設(shè)置任何溫度影響的情況下建模,盡管Chen和Rin′con-Mora陳述了要包含一個(gè)溫度影響模塊并不是難事。對(duì)于電動(dòng)汽車(chē),其溫度會(huì)隨外部環(huán)境條件,電池內(nèi)部耗散熱量和熱化學(xué)反應(yīng)等變化。我們唯一遇到的明確包括溫度依賴(lài)性模塊的數(shù)學(xué)模型是Rong 和Pedram 所建立的[15],但是他們的模型假定的是一個(gè)恒定的放電電流,因此,并不適合我們的BEV電動(dòng)汽車(chē)系統(tǒng)。
Chen和Rincon-Mora的模型也能承受超過(guò)額定電流的充電電流,同時(shí)不用考慮電池內(nèi)部增加的電阻值,因?yàn)槠溆绊懞苄?,即使有?nèi)阻,充電后的電量也接近完全充滿(mǎn)電的狀態(tài)。此外,電池的SOH值隨時(shí)間和充電循環(huán)次數(shù)的變化情況也未建立模型。這些負(fù)面因素是可接受的,考慮到在以后的模型中車(chē)輛控制系統(tǒng)將要限制電池的最大充電量,并且盡管本文沒(méi)有研究模型的溫度或者SOH值,但他們應(yīng)該不至于太難編入。
2.2 能量控制器
接下來(lái),純電動(dòng)汽車(chē)的一個(gè)重要組成部分是能量轉(zhuǎn)化器。能量轉(zhuǎn)換器在蓄電池和傳動(dòng)電機(jī)/發(fā)電機(jī)之間起著紐帶作用。在行駛過(guò)程模式下,能量轉(zhuǎn)換器控制大部分能量輸入電機(jī);當(dāng)在再生制動(dòng)的模式下,大部分制動(dòng)能量回流到電池。
通常,升壓或升壓去磁轉(zhuǎn)換器的使用取決于輸出電壓是高于還是低于輸入電壓[20]。通過(guò)改變高頻切換電路的工作周期,從而可以控制電機(jī)的輸出電壓、電流和功率。
圖3 能量控制器框圖
為避免在MapleSim中建立高頻電路模型,我們決定選用一個(gè)簡(jiǎn)單的近似值,該值能作為能量從電池流向電機(jī)的升壓或是升壓去磁轉(zhuǎn)換器,反之亦然。如圖3所示是能量控制器框圖。盡管當(dāng)前模型擁有一個(gè)100%效率的轉(zhuǎn)換器,但一種Hellgren[3]在其論文中所采用的效率更為現(xiàn)實(shí)的模型是可以被采用的。
在輸出循環(huán)中運(yùn)用一種由信號(hào)驅(qū)動(dòng)的電流源,據(jù)此可以測(cè)量輸出電壓和計(jì)算輸出功率。輸入電流是受PID控制器調(diào)整的,以致根據(jù)輸入功率匹配輸出功率。無(wú)論是對(duì)于決定功率流方向的正向電流還是反向電流,該電路都能很好地工作。當(dāng)輸出電壓和輸出電流趨近于零時(shí),這個(gè)模型解決了一個(gè)簡(jiǎn)單代數(shù)功率轉(zhuǎn)換器“除以零”的問(wèn)題,并且能適應(yīng)變化的輸入輸出阻抗。但是其并未考慮該部件的物理限制,例如:電池的最大充放電率,電機(jī)、電線(xiàn)或是功率電子元件的電壓、電流限制等。
2.3 電機(jī)
本汽車(chē)模型中電機(jī)是選用的Modelica直流永磁電機(jī),該電機(jī)包括內(nèi)電阻,電感和轉(zhuǎn)子轉(zhuǎn)動(dòng)慣量[21]。
電機(jī)的機(jī)械和電氣動(dòng)作是通過(guò)方程1和2進(jìn)行建模,在方程中Ja是電樞慣性,θt是點(diǎn)數(shù)轉(zhuǎn)角,Vnom, Inom和 fnom分別是電機(jī)公稱(chēng)電壓、電流和旋轉(zhuǎn)頻率。τt是電機(jī)軸扭矩,La和Ra分別是電樞電感和電阻。最后,V(t)和I(t)分別是電機(jī)輸出端電壓和電流。
Jaθt-30Vnom-RaInomItπfnom-τt=0 (1)
LaIt+RaIt-Vt+30Vnom-RaInomθtπfnom=0 (2)
我們選擇由L.M.C公司[22]生產(chǎn)的型號(hào)為L(zhǎng)EM-200的D127直流永磁電機(jī)模型。然而,我們需要修改電機(jī)的額定電壓和電流以適應(yīng)我們所選電池電壓。這要求我們用不同的線(xiàn)束和改變電機(jī)自身磁體來(lái)得到重繞線(xiàn)圈電機(jī)。
電機(jī)所用到的參數(shù)已在表1中給出。我們可以注意到電機(jī)的電壓和功率均是各自額定值的兩倍。
2.4車(chē)輛動(dòng)力學(xué)
我們所使用的車(chē)輛模型十分簡(jiǎn)單。其物理參數(shù)基于2007款豐田凱美瑞混合動(dòng)力汽車(chē)。因?yàn)槲覀冎魂P(guān)心傳動(dòng)部件的性能,我們不關(guān)心車(chē)輛自身的懸架系統(tǒng)或是轉(zhuǎn)向系統(tǒng)。我們運(yùn)用了一個(gè)具有規(guī)定重量的位于斜面上的無(wú)阻力運(yùn)輸車(chē)一維模型。驅(qū)動(dòng)電機(jī)與運(yùn)輸車(chē)變形車(chē)輪通過(guò)9:1的固定轉(zhuǎn)速比變速器進(jìn)行彈性連接。車(chē)胎和凱美瑞汽車(chē)輪徑相同,型號(hào)為P215/60V R16.0。
方程3描述了電機(jī)旋轉(zhuǎn)和電機(jī)軸轉(zhuǎn)矩關(guān)系。τ(t)是電機(jī)軸上轉(zhuǎn)矩,m是汽車(chē)的整車(chē)質(zhì)量,R是驅(qū)動(dòng)輪的半徑,ρ是電機(jī)到車(chē)胎的傳動(dòng)比,θ(t)是電機(jī)主軸的轉(zhuǎn)動(dòng)位移,g是重力加速度常數(shù),且?(t)是傾斜角度。
τt=mRρRρd2dt2θt+gsin(?(t)) (3)
表2列出了所用到的參數(shù)值。
在本模型中唯一的一種制動(dòng)方式是再生制動(dòng),在再生制動(dòng)的過(guò)程中,電機(jī)電流反向流動(dòng),利用車(chē)輛的動(dòng)能給蓄電池充電。我們沒(méi)有將反復(fù)充電時(shí)電池的電流限制考慮在內(nèi)。
對(duì)于這個(gè)車(chē)輛模型我們附加上了一個(gè)簡(jiǎn)單的地形模型。根據(jù)時(shí)間查表控制地形的傾斜度,該地形是車(chē)輛的行駛環(huán)境。有了這樣的地形模型,我們可以仿真電動(dòng)汽車(chē)在平原和丘陵地帶的性能。
駕駛循環(huán)系統(tǒng)是一個(gè)車(chē)輛理想速度隨時(shí)間的對(duì)照表。PID控制器將理想速度與實(shí)際速度進(jìn)行對(duì)比,并驅(qū)動(dòng)能量控制器輸入傳送動(dòng)力到電機(jī)或是從電機(jī)獲得動(dòng)力,直到車(chē)輛的實(shí)際速度和理想速度相匹配。
如圖1總體BEV框圖所示。
2.5數(shù)值仿真
在MapleSim軟件將車(chē)輛模型轉(zhuǎn)換成微分方程組過(guò)后,象征性地降低和減少了系統(tǒng)的方程組。然后用減少了的方程求出數(shù)值解以得到最終的輸出數(shù)據(jù)。
MapleSim 是利用自身的非剛性求解器來(lái)仿真我們建立的車(chē)輛系統(tǒng),該非剛性求解器使用一個(gè)Fehlberg fourth-fifth命令四階插值Runge-Kutta 法。我們采用一種絕對(duì)誤差和相對(duì)誤差值均為1e-7的自適應(yīng)時(shí)間步長(zhǎng),并打開(kāi)MapleSim的使仿真程序運(yùn)行更快的自身代碼生成能力。這個(gè)模型是在運(yùn)用適合于Linux系統(tǒng)的MapleSim版本3的3兆英特爾Core2 Duo環(huán)境中運(yùn)行的。它被設(shè)定在一個(gè)仿真超過(guò)30秒時(shí)間間隔,并且需10秒鐘實(shí)際時(shí)間才能完成。
3 仿真結(jié)果
圖4是單一電池單元脈沖放電在MapleSim仿真模型和實(shí)際電池單元中的對(duì)照。實(shí)際電池單元數(shù)據(jù)可以從Chen和Rin′con-Mora論文中圖5提取。類(lèi)似在他們的論文中一樣,我們的模型也不考慮自放電電阻。最初98% SOC值和實(shí)驗(yàn)結(jié)果很接近,直到電池容量耗盡之前都很貼近實(shí)際值。我們的模型要求一個(gè)放電循環(huán)而不僅僅是實(shí)際上看到的電池終端電壓快速下降。
運(yùn)用我們的車(chē)輛模型進(jìn)行了兩個(gè)簡(jiǎn)單而直觀(guān)的測(cè)試。表3中列出了在驅(qū)動(dòng)循環(huán)系統(tǒng)中應(yīng)用到的參數(shù)。
3.1加速度
我們所做的第一個(gè)測(cè)試是在平坦地形上以硬和軟的加速度模擬車(chē)輛的駕駛狀況。由于內(nèi)部損失,如果是軟加速而硬加速,那么蓄電池電動(dòng)車(chē)和內(nèi)燃機(jī)車(chē)的效率將更高。硬加速循環(huán)和軟加速循環(huán)的初始加速度是不同的,但是最大速度和減速度是相同的。見(jiàn)圖5是駕駛循環(huán)速度隨時(shí)間變化的硬和軟加速曲線(xiàn)圖
圖6為電池SOC值隨時(shí)間變化圖。曾描述該模型沒(méi)有滾動(dòng)阻力。你可以看到硬加速驅(qū)動(dòng)周期以一個(gè)低于軟加速循環(huán)的SOC值結(jié)束加速狀態(tài)。不相同的地方是由于電阻損失來(lái)自于電機(jī)繞組和電池內(nèi)部化學(xué)損失
3.2山地
我們所做的第二個(gè)測(cè)試是測(cè)試汽車(chē)上坡和下坡的情況。當(dāng)汽車(chē)上坡時(shí),電池消耗能量并部分轉(zhuǎn)化為汽車(chē)重力勢(shì)能,然而,在下坡的時(shí)候,汽車(chē)減少的部分重力勢(shì)能轉(zhuǎn)化到電池當(dāng)中。見(jiàn)圖5駕駛循環(huán)速度隨時(shí)間變化的山地循環(huán)曲線(xiàn)。地形循環(huán)非常簡(jiǎn)單:在t=9.5s時(shí),車(chē)輛遇到陡坡,并駛上陡坡,或是在t=20.5s之前從坡度為8度的斜坡上駛下,返回平地。
圖7為這個(gè)測(cè)試中電池SOC值隨時(shí)間變化曲線(xiàn)。在兩種情況下,電池消耗能量使車(chē)輛加速,將電池的能量部分轉(zhuǎn)化為車(chē)輛的動(dòng)能。
在上坡的情況下,SOC值減小。駕駛控制器應(yīng)用更多能量到電機(jī)以使車(chē)輛的速度和理想速度相匹配,并且電池能量轉(zhuǎn)化成了車(chē)輛的重力勢(shì)能。
在下坡的情況下,SOC值增加。駕駛控制器應(yīng)用蓄熱式“制動(dòng)”以使車(chē)輛保持速度恒定,并且車(chē)輛的重力勢(shì)能隨著轉(zhuǎn)化成電能回流到電池中。
最后,汽車(chē)運(yùn)動(dòng)到平緩的地點(diǎn)并利用再生制動(dòng)實(shí)現(xiàn)剎車(chē),同時(shí)將車(chē)輛動(dòng)能轉(zhuǎn)化到電池中儲(chǔ)存起來(lái)。
3.3驗(yàn)證
在基于能量守恒的原則下我們對(duì)在MapleSim中的仿真結(jié)果和近似計(jì)算結(jié)果做了一下對(duì)比。對(duì)硬和軟加速循環(huán)做了以下幾點(diǎn)對(duì)比:在車(chē)輛啟動(dòng)之前和啟動(dòng)后達(dá)到最大速度開(kāi)始直至再生制動(dòng)以前。因?yàn)檐?chē)輛在平直道路上無(wú)滾動(dòng)阻力地運(yùn)動(dòng),僅僅包含車(chē)輛動(dòng)能和電機(jī)、電池上必須考慮的阻力損失。
見(jiàn)表4,基于能量守恒的近似理論計(jì)算和MapleSim 軟件為硬和軟加速度循環(huán)做的仿真結(jié)果在以下參數(shù)上做的對(duì)比結(jié)果。J——轉(zhuǎn)化到車(chē)輛的能量;P——加速全程的平均功率;SOC——電機(jī)和電池上納入考慮的損失中電池的SOC值變化。詳見(jiàn)Appendix A在硬加速驅(qū)動(dòng)循環(huán)計(jì)算中的步驟。
MapleSim仿真結(jié)果與近似理論結(jié)果比較吻合??紤]到近似理論公式的使用,出現(xiàn)較小的誤差并不奇怪。
4 總結(jié)
我們利用了運(yùn)用MapleSim軟件的基于數(shù)學(xué)的方法模擬了一個(gè)簡(jiǎn)單的蓄電池電動(dòng)汽車(chē)。這項(xiàng)技術(shù)減少了汽車(chē)開(kāi)發(fā)時(shí)間,并使系統(tǒng)更接近物理系統(tǒng)。
運(yùn)用一個(gè)基于Chen和Rin′con-Mora的電池模型建立的完整電池組數(shù)學(xué)模型,一個(gè)簡(jiǎn)單的功率控制器模型和一個(gè)標(biāo)準(zhǔn)Modelica直流電機(jī)模型,我們能夠組成一個(gè)BEV傳動(dòng)系統(tǒng)并將其與一個(gè)簡(jiǎn)單的車(chē)輛動(dòng)力學(xué)模型聯(lián)系起來(lái)。
通過(guò)運(yùn)用不同的地形條件和駕駛循環(huán),對(duì)兩個(gè)不同的情景進(jìn)行測(cè)試以比較我們汽車(chē)模型的性能和人們期望的實(shí)際汽車(chē)的性能。在兩種情況下,得到的測(cè)試結(jié)果和直覺(jué)想象以及近似理論計(jì)算都是想符合的。
基本的描述系統(tǒng)的數(shù)學(xué)方程能用到靈敏度分析、優(yōu)化或是實(shí)時(shí)HIL仿真等運(yùn)用中。
后續(xù)工作將包括給系統(tǒng)增加內(nèi)燃機(jī)作為一個(gè)增程器,增加功率控制器、電機(jī)模型的保真度,增加更復(fù)雜車(chē)輛模型、地形模型和駕駛循環(huán)模型
致謝
我們特別感謝豐田公司,MapleSoft公司以及加拿大自然科學(xué)與工程研究委員會(huì)的大力支助和支持!
- 12 -
開(kāi)題報(bào)告
開(kāi)題報(bào)告
題 目 純電動(dòng)汽車(chē)動(dòng)力傳動(dòng)
系統(tǒng)匹配設(shè)計(jì)
專(zhuān) 業(yè)
班 級(jí)
學(xué) 生
指導(dǎo)教師
一、 選題目的與意義
選題目的:本論文主要針對(duì)某一純電動(dòng)汽車(chē),通過(guò)相關(guān)設(shè)計(jì)計(jì)算完成純電動(dòng)汽車(chē)電機(jī)性能參數(shù)、傳動(dòng)系傳動(dòng)比及動(dòng)力電池參數(shù)的匹配設(shè)計(jì),并繪制出純電動(dòng)汽車(chē)動(dòng)力傳動(dòng)系統(tǒng)的總布置圖。同時(shí),通過(guò)本論文的寫(xiě)作,能鞏固所學(xué)理論知識(shí),在完成畢業(yè)論文的過(guò)程中能得到全面的訓(xùn)練;對(duì)產(chǎn)品開(kāi)發(fā)設(shè)計(jì)流程能有進(jìn)一步認(rèn)識(shí);能進(jìn)一步熟練掌握常用仿真和制圖軟件(如Matlab、Auto-CAD等)。
選題意義:純電動(dòng)汽車(chē)是指以車(chē)載電源為動(dòng)力,用電動(dòng)機(jī)驅(qū)動(dòng)車(chē)輪行駛,且滿(mǎn)足道路安全法規(guī)對(duì)汽車(chē)的各項(xiàng)要求的車(chē)輛。電動(dòng)汽車(chē)能夠?qū)崿F(xiàn)零排放,節(jié)能環(huán)保,可以解決汽車(chē)對(duì)環(huán)境的污染問(wèn)題,對(duì)保護(hù)環(huán)境和生態(tài)具有重大意義。動(dòng)力傳動(dòng)系統(tǒng)是電動(dòng)汽車(chē)中最關(guān)鍵的系統(tǒng),電動(dòng)汽車(chē)的運(yùn)行性能主要取決于動(dòng)力系統(tǒng)的類(lèi)型和性能。參數(shù)匹配就是在滿(mǎn)足整車(chē)動(dòng)力性能要求的基礎(chǔ)上合理選擇動(dòng)力總成中各部件參數(shù),提高整車(chē)動(dòng)力性能,降低改裝成本和提高續(xù)駛里程。
二、國(guó)內(nèi)外研究現(xiàn)狀
純電動(dòng)汽車(chē)是由蓄電池(如鎳氫電池、鋰離子電池、鉛酸電池或鎳氫電池等)直接釋放電能為汽車(chē)提供動(dòng)力的一種電動(dòng)汽車(chē)。隨著化石能源的大量消耗,能源危機(jī)逼近,各國(guó)都將純電動(dòng)汽車(chē)的發(fā)展提升到了戰(zhàn)略高度。全球各大汽車(chē)制造商也爭(zhēng)先研發(fā)純電動(dòng)汽車(chē),極具戰(zhàn)略前瞻性,為能夠占領(lǐng)未來(lái)汽車(chē)市場(chǎng)做足準(zhǔn)備。尤其是近兩年,陸續(xù)有純電動(dòng)車(chē)型亮相各大國(guó)際車(chē)展。
2.1 國(guó)內(nèi)研究現(xiàn)狀
早在上世紀(jì)60年代,我國(guó)就開(kāi)始了純電動(dòng)汽車(chē)相關(guān)的研究工作,并于上世紀(jì)90年代掀起了一股研究高潮,國(guó)內(nèi)一些高校、科研單位和企業(yè)陸續(xù)開(kāi)始研究純電動(dòng)汽車(chē),并取得了一些成果。2006年,我國(guó)第一批純電動(dòng)轎車(chē)取得了產(chǎn)品準(zhǔn)入公告,吸引了更多的企業(yè)和單位加入了純電動(dòng)汽車(chē)的研發(fā)或試運(yùn)營(yíng)陣營(yíng)。
目前,我國(guó)政府已經(jīng)確定把純電動(dòng)汽車(chē)為汽車(chē)產(chǎn)業(yè)轉(zhuǎn)型的主要方向,而普通混合動(dòng)力汽車(chē)將作為節(jié)能車(chē)看待,不享受?chē)?guó)家對(duì)新能源汽車(chē)的支持政策。政策就是導(dǎo)向,這導(dǎo)致汽車(chē)企業(yè)失去了研發(fā)普通混合動(dòng)力汽車(chē)的動(dòng)力而紛紛轉(zhuǎn)向純電動(dòng)汽車(chē)。在2010年10月的廣州國(guó)際車(chē)展上,比亞迪、長(zhǎng)安、江淮、奇瑞等自主品牌就紛紛推出了自主研發(fā)的純電動(dòng)汽車(chē)。如比亞迪公司推出的全球首款批量投放純電動(dòng)出租車(chē)E6,長(zhǎng)安新能源汽車(chē)研發(fā)團(tuán)隊(duì)研發(fā)的長(zhǎng)安奔奔MINI純電動(dòng)汽車(chē)就成為車(chē)展的亮點(diǎn)。
而且,國(guó)內(nèi)研究純電動(dòng)汽車(chē)主要是以改裝的形式進(jìn)行,圍繞改裝純電動(dòng)汽車(chē)整車(chē)動(dòng)力性能和經(jīng)濟(jì)性方面做的研究比較多。當(dāng)然,在目前電池技術(shù)沒(méi)有得到有效突破的情況下,在相同電池條件下,怎樣提升整車(chē)的動(dòng)力性和增加續(xù)駛里程顯得尤為重要。姜輝,余銀輝,夏青松,周保華等[1-20]在純電動(dòng)汽車(chē)動(dòng)力傳動(dòng)系統(tǒng)的匹配設(shè)計(jì)和整車(chē)性能仿真方面做了大量卓有成效的工作,為國(guó)內(nèi)純電動(dòng)汽車(chē)的后續(xù)研究作出了重要貢獻(xiàn),極具參考價(jià)值。
2.2 國(guó)外研究現(xiàn)狀
電動(dòng)汽車(chē)的研究最早是從純電動(dòng)汽車(chē)研究開(kāi)始的,到目前為止純電動(dòng)汽車(chē)技術(shù)的發(fā)展已經(jīng)相對(duì)完善,但是還有一些技術(shù)瓶頸有待解決,比如蓄電池的壽命普遍偏短,行駛里程普遍不長(zhǎng)等等。除了技術(shù)問(wèn)題,制約純電動(dòng)汽車(chē)大范圍推廣應(yīng)用的還有其他許多因素比如充電基礎(chǔ)設(shè)施建設(shè)落后、資金缺乏和對(duì)傳統(tǒng)汽車(chē)工業(yè)的依賴(lài)等。目前世界各國(guó)的純電動(dòng)汽車(chē)的應(yīng)用仍處于示范運(yùn)行階段。美國(guó)、日本和歐洲現(xiàn)階段都將純電動(dòng)汽車(chē)的研究轉(zhuǎn)向了以公交車(chē)、社區(qū)用車(chē)及特定用途的微型電動(dòng)汽車(chē)為主,并開(kāi)始對(duì)車(chē)輛運(yùn)行機(jī)制,基礎(chǔ)設(shè)施建設(shè)等方面做了大量的研究工作。
世界知名的汽車(chē)制造商如戴姆勒——克萊斯勒、通用、豐田、福特等,在不斷對(duì)傳統(tǒng)汽車(chē)進(jìn)行研發(fā)的同時(shí),也都投入大量的人力、財(cái)力和物力,進(jìn)行對(duì)電動(dòng)汽車(chē)的研究與開(kāi)發(fā),以搶占先機(jī)。
美國(guó)采用政府和企業(yè)雙作用力的方式,加速電動(dòng)汽車(chē)產(chǎn)業(yè)發(fā)展。美國(guó)汽車(chē)工業(yè)十分發(fā)達(dá),汽車(chē)產(chǎn)量大,保有量最多,石油消耗量和汽車(chē)排放污染物均居世界首位。為保持汽車(chē)產(chǎn)業(yè)的可持續(xù)發(fā)展,美國(guó)制定了非常嚴(yán)格的汽車(chē)尾氣排放標(biāo)準(zhǔn),并較早地大力鼓勵(lì)發(fā)展電動(dòng)汽車(chē),先后推出了PNGV、Freedom CAR、AVP計(jì)劃。在美國(guó)能源部的大力支持下,汽車(chē)廠(chǎng)商在電動(dòng)汽車(chē)的開(kāi)發(fā)研制中投入大量的人力物力,并且取得了很大的研究成果[26-27]。
日本的資源貧乏,能源供給大部分得依靠海外,且主要是石油資源,各領(lǐng)域都在尋求更好的對(duì)策以便應(yīng)對(duì)能源問(wèn)題,在日本的能源消費(fèi)中,運(yùn)輸部門(mén)大約占25%(1997年),其中50%以上的石油是用于汽車(chē)產(chǎn)業(yè)上的,也就是說(shuō),電動(dòng)汽車(chē)的發(fā)展和促進(jìn),對(duì)日本能源狀況的改善可以說(shuō)是至關(guān)重要的。我國(guó)目前的能源消耗情況和日本類(lèi)似,但隨著汽車(chē)保有量的快速增長(zhǎng),形勢(shì)會(huì)比日本更加嚴(yán)峻。
1967年,日本為了促進(jìn)本國(guó)電動(dòng)汽車(chē)產(chǎn)業(yè)的發(fā)展成立了日本電動(dòng)汽車(chē)協(xié)會(huì)在之后的20年間,日本制定了《電動(dòng)汽車(chē)的開(kāi)發(fā)計(jì)劃》和《第三屆電動(dòng)汽車(chē)普及計(jì)劃》,并制定了汽車(chē)生產(chǎn)和保有量目標(biāo)。本田公司作為日本主要的汽車(chē)制造商之一在電動(dòng)汽車(chē)方面的研究主要集中在混合動(dòng)力和燃料電池汽車(chē)兩個(gè)方向。在1999年推出Insight、2004年推出Accord Hybrid、2006年推出Civice Hybrid都顯示了本田公司在混合動(dòng)力電動(dòng)汽車(chē)上做的努力。燃料電動(dòng)汽車(chē)方面也于2006年試行FCX,該車(chē)由交流同步電動(dòng)機(jī)驅(qū)動(dòng),最高車(chē)速為160km/h,可以連續(xù)行使570km。與本田相比,豐田公司在電動(dòng)汽車(chē)領(lǐng)域也取得了更大的成功,只是豐田主要把研究的重點(diǎn)放在了混合電動(dòng)汽車(chē),自上世紀(jì)80年代開(kāi)始,豐田公司就研制了EV10-EV40的一系列電動(dòng)汽車(chē)。1995年普銳斯研制成功并與1997年投放市場(chǎng)并取得很大成功。普銳斯2005屬于重度混合動(dòng)力電動(dòng)汽車(chē),它采用永磁同步電動(dòng)機(jī)和四缸發(fā)動(dòng)機(jī)共同驅(qū)動(dòng),使得該車(chē)的節(jié)能與續(xù)航能力更加突出,因此更具有實(shí)用性,截至2010年年底,全球銷(xiāo)量已經(jīng)超過(guò)140萬(wàn)輛,是當(dāng)前最成功的混合動(dòng)力電動(dòng)汽車(chē)。日本另外的一個(gè)著名的汽車(chē)品牌——日產(chǎn),也致力于發(fā)展電動(dòng)汽車(chē),日產(chǎn)公司設(shè)計(jì)的電動(dòng)汽車(chē)主要是純電動(dòng)汽車(chē)和混合動(dòng)力電動(dòng)汽車(chē),同時(shí)也將燃料電池電動(dòng)汽車(chē)上升到一定戰(zhàn)略地位。比較成熟的產(chǎn)品有Altra、Nissan Tino以及Altima Hybrid,日產(chǎn)在燃料電動(dòng)汽車(chē)的主要作品是FCV2005,它集中了日產(chǎn)公司的核心技術(shù),如理電池技術(shù)、高壓電子技術(shù)和Tino Hybrid的控制技術(shù)等[21-25]。
在歐洲,法國(guó)是目前世界上推廣純電動(dòng)汽車(chē)最為成功的國(guó)家之一,其己經(jīng)在電動(dòng)汽車(chē)研發(fā)、應(yīng)用、配套服務(wù)設(shè)施和政策支持方面,初步形成一套完整的體系。據(jù)最新統(tǒng)計(jì)數(shù)字顯示,法國(guó)目前擁有超過(guò)1.5萬(wàn)輛純電動(dòng)汽車(chē),全國(guó)建有200多座公共充電站,歐盟內(nèi)75%的純電動(dòng)汽車(chē)來(lái)自法國(guó),而且法國(guó)最大的汽車(chē)制造商標(biāo)致——雪鐵龍集團(tuán)己經(jīng)是世界最大的電動(dòng)汽車(chē)生產(chǎn)商。雪鐵龍C-Zero的動(dòng)力系統(tǒng)為一臺(tái)永磁同步電動(dòng)機(jī),當(dāng)轉(zhuǎn)速在3200-6200rpm時(shí),最大功率為48kw,最大扭矩為182N.m,0~100km/h加速時(shí)間為15s,最高車(chē)速約為130km/h。一次充電后可行駛160公里(日本10-15模式)。雪鐵龍C-Zero采用鋰電池供電,充電需要6個(gè)小時(shí),而快速充電時(shí),只需要半小時(shí)就可達(dá)到80%的電量。
奔馳Smart電動(dòng)車(chē)型配置輸出功率為40馬力的電機(jī)。電機(jī)放置在該車(chē)的車(chē)尾,采用后驅(qū)結(jié)構(gòu)。其從0~60Km/h所需的加速時(shí)間為6.5s,最高時(shí)速可達(dá)100Km/h。Smart電動(dòng)車(chē)的電動(dòng)機(jī)由鋰離子電池提供電能,最大可儲(chǔ)存14KW的電能,續(xù)航里程可115Km。鋰離子電池被安放在車(chē)身的中部,憑借每百公里僅消耗12Kw.h電量,Smart電動(dòng)汽車(chē)成為城市交通中最節(jié)能、最環(huán)保的車(chē)型之一[28-33]。
三、主要研究?jī)?nèi)容
本設(shè)計(jì)題目主要針對(duì)某純電動(dòng)汽車(chē),通過(guò)相關(guān)計(jì)算完成純電動(dòng)汽車(chē)電機(jī)性能參數(shù)、傳動(dòng)系參數(shù)及動(dòng)力電池參數(shù)的匹配設(shè)計(jì),并繪制出純電動(dòng)汽車(chē)動(dòng)力傳動(dòng)系統(tǒng)的總布置圖和關(guān)鍵零部件圖。其主要內(nèi)容如下:
1.查找并學(xué)習(xí)文獻(xiàn),分析純電動(dòng)汽車(chē)動(dòng)力傳動(dòng)系統(tǒng)功能總成,提出動(dòng)力傳動(dòng)系統(tǒng)總布置設(shè)計(jì)方案;
2.確定純電動(dòng)汽車(chē)的主要技術(shù)參數(shù);
3.根據(jù)整車(chē)動(dòng)力性要求,對(duì)驅(qū)動(dòng)電機(jī)、電池及傳動(dòng)系主要性能參數(shù)進(jìn)行匹配設(shè)計(jì);
4. 學(xué)習(xí)Matlab/advisor模塊進(jìn)行建模仿真,分析設(shè)計(jì)所得數(shù)據(jù),從而對(duì)所設(shè)計(jì)純電動(dòng)汽車(chē)動(dòng)力傳動(dòng)系統(tǒng)的合理性進(jìn)行驗(yàn)證。
四、研究方法與實(shí)施方案
4.1 研究方法
在本論文中,利用計(jì)算機(jī)輔助設(shè)計(jì)和計(jì)算機(jī)建模仿真同定量和定性綜合分析法相結(jié)合的研究方法對(duì)純電動(dòng)汽車(chē)傳動(dòng)系統(tǒng)的各部分(蓄電池、電動(dòng)機(jī)、主減速器傳動(dòng)比等)進(jìn)行匹配設(shè)計(jì)和建模仿真,使所設(shè)計(jì)的傳動(dòng)系能夠滿(mǎn)足整車(chē)的動(dòng)力性能,增加續(xù)駛里程和降低成本。
4.2 實(shí)施方案
本畢業(yè)論文提出了一條明確的思路:①提出設(shè)計(jì)要求;②選擇適當(dāng)?shù)哪骋卉?chē)型;③進(jìn)行設(shè)計(jì)計(jì)算,完成動(dòng)力傳動(dòng)系統(tǒng)主要參數(shù)匹配;④在Matlab/advisor中進(jìn)行建模仿真,驗(yàn)證整車(chē)動(dòng)力性是否滿(mǎn)足設(shè)計(jì)要求;⑤得出結(jié)論和研究展望。
4.3 論文提綱如下:
摘要
ABSTRACT
第一章 緒 論
1.1 研究背景及意義
1.2 純電動(dòng)汽車(chē)基本結(jié)構(gòu)和工作原理
1.3 純電動(dòng)汽車(chē)國(guó)內(nèi)外發(fā)展現(xiàn)狀
1.3.1 國(guó)內(nèi)純電動(dòng)汽車(chē)發(fā)展研究狀況
1.3.2 國(guó)外純電動(dòng)汽車(chē)發(fā)展研究狀況
1.4 本文主要研究?jī)?nèi)容
第二章 純電動(dòng)汽車(chē)動(dòng)力傳動(dòng)系統(tǒng)匹配設(shè)計(jì)
2.1 純電動(dòng)汽車(chē)動(dòng)力系統(tǒng)的布置方案
2.2 純電動(dòng)汽車(chē)整車(chē)參數(shù)及性能指標(biāo)確定
2.3 電動(dòng)機(jī)參數(shù)匹配
2.3.1 電動(dòng)機(jī)類(lèi)型選擇
2.3.2 電動(dòng)機(jī)參數(shù)確定
2.4 動(dòng)力電池參數(shù)匹配
2.4.1 動(dòng)力電池類(lèi)型選擇
2.4.2 電池組參數(shù)的確定
2.5 傳動(dòng)系統(tǒng)參數(shù)匹配
2.5.1 傳動(dòng)系統(tǒng)變速方案選擇
2.5.2 傳動(dòng)系傳動(dòng)速比設(shè)計(jì)
2.6 匹配結(jié)果
第三章 基于ADVISOR的純電動(dòng)汽車(chē)仿真建模
3.1 ADVISOR仿真模塊介紹
3.1.1 ADVISOR使用說(shuō)明
3.2 純電動(dòng)汽車(chē)整車(chē)模型建立
3.2.1車(chē)身模型建立
3.2.2車(chē)輪模型建立
3.2.3傳動(dòng)系統(tǒng)模型建立
3.2.4驅(qū)動(dòng)電機(jī)模型建立
3.2.5動(dòng)力電池模型建立
3.3 參數(shù)輸入及整車(chē)性能仿真
第四章 全文總結(jié)
致謝
參考文獻(xiàn)
4.4 畢業(yè)設(shè)計(jì)(論文)工作任務(wù)
(1) 參考文獻(xiàn)收集與查閱(第一周)
(2) 學(xué)習(xí)參考文獻(xiàn)(第一周——第三周)
(3) 寫(xiě)作開(kāi)題報(bào)告、文獻(xiàn)綜述(第二周——第三周)
(4) 外文翻譯(第二周——第五周)
(5) 提出動(dòng)力傳動(dòng)系統(tǒng)總布置設(shè)計(jì)方案(第四周——第六周)
(6) 確定純電動(dòng)汽車(chē)的主要技術(shù)參數(shù)并進(jìn)行動(dòng)力傳動(dòng)系統(tǒng)匹配設(shè)計(jì)(第七周——第九周)
(7) 繪制總布置圖和關(guān)鍵零部件圖(第十周——第十二周)
(8) 撰寫(xiě)畢業(yè)論文(第十一周——第十三周)
(9) 準(zhǔn)備答辯相關(guān)材料(第十三周——第十四周)
五、主要參考文獻(xiàn)
[1] 姬芬竹,高峰,周榮. 純電動(dòng)汽車(chē)傳動(dòng)系參數(shù)匹配的研究[J].汽車(chē)科技,2005,(6).
[2] 姜輝. 電動(dòng)汽車(chē)傳動(dòng)系統(tǒng)的匹配及優(yōu)化[D]. 重慶: 重慶大學(xué), 2006.
[3] 夏青松. 電動(dòng)汽車(chē)動(dòng)力系統(tǒng)設(shè)計(jì)及仿真研究[D]. 武漢: 武漢理工大學(xué), 2007.
[4] 劉靈芝,張炳力,湯仁禮. 某型純電動(dòng)汽車(chē)動(dòng)力系統(tǒng)參數(shù)匹配研究[J].合肥工業(yè)大學(xué)學(xué)報(bào),2007,30(5),591-593.
[5] 仇建華,張珍. 純電動(dòng)汽車(chē)驅(qū)動(dòng)系統(tǒng)的參數(shù)設(shè)計(jì)及匹配[J].硅谷,2010.
[6] 查鴻山,宗志堅(jiān),劉忠途,伍慶龍. 純電動(dòng)汽車(chē)動(dòng)力匹配計(jì)算與仿真[J].中山大學(xué)學(xué)報(bào),2010,49(5).
[7] 琚龍. 基于MATLAB仿真的純電動(dòng)車(chē)動(dòng)力系統(tǒng)匹配研究[J].硅谷,2010.
[8] 常綠. 純電動(dòng)微型汽車(chē)動(dòng)力傳動(dòng)系參數(shù)設(shè)計(jì)及動(dòng)力性仿真[J].機(jī)械設(shè)計(jì)與制造,2010,(6).
[9] 張新磊. 電動(dòng)汽車(chē)總體設(shè)計(jì)及性能仿真優(yōu)化[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2010.
[10] 周保華. 電動(dòng)汽車(chē)傳動(dòng)系統(tǒng)參數(shù)設(shè)計(jì)及換擋控制研究[D]. 重慶: 重慶大學(xué), 2010.
[11] 余銀輝. 微型電動(dòng)汽車(chē)傳動(dòng)系統(tǒng)匹配及驅(qū)動(dòng)優(yōu)化研究[D]. 重慶: 重慶大學(xué), 2010.
[12] 熊明潔,胡國(guó)強(qiáng),閔建平. 純電動(dòng)汽車(chē)動(dòng)力系統(tǒng)參數(shù)選擇與匹配[J].汽車(chē)工程師,2011,(5).
[13] 王燕燕. 純電動(dòng)客車(chē)動(dòng)力系統(tǒng)參數(shù)匹配及性能分析[J].汽車(chē)電器,2011,(10).
[14] 薛念文,高非,徐興,龔昕. 電動(dòng)汽車(chē)動(dòng)力傳動(dòng)系統(tǒng)參數(shù)的匹配設(shè)計(jì)[J].重慶交通大學(xué)學(xué)報(bào),2011,30(2).
[15] 付多智,胡毅. 純電動(dòng)汽車(chē)驅(qū)動(dòng)電機(jī)選擇方法[J].新能源汽車(chē),2011.
[16] 楊三英,周永軍,馬淵. 基于 matlab的純電動(dòng)汽車(chē)建模及動(dòng)力特性仿真分析[J]. Machine Building & Automation,Jun 201,40(3):89-92
[17] 徐春,婁云,李瑞芳. 電動(dòng)城市客車(chē)傳動(dòng)系速比的設(shè)計(jì)[J].客車(chē)技術(shù)與研究,2011,(2).
[18] 陳曉麗,陳文強(qiáng),曲毅. 純電動(dòng)汽車(chē)驅(qū)動(dòng)電機(jī)的設(shè)計(jì)[J].汽車(chē)與配件,2011,(3).
[19] 王峰, 方宗德, 祝小元. 純電動(dòng)汽車(chē)新型動(dòng)力傳動(dòng)裝置的匹配仿真與優(yōu)化[J]. 汽車(chē)工程, 2011, 33(9): 71-74.
[20] 黃菊花, 徐仕華, 劉淑琴. 電動(dòng)汽車(chē)動(dòng)力參數(shù)匹配及性能仿真[J]. 南昌大學(xué)學(xué)報(bào), 2011, 4: 89-92.
[21] 曹秉剛. 中國(guó)電動(dòng)汽車(chē)技術(shù)新進(jìn)展[J].西安交通大學(xué)學(xué)報(bào),2007.1
[22] 林鷹. 我國(guó)電動(dòng)汽車(chē)不斷提升水準(zhǔn)[J].交通與運(yùn)輸,2009(l).
[23] 章桐.賈永軒. 電動(dòng)汽車(chē)技術(shù)革命[M].機(jī)械工業(yè)出版社,2010.
[24] Phillips.A.M,Functional. decomposition in a vehicle,control system American control
Conference,2002.
[25] Patil.P.G.Prospects for Electric Vehicles. Aerospace Systems Magazine,1900:15-19
[26] 劉清虎. 純電動(dòng)汽車(chē)整車(chē)能量建模與仿真分析[D].湖南:湖南大學(xué),2003.
[27] Riazenman MJ. Engineering the EV future[J].IEEE Spectrum,1998,(11):18-20
[28] Browning,L,, Unnaseh.S.Hybrid electric vehicle commercialization issues Applications and Advances.In:Proceedings of the Sixteenth Annual Battery Conference,2001(2),45-50.
[29] Ng H K Vyas A D,Santini D J. The Prospects for Hybrid Electric Vehicles,2005-2020:
Results of a Delphi Study, Argonne National Laboratory, ANL/ES/CP-996 1 2,1999.
[30] Y.Gao and M.Ehsani, Investigation of battery technologies for the army’s hybrid vehicle application,in Proceedings of the IEEE 56th Vehicular Technology Conference, Fall 2002,PP.1505-1509.
[31] TMS320x28x DSP External Interface(XlNTF)Reference Guide.TI Company,2002.5.
[32] Kozo Yamaguchi,Shuzo Moroto,etc. Development of a New Hybrid System—dual System.SAE paper 960448.
[33] Aden Seaman, John Mcphee. Symbolic Math-based Battery Modeling for Electric Vehicle Simulation [C]. Proceedings of the ASME 2010 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, August 15-18, 2010, Canada, DETC 2010-28814: 1-9.
六、指導(dǎo)教師意見(jiàn)
指導(dǎo)教師:
時(shí) 間:
七、學(xué)院畢業(yè)設(shè)計(jì)(論文)指導(dǎo)小組意見(jiàn)
負(fù) 責(zé) 人:
時(shí) 間: