以上為資料預(yù)覽概圖,下載文件后為壓縮包資料文件?!厩逦?,無(wú)水印,可編輯】dwg后綴為cad圖,doc后綴為word格式,需要請(qǐng)自助下載即可,有疑問(wèn)可以咨詢QQ 197216396 或 11970985
哈爾濱理工大學(xué) 畢業(yè)設(shè)計(jì) 題目 同步帶張緊輪注塑模具設(shè)計(jì)班級(jí) 目錄第1章 課題研究的意義第2章 注塑模具的選材與結(jié)構(gòu)組成第3章 模具的總體設(shè)計(jì)第4章 模具的結(jié)構(gòu)零部件 第5章 三維制圖的動(dòng)畫(huà)設(shè)計(jì) 第1章課題研究的意義 1 1張緊輪的意義在早期的汽車(chē)發(fā)動(dòng)機(jī)系統(tǒng)中 每個(gè)附件都由在附件系統(tǒng)和曲軸之間運(yùn)行的單根皮帶驅(qū)動(dòng) 但由于皮帶技術(shù)的改進(jìn) 現(xiàn)在在大多數(shù)應(yīng)用中通常采用單根蛇形皮帶 因?yàn)樯咝纹П仨氂鼗氐剿械母郊?所以 通常它比以前使用的皮帶更長(zhǎng) 而且成本也大為節(jié)約 效率也高 但同時(shí) 蛇形帶正常工作時(shí)應(yīng)具有預(yù)定的張力將導(dǎo)致皮帶張力下降 可能造成皮帶打滑 因此 使用皮帶張緊輪保持適當(dāng)?shù)钠埩κ潜夭豢缮俚钠л喯挡考?1 2模具的意義模具是制造業(yè)的一種基本工藝裝備 它的作用是控制和限制材料 固態(tài)或液態(tài) 的流動(dòng) 使之形成所需要的形體 用模具制造零件以其效率高 產(chǎn)品質(zhì)量好 材料消耗低 生產(chǎn)成本低而廣泛應(yīng)用于制造業(yè)中 模具工業(yè)是國(guó)民經(jīng)濟(jì)的基礎(chǔ)工業(yè) 模具生產(chǎn)技術(shù)水平的高低是衡量一個(gè)國(guó)家產(chǎn)品制造水平高低的重要標(biāo)志 中國(guó)模具出口數(shù)量極少 但中國(guó)模具鉗工技術(shù)水平高 勞動(dòng)成本低 只要配備一些先進(jìn)的數(shù)控制模設(shè)備 提高模具加工質(zhì)量 縮短生產(chǎn)周期 溝通外貿(mào)渠道 模具出口將會(huì)有很大發(fā)展 對(duì)于促進(jìn)國(guó)民經(jīng)濟(jì)的發(fā)展有著特別重要的意義 第2章注塑模具的選材與結(jié)構(gòu) 2 1注塑模具的選材及特點(diǎn)表面淬火鋼最適合來(lái)制造模具 這種模具實(shí)用且不昂貴 其費(fèi)用所占比例小 通過(guò)表面淬火 碳化 和滲碳 模具可以形成像玻璃一樣硬的表面 同時(shí)形成柔韌 可延展的芯部結(jié)構(gòu) 堅(jiān)硬的表面為模具提供了耐磨損性 而其韌性芯部可以承受振動(dòng)以及交變載荷 注射成型可成型各種形狀的塑料制品 它的特點(diǎn)是成型周期短 能一次成型外形復(fù)雜 尺寸精密 帶有嵌件的制品 生產(chǎn)效率高 易于實(shí)現(xiàn)自動(dòng)化 應(yīng)用廣泛 2 2注塑模具的結(jié)構(gòu)組成1 成型部分 作為塑件的幾何邊界 包容塑件 完成塑件的結(jié)構(gòu)和尺寸等的成型 2 澆注系統(tǒng) 將注射機(jī)噴嘴過(guò)來(lái)的熔融塑料過(guò)渡到型腔中 起了輸送管道的作用 3 排氣系統(tǒng) 充模時(shí) 排除熔料進(jìn)入后模腔中多余的氣體或料流末端冷料等 4 溫度調(diào)節(jié)系統(tǒng) 控制模具的溫度 使熔融塑料在充滿模腔后迅速可靠定型 5 脫模機(jī)構(gòu) 把模腔中定型后的塑件從模具中脫分并取出的部件 6 模體 模架 是整個(gè)模具的主骨架 通過(guò)它將模具的各個(gè)部分有機(jī)地結(jié)合在一起 并在使用時(shí) 通過(guò)它與注射機(jī)聯(lián)系在一起 第3章模具的總體設(shè)計(jì)3 1分型面的確定根據(jù)分型面的選擇原則 1 便于塑件脫模 2 在開(kāi)模時(shí)盡量使塑件留在動(dòng)模 3 外觀不遭到損壞 4 有利于排氣和模具的加工方便 結(jié)合該產(chǎn)品的結(jié)構(gòu) 分型面確定在塑件的最大投影面積上 如圖 3 2型腔數(shù)目的確定注塑模的型腔數(shù)目 可以是一模一腔 也可以是一模多腔 在型腔數(shù)目的確定時(shí)主要考慮以下幾個(gè)有關(guān)因素 1 用的注射機(jī)的最大注射量確定型腔數(shù)2 注射機(jī)最大鎖模力確定型腔數(shù)3 塑件精度確定型腔數(shù)4 性能確定型腔數(shù)本設(shè)計(jì)的型腔的數(shù)量為 一出四 即一模四腔 塑件型腔位置對(duì)稱分布 3 3注射機(jī)的選擇一般工廠的塑膠部都擁有從小到大各種型號(hào)的注射機(jī) 中等型號(hào)的占大部分 小型和大型的只占一小部分 所以我們不必過(guò)多的考慮注射機(jī)型號(hào) 具體到這套模具 采用注射機(jī)型號(hào)為XS Z 30型3 4澆注系統(tǒng)的設(shè)計(jì)注塑模的澆注系統(tǒng)是指模具中從注塑機(jī)噴嘴開(kāi)始到型腔入口為止的塑料熔體的流動(dòng)通道 它由主流道 分流道 冷料穴和澆口組成 它向型腔中的傳質(zhì) 傳熱 傳壓情況決定著塑件的內(nèi)在和外表質(zhì)量 它的布置和安排影響著成型的難易程度和模具設(shè)計(jì)及加工的復(fù)雜程度 所以澆注系統(tǒng)是模具設(shè)計(jì)中的主要內(nèi)容之一 1 主流道的結(jié)構(gòu)設(shè)計(jì)為了便于凝料從主流道中拔出 主流道設(shè)計(jì)成圓錐形 其半錐角 內(nèi)壁必須光滑 表面粗糙度應(yīng)有Ra0 24 其小端直徑D2 D1 0 5 1 mm 常取4 8mm 主流道大端處應(yīng)呈圓角 其半徑常取r 1 3mm 以減小料流轉(zhuǎn)向時(shí)的阻力 主流道的一端常設(shè)計(jì)成帶凸臺(tái)的圓盤(pán) 高度為5 10mm 并與注射機(jī)固定模板的定位孔間隙配合 襯套的球形凹坑深度常取3 5mm R2 R1 1 2mm 在保證塑件成型良好的前提下 主流道的L盡量短 否則將會(huì)使主流道凝料增多 塑料損耗量大 且增加壓力損失 使塑料降溫過(guò)多而影響注射成型 2 澆口套由于主流道要與高溫塑料及噴嘴接觸和碰撞 所以模具的主流道部分通常設(shè)計(jì)成可拆卸的主流道襯套 簡(jiǎn)稱澆注套或澆口套 澆注套的主要作用是 a 使模具安裝時(shí)進(jìn)入定位孔方便而在注射機(jī)上很好的定位 與注射機(jī)噴嘴孔吻合 并能經(jīng)受塑料的反壓力 不致被推出模具 b 作為澆注系統(tǒng)的主流道 將料筒內(nèi)的塑料過(guò)渡到模具內(nèi) 保證料流有力暢通地達(dá)到型腔 在注射過(guò)程中不應(yīng)有塑料溢出 同時(shí)保證主流道凝料脫出方便 3 分流道的形狀及尺寸分流道是指主流道末端與澆口之間這一段塑料熔體流動(dòng)的通道 為了便于加工及凝料脫模 分流道大多設(shè)置在分型面上 分流道截面形狀一般為圓形 梯形 U形 半圓形及矩形等 由于圓形截面分流道是以分型面為界分成兩部分加工 加工困難 故生產(chǎn)實(shí)際中不經(jīng)常使用 正方形截面的分流道不易于凝料的推出 也比較少用 綜合考慮 由于半圓形截面分流道在分型面一側(cè)加工 加工容易 且塑料熔體的熱量散失及流動(dòng)阻力均不大 所以實(shí)際生產(chǎn)中常用梯形和半圓截面的分流道 半圓形截面加工工藝性好 且塑料熔體的熱量散失流動(dòng)阻力小 因此分流道設(shè)計(jì)成半圓形截面 便于分流道和主流道凝料脫模 取干道直徑為6mm 其與干道垂直的分澆道直徑為3mm 第4章模具的結(jié)構(gòu)零部件注塑模具中除了型腔模以外一般還包括定模型板 定模固定板 動(dòng)模墊板 墊塊 動(dòng)模固定板 頂出固定板 頂出墊板 導(dǎo)柱 導(dǎo)套 等組成 一般定模型板與定模固定板要用銷(xiāo)釘定位 動(dòng)模固定板與動(dòng)模墊板要用銷(xiāo)釘定位 模具上所用的螺釘盡量采用內(nèi)六角螺釘 模具外表面應(yīng)光潔 加涂防銹漆防銹 4 1設(shè)計(jì)導(dǎo)柱和導(dǎo)套需要注意的事項(xiàng) 1 合理布置導(dǎo)柱的位置 導(dǎo)柱中心至模具外緣至少應(yīng)有一個(gè)導(dǎo)柱直徑的厚度 導(dǎo)柱不應(yīng)設(shè)在矩形模具四角的危險(xiǎn)斷面上 通常設(shè)在長(zhǎng)邊離中心線的1 3處最為安全 導(dǎo)柱布置方式常采用等徑不對(duì)稱布置 或不等直徑對(duì)稱布置 2 導(dǎo)柱工作部分長(zhǎng)度應(yīng)比型芯端面高出6 8mm 以確保其導(dǎo)向與引導(dǎo)作用 3 導(dǎo)柱工作部分的配合精度采用H7 f7 低精度時(shí)可采取更低的配合要求 導(dǎo)柱固定部分配合精度采用H7 k6 導(dǎo)套外徑的配合精度采取H7 k6 配合長(zhǎng)度通常取配合直徑的1 5 2倍 其余部分可以擴(kuò)孔 以減小摩擦 降低加工難度 4 導(dǎo)柱可以設(shè)置在動(dòng)模或定模 設(shè)在動(dòng)模一邊可以保護(hù)型芯不受損壞 設(shè)在定模一邊有利于塑件脫模 4 2導(dǎo)柱的設(shè)計(jì)柱孔可以直接加工在模板 這種結(jié)構(gòu)加工簡(jiǎn)單 但是未淬火的導(dǎo)向孔耐磨性差 用于塑件批量小的模具 導(dǎo)柱的長(zhǎng)度必須比凹模端面的高度高出2mm以上 以免分模后上模沒(méi)有完全脫離成型件而擦傷凸模成型表面 脫離后可按任何利于操作的位置放在工作臺(tái)上 為了使導(dǎo)柱能順利地進(jìn)入導(dǎo)向孔 導(dǎo)柱的端部有一定倒角 也可做成圓錐形或球形 導(dǎo)柱滑動(dòng)部分按H7 f6配合 導(dǎo)柱工作部分的表面粗糙度可為Ra0 4 導(dǎo)柱應(yīng)具有堅(jiān)硬而耐磨的表面 堅(jiān)韌而不易折斷的內(nèi)芯 因此可采用碳素工具鋼 T8 經(jīng)淬火處理使其硬度提高 硬度為HRC55以上 或者采用20號(hào)鋼滲碳淬火 其表面硬度一般HRC56 60 但其硬度最好比導(dǎo)柱低相差5度左右 4 3導(dǎo)套的設(shè)計(jì)采用臺(tái)階式導(dǎo)套 檢修更換方便 能保證導(dǎo)向精度 為使導(dǎo)柱比較順利地進(jìn)入導(dǎo)套孔 在導(dǎo)套孔的前端應(yīng)有倒角 導(dǎo)套孔的滑動(dòng)部分按H8 f8間隙配合 表面粗糙度為Ra0 4 導(dǎo)套的材料硬度應(yīng)低于導(dǎo)柱的硬度 這樣可以改善摩擦 以防止導(dǎo)柱或?qū)桌?導(dǎo)柱及導(dǎo)套的結(jié)構(gòu)形式及裝配關(guān)系 如圖 第5章 三維制圖的動(dòng)畫(huà)設(shè)計(jì) 5 1模具裝配后的三維圖形 如圖 5 2動(dòng)畫(huà)演示 結(jié)論通過(guò)這次動(dòng)畫(huà)仿真設(shè)計(jì) 我對(duì)模具成型的概念有了最初的了解 雖然在很多細(xì)節(jié)方面上我沒(méi)有達(dá)到專業(yè)的水準(zhǔn) 但是這次設(shè)計(jì)讓我增長(zhǎng)了很多有關(guān)動(dòng)態(tài)仿真所需要的知識(shí) 體會(huì)到了大體的制作和細(xì)節(jié)制作的區(qū)別 領(lǐng)會(huì)了proe對(duì)概念的嚴(yán)格周密的判斷 并更進(jìn)一步了解了該軟件的強(qiáng)大功能所在 盡管專業(yè)proe課程需要一年多 相比來(lái)講我還是個(gè)初學(xué)者 但是我感覺(jué)到未來(lái)的軟件模擬工業(yè)化的趨勢(shì)是必然的 無(wú)法阻擋的 人類(lèi)的工業(yè)化飛速發(fā)展也依賴于軟件對(duì)可能性的模擬少走了很多彎路 現(xiàn)在才剛剛開(kāi)始 更有很多想像不到的實(shí)物在令人期待中 致謝 經(jīng)過(guò)幾個(gè)月的忙碌和學(xué)習(xí) 此次畢業(yè)論文的寫(xiě)作已經(jīng)接近了尾聲 由于我是一名本科生 在寫(xiě)畢業(yè)論文是由于經(jīng)驗(yàn)匱乏 難免有很多考慮不周全的地方 如果沒(méi)有指導(dǎo)老師的督促和指導(dǎo) 想要完成這個(gè)論文是難以想象的 所以首先要感謝的的畢設(shè)指導(dǎo)老師 敖曉春老師 敖老師平時(shí)工作一直很繁忙 但是在寫(xiě)論文與制圖的每個(gè)階段 從選擇論文題目到查閱資料 論文提綱的確定 裝配圖及零件圖的多次修改 后期論文的格式調(diào)整等各個(gè)階段中都給與我悉心的指導(dǎo) 在此過(guò)程中 除了敬佩敖老師的專業(yè)水平外 他的嚴(yán)謹(jǐn)治學(xué)和科學(xué)研究精神也是我永遠(yuǎn)學(xué)習(xí)的榜樣 并且這將會(huì)積極地影響我今后的學(xué)習(xí)和工作 最后我由衷感謝學(xué)習(xí)期間曾經(jīng)關(guān)心和幫助過(guò)我的老師 家人 同學(xué)和朋友們
畢業(yè)設(shè)計(jì)(論文)
開(kāi) 題 報(bào) 告
學(xué)生姓名:
學(xué) 號(hào):
專 業(yè):
班 級(jí):
指導(dǎo)教師:
課題題目及來(lái)源
題目:同步帶張緊輪注塑模具設(shè)計(jì);
來(lái)源:生產(chǎn)實(shí)踐
一、課題研究的意義和國(guó)內(nèi)外研究現(xiàn)狀
1.課題研究的意義
在現(xiàn)代汽車(chē)發(fā)動(dòng)機(jī)中,不僅廣泛使用帶傳動(dòng)驅(qū)動(dòng)發(fā)電機(jī)、空調(diào)壓縮機(jī)、風(fēng)扇等發(fā)動(dòng)機(jī)附件,連需要和曲軸保持嚴(yán)格相位關(guān)系的凸輪軸也采用帶輪傳動(dòng)。皮帶傳動(dòng)的附件系統(tǒng)通常安裝在發(fā)動(dòng)機(jī)的前表面上,每個(gè)附件都安裝在軸上的皮帶輪上,用于接收來(lái)自某形式的皮帶傳動(dòng)的動(dòng)力。在早期的系統(tǒng)中,每個(gè)附件都由在附件系統(tǒng)和曲軸之間運(yùn)行的單根皮帶驅(qū)動(dòng)。但由于皮帶技術(shù)的改進(jìn),現(xiàn)在在大多數(shù)應(yīng)用中通常采用單根蛇形皮帶。在各附屬部件之間迂回的單根蛇形皮帶驅(qū)動(dòng)所述附件。因?yàn)樯咝纹П仨氂鼗氐剿械母郊?,所以,通常它比以前使用的皮帶更長(zhǎng)。單根蛇形帶的使用使得發(fā)動(dòng)機(jī)系同步置比以前更加緊湊,而且成本也大為節(jié)約,效率也高。但同時(shí),蛇形帶正常工作時(shí)應(yīng)具有預(yù)定的張力,當(dāng)運(yùn)轉(zhuǎn)時(shí),皮帶稍稍拉長(zhǎng)而超過(guò)其長(zhǎng)度,這將導(dǎo)致皮帶張力下降,可能造成皮帶打滑,而用單根帶傳遞時(shí),可能會(huì)因?yàn)閱胃鶐У拈L(zhǎng)度更長(zhǎng)而造成更嚴(yán)重的皮帶打滑。因此,在皮帶工作使用過(guò)程中,使用皮帶張緊輪保持適當(dāng)?shù)钠埩κ潜夭豢缮俚钠л喯挡考?
本課題的研究將涉及一些二維和三維的軟件的應(yīng)用,如AUTO CAD等,以及相關(guān)軟件的應(yīng)用。這將會(huì)使我運(yùn)用這些軟件的能力得到提升。同時(shí)本次畢業(yè)設(shè)計(jì)還涉及到模具注塑模的相關(guān)知識(shí)。這對(duì)我來(lái)說(shuō)是一個(gè)新領(lǐng)域,所以通過(guò)這次畢業(yè)設(shè)計(jì)對(duì)我自學(xué)能力的培養(yǎng)是一個(gè)很好的機(jī)會(huì)。因此通過(guò)本次學(xué)習(xí)將對(duì)我進(jìn)一步鞏固所學(xué)知識(shí)及靈活應(yīng)用所學(xué)知識(shí)來(lái)解決實(shí)際問(wèn)題有著深遠(yuǎn)的意義。
另外,通過(guò)本次畢業(yè)設(shè)計(jì),將使我掌握寫(xiě)論文的一般步驟及方法。同時(shí)也提高了我如何快速而有效的查閱相關(guān)信息的方法,不僅鍛煉了我在遇到困難時(shí)冷靜分析。獨(dú)立思考及解決問(wèn)題的能力,而且培養(yǎng)了我和同學(xué)相互討論,相互學(xué)習(xí)的習(xí)慣。
2.國(guó)內(nèi)外研究現(xiàn)狀
1)國(guó)內(nèi)研究現(xiàn)狀及發(fā)展
80年代以來(lái),在國(guó)家產(chǎn)業(yè)政策和與之配套的一系列國(guó)家經(jīng)濟(jì)政策的支持和引導(dǎo)下,我國(guó)模具工業(yè)發(fā)展迅速,年均增速均為13%,在未來(lái)的模具市場(chǎng)中,塑料管件在模具總量中的比例還將逐步提高。
經(jīng)過(guò)半個(gè)世紀(jì)的發(fā)展,模具水平有了較大提高。高水平的企業(yè)越來(lái)越多!由于他的抗腐蝕、廉價(jià)等優(yōu)秀品質(zhì),被應(yīng)用于我國(guó)現(xiàn)代化建設(shè)的各個(gè)領(lǐng)域。精密塑料模具方面,已能生產(chǎn)醫(yī)療塑料件模具、多型腔小模數(shù)齒輪模具及塑封模具。所生產(chǎn)的這類(lèi)塑件的尺寸精度、同軸度、跳動(dòng)等要求都達(dá)到了國(guó)外同類(lèi)產(chǎn)品的水平。交貨期較以前縮短,但和國(guó)外相比仍有較大差距。
成型工藝方面,多材質(zhì)塑料成型模、高效多色注射模、鑲件互換結(jié)構(gòu)和抽芯脫模機(jī)構(gòu)的創(chuàng)新方面也取得較大進(jìn)展。氣體輔助注射成型技術(shù)的使用更趨成熟,如青島海信模具有限公司、采用內(nèi)熱式或外熱式熱流道裝置,少數(shù)單位采用具有世界先進(jìn)水平的高難度針閥式熱流道模具。但總體上熱流道的采用率達(dá)不到10%,與國(guó)外的50%~80%相比,差距較大。
在制造技術(shù)方面,CAD/CAM/CAE技術(shù)的應(yīng)用水平上了一個(gè)新臺(tái)階,陸續(xù)引進(jìn)了相當(dāng)數(shù)量的CAD/CAM系統(tǒng),如美國(guó)EDS的UGⅡ、美國(guó)Parametric Technology公司的Pro/E軟件等等。這些系統(tǒng)和軟件的引進(jìn),實(shí)現(xiàn)了CAD/CAM的集成,并能支持CAE技術(shù)對(duì)成型過(guò)程,取得了一定的技術(shù)經(jīng)濟(jì)效益,促進(jìn)和推動(dòng)了我國(guó)模具CAD/CAM技術(shù)的發(fā)展。
2)國(guó)外研究現(xiàn)狀及發(fā)展
我國(guó)模具生產(chǎn)廠中多數(shù)是自產(chǎn)自配的工模具車(chē)間(分廠),自產(chǎn)自配比例高達(dá)60%左右,而國(guó)外模具超過(guò)70%屬商品模具。專業(yè)模具廠大多是“大而全”、“小而全”的組織形式,而國(guó)外大多是“小而?!?、“小而精”。國(guó)內(nèi)大型、精密、復(fù)雜、長(zhǎng)壽命的模具占總量比例不足30%,而國(guó)外在50%以上。2004年,我國(guó)模具進(jìn)出口之比為3.7﹕1,進(jìn)出口相抵后的凈進(jìn)口額達(dá)13.2億美元,為世界模具凈進(jìn)口量最大的國(guó)家。
注塑成型是最大量生產(chǎn)塑料制品的一種成型方法,二十多年來(lái),國(guó)外的注塑模CAD技術(shù)發(fā)展相當(dāng)迅速。70年代已開(kāi)始應(yīng)用計(jì)算機(jī)對(duì)熔融塑料在圓形、管形和長(zhǎng)方形型腔內(nèi)的流動(dòng)情況進(jìn)行分析。80年代初,人們成功采用有限元法分析三維型腔的流動(dòng)過(guò)程,使設(shè)計(jì)人員可以依據(jù)理論分析并結(jié)合自身的經(jīng)驗(yàn),在模具制造前對(duì)設(shè)計(jì)方案進(jìn)行評(píng)價(jià)和修改,以減少試模時(shí)間,提高模具質(zhì)量。近十多年來(lái),注塑模CAD技術(shù)在不斷進(jìn)行理論和試驗(yàn)研究的同時(shí),十分注意向?qū)嵱没A段發(fā)展,一些商品軟件逐步推出,并在推廣和實(shí)際應(yīng)用中不斷改進(jìn)。
二、課題研究的主要內(nèi)容和方法及研究過(guò)程中的問(wèn)題與解決辦法
1.研究的主要內(nèi)容
完成張緊輪注塑模具的結(jié)構(gòu)設(shè)計(jì),利用Pro/E系統(tǒng)通過(guò)它在計(jì)算機(jī)上模擬實(shí)際成型過(guò)程,預(yù)測(cè)可能出現(xiàn)的缺陷,如產(chǎn)品結(jié)構(gòu)是否合理、怎樣選擇合適的注塑材料、確定合適的澆口位置,預(yù)測(cè)“氣泡及熔接痕”位置、壓力和溫度分布、制品的填充質(zhì)量、預(yù)測(cè)成本等,實(shí)現(xiàn)對(duì)模具CAD的優(yōu)化設(shè)計(jì)。
2.研究?jī)?nèi)容的方法
綜合運(yùn)用所學(xué)專業(yè)基礎(chǔ)知識(shí),設(shè)計(jì)張緊輪的注塑模具。該題目是實(shí)際應(yīng)用題目,通過(guò)畢業(yè)設(shè)計(jì)過(guò)程使學(xué)生得到較全面的基本工程訓(xùn)練。
a) 了解當(dāng)前張緊輪應(yīng)用情況及其發(fā)展方向;
b) 綜合運(yùn)用所學(xué)專業(yè)基礎(chǔ)知識(shí),完成張緊輪注塑模具的部分設(shè)計(jì);
c) 通過(guò)設(shè)計(jì)提高工作實(shí)踐能力,為適應(yīng)社會(huì)對(duì)設(shè)計(jì)人才的需求打下良好基礎(chǔ)。
3. 研究的主要問(wèn)題及解決辦法
張緊輪在實(shí)際使用過(guò)程中為了保持適當(dāng)?shù)钠埦o力,避免皮帶打滑.補(bǔ)償皮帶磨損和老化后引起的伸長(zhǎng)量需要一定的扭矩。當(dāng)皮帶張緊輪運(yùn)轉(zhuǎn)時(shí),運(yùn)動(dòng)的皮帶可能在張緊輪中激起振動(dòng),會(huì)導(dǎo)致皮帶和張緊輪過(guò)早磨損。為此,對(duì)張緊輪添加阻尼機(jī)構(gòu)。但因影響張緊輪扭矩和阻尼的參數(shù)較多,各參數(shù)的影響也不盡相同,所以張緊輪各部件與扭矩和阻尼的關(guān)系非常復(fù)雜。扭矩變化直接影響阻尼的變化,而且是阻尼的主要影響因素,影響扭矩的主要因子是扭簧的參數(shù)。適當(dāng)減小扭簧中徑,可以提高張緊輪的阻尼值。
在注塑模具方面,也存在著一些缺陷。如:成品不完整,制品收縮,成品粘膜,毛頭、飛邊等??梢砸罁?jù)其特點(diǎn)進(jìn)行解決,可提高射膠量,提高容壓,加快射速,降低料溫,適當(dāng)延長(zhǎng)冷卻時(shí)間等。
參考文獻(xiàn):
[1] 楊玉萍,季彬彬. 同步帶傳動(dòng)中張緊輪安裝位置的優(yōu)化設(shè)計(jì). 南通大學(xué)學(xué)報(bào). 2010
[2] 蔣繼紅,虞賢穎,王效岳. 塑料成型模具典型結(jié)構(gòu)圖冊(cè) . 2006
[3] 田力,劉紅宇,王文. 影響張緊輪扭矩和阻尼的結(jié)構(gòu)參數(shù)優(yōu)化設(shè)計(jì). 軸承. 2008
[4] 許發(fā)樾. 模具標(biāo)準(zhǔn)化及其生產(chǎn)技術(shù). 現(xiàn)代制造. 2004
[5] 李建國(guó). 注射模成型零件工作尺寸計(jì)算方法分析. 模具工業(yè). 2003
[6] 王明宇. 非標(biāo)準(zhǔn)零部件圖庫(kù)系統(tǒng)的參數(shù)化設(shè)計(jì). 自動(dòng)化技術(shù)與應(yīng)用. 2003
[7] 周凡,殷國(guó)富. 面向CAPP的工藝資源管理系統(tǒng)研究. 現(xiàn)代制造工程. 2003
[8] 程貴秀,葉延科. 企業(yè)信息分類(lèi)與編碼問(wèn)題的研究. 電腦開(kāi)發(fā)與應(yīng)用. 2003
[9] 沈建新,廖文和. 模具CAPP系統(tǒng)開(kāi)發(fā)的關(guān)鍵技術(shù)研究. 模具工業(yè). 2003
[10] 楊寧,婁臻亮. 模具計(jì)算機(jī)輔助工藝設(shè)計(jì)系統(tǒng)的研制與開(kāi)發(fā). 上海交通 大學(xué)學(xué)報(bào). 2003
指導(dǎo)教師審查意見(jiàn):
指導(dǎo)教師簽字:
2014 年 月 日
指導(dǎo)委員會(huì)意見(jiàn)審核意見(jiàn):
組長(zhǎng)簽字:
2014 年 月 日
附錄A英文翻譯
Single gate optimization for plastic injection mold
Abstract: This paper deals with a methodology for single gate location optimization for plastic injection mold. The objective of the gate optimization is to minimize the warpage of injection molded parts, because warpage is a crucial quality issue for most injection molded parts while it is influenced greatly by the gate location. Feature warpage is defined as the ratio of maximum displacement on the feature surface to the projected length of the feature surface to describe part warpage. The optimization is combined with the numerical simulation technology to find the optimal gate location, in which the simulated annealing algorithm is used to search for the optimum. Finally, an example is discussed in the paper and it can be concluded that the proposed method is effective.
INTRODUCTION
Plastic injection molding is a widely used, complex but highly efficient technique for producing a large variety of plastic products, particularly those with high production requirement, tight tolerance, and complex shapes. The quality of injection molded parts is a function of plastic material, part geometry, mold structure and process conditions. The most important part of an injection mold basically is the following three sets of components: cavities, gates and runners, and cooling system.
Lam and Seow (2000) and Jin and Lam (2002) achieved cavity balancing by varying the wall thickness of the part. A balance filling process within the cavity gives an evenly distributed pressure and temperature which can drastically reduce the warpage of the part. But the cavity balancing is only one of the important influencing factors of part qualities. Especially, the part has its functional requirements, and its thicknesses should not be varied usually.
From the pointview of the injection mold design, a gate is characterized by its size and location, and the runner system by the size and layout. The gate size and runner layout are usually determined as constants. Relatively, gate locations and runner sizes are more flexible, which can be varied to influence the quality of the part. As a result, they are often the design parameters for optimization.
Lee and Kim (1996a) optimized the sizes of runners and gates to balance runner system for multiple injection cavities. The runner balancing was described as the differences of entrance pressures for a multi-cavity mold with identical cavities, and as differences of pressures at the end of the melt flow path in each cavity for a family mold with different cavity volumes and geometries. The methodology has shown uniform pressure distributions among the cavities during the entire molding cycle of multiple cavities mold.
Zhai et al.(2005a) presented the two gate location optimization of one molding cavity by an efficient search method based on pressure gradient (PGSS), and subsequently positioned weld lines to the desired locations by varying runner sizes for multi-gate parts (Zhai et al., 2006). As large-volume part, multiple gates are needed to shorten the maxiinjection pressure. The method is promising for design of gates and runners for a single cavity with multiple gates.
Many of injection molded parts are produced with one gate, whether in single cavity mold or in multiple cavities mold. Therefore, the gate location of a single gate is the most common design parameter for optimization. A shape analysis approach was presented by Courbebaisse and Garcia (2002), by which the best gate location of injection molding was estimated. Subsequently, they developed this methodology further and applied it to single gate location optimization of an L shape example (Courbebaisse, 2005). It is easy to use and not time-consuming, while it only serves the turning of simple flat parts with uniform thickness.
Pandelidis and Zou (1990) presented the optimization of gate location, by indirect quality measures relevant to warpage and material degradation, which is represented as weighted sum of a temperature differential term, an over-pack term, and a frictional overheating term. Warpage is influenced by the above factors, but the relationship between them is not clear. Therefore, the optimization effect is restricted by the determination of the weighting factors.
Lee and Kim (1996b) developed an automated selection method of gate location, in which a set of initial gate locations were proposed by a designer and then the optimal gate was located by the adjacent node evaluation method. The conclusion to a great extent depends much on the human designer’s intuition, because the first step of the method is based on the designer’s proposition. So the result is to a large extent limited to the designer’s experience.
Lam and Jin (2001) developed a gate location optimization method based on the minimization of the Standard Deviation of Flow Path Length (SD[L]) and Standard Deviation of Filling Time (SD[T]) during the molding filling process. Subsequently, Shen et al.(2004a; 2004b) optimized the gate location design by minimizing the weighted sum of filling pressure, filling time difference between different flow paths, temperature difference, and over-pack percentage. Zhai et al.(2005b) investigated optimal gate location with evaluation criteria of injection pressure at the end of filling. These researchers presented the objective functions as performances of injection molding filling operation, which are correlated with product qualities. But the correlation between the performances and qualities is very complicated and no clear relationship has been observed between them yet. It is also difficult to select appropriate weighting factors for each term.
A new objective function is presented here to evaluate the warpage of injection molded parts to optimize gate location. To measure part quality directly, this investigation defines feature warpage to evaluate part warpage, which is evaluated from the “flow plus warpage” simulation outputs of Moldflow Plastics Insight (MPI) software. The objective function is minimized to achieve minimum deformation in gate location optimization. Simulated annealing algorithm is employed to search for the optimal gate location. An example is given to illustrate the effectivity of the proposed optimization procedure.
QUALITY MEASURES: FEATURE WARPGE
Definition of feature warpage
To apply optimization theory to the gate design, quality measures of the part must be specified in the first instance. The term “quality” may be referred to many product properties, such as mechanical, thermal, electrical, optical, ergonomical or geometrical properties. There are two types of part quality measures: direct and indirect. A model that predicts the properties from numerical simulation results would be characterized as a direct quality measure. In contrast, an indirect measure of part quality is correlated with target quality, but it cannot provide a direct estimate of that quality.
For warpage, the indirect quality measures in related works are one of performances of injection molding flowing behavior or weighted sum of those. The performances are presented as filling time differential along different flow paths, temperature differential, over-pack percentage, and so on. It is obvious that warpage is influenced by these performances, but the relationship between warpage and these performances is not clear and the determination of these weighting factors is rather difficult. Therefore, the optimization with the above objective function probably will not minimize part warpage even with perfect optimization technique. Sometimes, improper weighting factors will result in absolutely wrong results.
Some statistical quantities calculated from the nodal displacements were characterized as direct quality measures to achieve minimum deformation in related optimization studies. The statistical quantities are usually a maximum nodal displacement, an average of top 10 percentile nodal displacements, and an overall average nodal displacement (Lee and Kim, 1995; 1996b). These nodal displacements are easy to obtain from the simulation results, the statistical val-
ues, to some extents, representing the deformation. But the statistical displacement cannot effectively describe the deformation of the injection molded part.
In industry, designers and manufacturers usually pay more attention to the degree of part warpage on some specific features than the whole deformation of the injection molded parts. In this study, feature warpage is defined to describe the deformation of the injection parts. The feature warpage is the ratio of the maximum displacement of the feature surface to the projected length of the feature surface (Fig.1):
where γ is the feature warpage, h is the maximum displacement on the feature surface deviating from the reference platform, and L is the projected length of the feature surface on a reference direction paralleling the reference platform.
For complicated features (only plane feature iscussed here), the feature warpage is usually separated into two constituents on the reference plane, which are represented on a 2D coordinate system:
where γx, γy are the constituent feature warpages in the X, Y direction, and Lx, Ly are the projected lengths of feature surface on X, Y component.
Evaluation of feature warpage
After the determination of target feature combined with corresponding reference plane and projection direction, the value of L can be calculated immediately from the part with the calculating method of analytic geometry (Fig.2). L is a constant for any part on the specified feature surface and projected direction. But the evaluation of h is more complicated than that of L.
Simulation of injection molding process is a common technique to forecast the quality of part design, mold design and process settings. The results of warpage simulation are expressed as the nodal deflections on X, Y, Z component (Wx, Wy, Wz), and the odal displacement W. W is the vector length of vector sum of Wx·i, Wy·j, and Wz·k, where i, j, k are the unit vectors on X, Y, Z component. The h is the maximum displacement of the nodes on the feature surface, which is correlated with the normal orientation of the reference plane, and can be derived from the results of warpage simulation.
To calculate h, the deflection of ith node is evaluated firstly as follows:
where Wi is the deflection in the normal direction of the reference plane of ith node; Wix, Wiy, Wiz are the deflections on X, Y, Z component of ith node; α, β, γ are the angles of normal vector of the reference; A and B are the terminal nodes of the feature to projecting direction (Fig.2); WA and WB are the deflections of nodes A and B:
where WAx, WAy, WAz are the deflections on X, Y, Z component of node A; WBx, WBy and WBz are the deflections on X, Y, Z component of node B; ωiA and ωiB are the weighting factors of the terminal node deflections calculated as follows:
where LiA is the projector distance between ith node and node A. Ultimately, h is the maximum of the absolute value of Wi:
In industry, the inspection of the warpage is carried out with the help of a feeler gauge, while the measured part should be placed on a reference platform. The value of h is the maximum numerical reading of the space between the measured part surface and the reference platform.
GATE LOCATION OPTIMIZATION PROBLEM RMATION
The quality term “warpage” means the permanent deformation of the part, which is not caused by an applied load. It is caused by differential shrinkage throughout the part, due to the imbalance of polymer flow, packing, cooling, and crystallization.
The placement of a gate in an injection mold is one of the most important variables of the total mold design. The quality of the molded part is greatly affected by the gate location, because it influences the manner that the plastic flows into the mold cavity. Therefore, different gate locations introduce inhomogeneity in orientation, density, pressure, and temperature distribution, accordingly introducing different value and distribution of warpage. Therefore, gate location is a valuable design variable to minimize the injection molded part warpage. Because the correlation between gate location and warpage distribution is to a large extent independent of the melt and mold temperature, it is assumed that the molding conditions are kept constant in this investigation. The injection molded part warpage is quantified by the feature warpage which was discussed in the previoussection.
The single gate location optimization can thus be formulated as follows:
where γ is the feature warpage; p is the injection pressure at the gate position; p0 is the allowable injection pressure of injection molding machine or the allowable injection pressure specified by the designer or manufacturer; X is the coordinate vector of the candidate gate locations; Xi is the node on the finite element mesh model of the part for injection molding process simulation; N is the total number of nodes.
In the finite element mesh model of the part, every node is a possible candidate for a gate. Therefore, the total number of the possible gate location Np is a function of the total number of nodes N and the total number of gate locations to be optimized n:
In this study, only the single-gate location problem is investigated.
SIMULATED ANNEALING ALGORITHM
The simulated annealing algorithm is one of the most powerful and popular meta-heuristics to solve optimization problems because of the provision of good global solutions to real-world problems. The algorithm is based upon that of Metropolis et al. (1953), which was originally proposed as a means to find an equilibrium configuration of a collection of atoms at a given temperature. The connection between this algorithm and mathematical minimization was first noted by Pincus (1970), but it was Kirkpatrick et al.(1983) who proposed that it formed the basis of an optimization technique for combinational (and other) problems.
To apply the simulated annealing method to op timization problems, the objective function f is used as an energy function E. Instead of finding a lowenergy configuration, the problem becomes to seek an approximate global optimal solution. The configurations of the values of design variables are substituted for the energy configurations of the body, and the control parameter for the process is substituted for temperature. A random number generator is used as a way of generating new values for the design variables. It is obvious that this algorithm just takes the mini-
mization problems into account. Hence, while performing a maximization problem the objective function is multiplied by (?1) to obtain a capable form.
The major advantage of simulated annealing algorithm over other methods is the ability to avoid being trapped at local minima. This algorithm employs a random search, which not only accepts changes that decrease objective function f, but also accepts some changes that increase it. The latter are accepted with a probability p
where ?f is the increase of f, k is Boltzman’s constant, and T is a control parameter which by analogy with the original application is known as the system “temperature” irrespective of the objective function involved.
In the case of gate location optimization, the implementation of this algorithm is illustrated in Fig.3, and this algorithm is detailed as follows:
(1) SA algorithm starts from an initial gate location Xold with an assigned value Tk of the “temperature” parameter T (the “temperature” counter k is initially set to zero). Proper control parameter c (0
收藏