購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預(yù)覽,,資料完整,充值下載就能得到。。?!咀ⅰ浚篸wg后綴為CAD圖,doc,docx為WORD文檔,有不明白之處,可咨詢QQ:1304139763
徐州工程學(xué)院 畢 業(yè) 設(shè) 計 論 文 任 務(wù) 書 機(jī)電工程學(xué)院 學(xué)院 機(jī)械設(shè)計制造及其自動化 專業(yè) 設(shè)計 論文 題目 臥式雙面十軸組合鉆床右主軸箱及 中間底座設(shè)計 學(xué) 生 姓 名 倪佳麗 班 級 04 機(jī)本 4 起 止 日 期 2008 2 25 2008 6 2 指 導(dǎo) 教 師 韓翔 教 研 室 主 任 發(fā)任務(wù)書日期 2008 年 2 月 25 日 1 畢業(yè)設(shè)計的背景 在實際生產(chǎn)活動中 加工效率是否高 加工質(zhì)量是否穩(wěn)定是兩個重要的指標(biāo) 組 合機(jī)床的出現(xiàn)在一定程度上同時滿足了這兩個要求 組合鉆床是指以系列化 標(biāo)準(zhǔn)化的通用部件為基礎(chǔ) 再配以少量專用部件而組 成 的專用機(jī)床 這種機(jī)床既具有一般專用機(jī)床結(jié)構(gòu)簡單 生產(chǎn)率及自動化程度高 易 保 證加工精度的特點 又能適應(yīng)工件的變化 具有一定的重新調(diào)整 重新組合的能力 組和鉆床可以對工件采用多刀 多面及多工位加工 它特別適于在大批 大量生產(chǎn) 中 對一種或幾種類似零件的一道或幾道工序進(jìn)行加工 它具有設(shè)計制造周期短 成本 低 加工效率高 加工質(zhì)量穩(wěn)定 可減輕工人的勞動強(qiáng)度等優(yōu)點 在機(jī)械制造中 裝 備新企業(yè)或者對老企業(yè)進(jìn)行技術(shù)改造 采用組合機(jī)床及其自動線 是發(fā)展生產(chǎn) 提 高 質(zhì)量的有效途徑之一 近年來 組合機(jī)床的產(chǎn)量迅速增長 質(zhì)量不斷提高 新產(chǎn)品不斷涌現(xiàn) 組合機(jī) 床 在制造工業(yè)中正獲得越來越廣泛的應(yīng)用 2 畢業(yè)設(shè)計 論文 的內(nèi)容和要求 根據(jù)工作量及設(shè)計時間要求 本設(shè)計的主要工作內(nèi)容為 組合鉆床 的 右主軸箱及中間底座 該組合鉆床用于加工 汽車制動室支架 要求 1 查詢相關(guān)文獻(xiàn) 收集資料 2 右主軸箱設(shè)計并繪圖 3 中間底座的設(shè)計 4 撰寫畢業(yè)設(shè)計說明書 5 翻譯約 5000 單詞量的相關(guān)英文文獻(xiàn) 3 主要參考文獻(xiàn) 1 組合機(jī)床設(shè)計簡明手冊 2 組合機(jī)床圖冊 3 組合機(jī)床及其調(diào)整與使用 4 新編機(jī)械設(shè)計手冊 4 畢業(yè)設(shè)計 論文 進(jìn)度計劃 以周為單位 起 止 日 期 工 作 內(nèi) 容 備 注 第 1 2 周 第 3 4 周 第 5 6 周 第 7 8 周 第 9 10 周 第 11 12 周 第 13 14 周 第 15 16 周 收集資料 查閱相關(guān)文獻(xiàn) 寫任務(wù)書 開題報告 分析被加工零件 并畫零件圖 對右主軸箱進(jìn)行分析 計算 確定主軸箱相關(guān)尺 寸 右主軸箱傳動設(shè)計 確定各主軸的相關(guān)數(shù)據(jù) 右主軸箱總體圖的繪制 對中間底座進(jìn)行分析 中間底座零件圖的繪制 撰寫畢業(yè)設(shè)計說明書 翻譯約 5000 單詞量的相關(guān)英文文獻(xiàn) 完善所有圖 和說明書 并仔細(xì)檢查及時改正 教研室審查意見 室主任 年 月 日 學(xué)院審查意見 教學(xué)院長 年 月 日 徐州工程學(xué)院 畢業(yè)設(shè)計 論文 開題報 告 課 題 名 稱 臥式雙面十軸組合鉆床右主軸箱及 中間底座設(shè)計 學(xué) 生 姓 名 倪佳麗 學(xué)號 20040601404 指 導(dǎo) 教 師 韓翔 職稱 講師 所 在 學(xué) 院 機(jī)電工程學(xué)院 專 業(yè) 名 稱 機(jī)械設(shè)計制造及其自動化 徐州工程學(xué)院 2008 年 3 月 4 日 說 明 1 根據(jù) 徐州工程學(xué)院畢業(yè)設(shè)計 論文 管理規(guī)定 學(xué)生必須 撰寫 畢業(yè)設(shè)計 論文 開題報告 由指導(dǎo)教師簽署意見 教研室 審查 學(xué)院教學(xué)院長批準(zhǔn)后實施 2 開題報告是畢業(yè)設(shè)計 論文 答辯委員會對學(xué)生答辯資格審 查的依據(jù)材料之一 學(xué)生應(yīng)當(dāng)在畢業(yè)設(shè)計 論文 工作前期內(nèi)完成 開題報告不合格者不得參加答辯 3 畢業(yè)設(shè)計開題報告各項內(nèi)容要實事求是 逐條認(rèn)真填寫 其 中的文字表達(dá)要明確 嚴(yán)謹(jǐn) 語言通順 外來語要同時用原文和中 文表達(dá) 第一次出現(xiàn)縮寫詞 須注出全稱 4 本報告中 由學(xué)生本人撰寫的對課題和研究工作的分析及描 述 沒有經(jīng)過整理歸納 缺乏個人見解僅僅從網(wǎng)上下載材料拼湊而 成的開題報告按不合格論 5 課題類型填 工程設(shè)計類 理論研究類 應(yīng)用 實驗 研究 類 軟件設(shè)計類 其它 6 課題來源填 教師科研 社會生產(chǎn)實踐 教學(xué) 其它 課題 名稱 臥式雙面十軸組合鉆床右主軸箱及中間底座設(shè)計 課題來源 工程實際 課題類型 設(shè)計制造類 選題的背 景及意義 在實際生產(chǎn)活動中 加工效率是否高 加工質(zhì)量是否穩(wěn)定是兩個 重要的指標(biāo) 組合機(jī)床的出現(xiàn)在一定程度上同時滿足了這兩個要求 組合鉆床是指以系列化 標(biāo)準(zhǔn)化的通用部件為基礎(chǔ) 再配以少量 專用部件而組成的專用機(jī)床 這種機(jī)床既具有一般專用機(jī)床結(jié)構(gòu)簡 單 生產(chǎn)率及自動化程度高 易保證加工精度的特點 又能適應(yīng)工 件的變化 具有一定的重新調(diào)整 重新組合的能力 組和鉆床可以 對工件采用多刀 多面及多工位加工 它特別適于在大批 大量生 產(chǎn)中對一種或幾種類似零件的一道或幾道工序進(jìn)行加工 它具有設(shè) 計制造周期短 成本低 加工效率高 加工質(zhì)量穩(wěn)定 可減輕工人 的勞動強(qiáng)度等優(yōu)點 在機(jī)械制造中 裝備新企業(yè)或者對老企業(yè)進(jìn)行 技術(shù)改造 采用組合機(jī)床及其自動線 是發(fā)展生產(chǎn) 提高質(zhì)量的有 效途徑之一 近年來 組合機(jī)床的產(chǎn)量迅速增長 質(zhì)量不斷提高 新產(chǎn)品不斷 涌現(xiàn) 組合機(jī)床在制造工業(yè)中正獲得越來越廣泛的應(yīng)用 研究內(nèi)容 擬解決的 主要問題 根據(jù)工件量及設(shè)計時間的要求 對組合鉆床的右主軸箱及中間 底座進(jìn)行設(shè)計 該組合鉆床用于加工 汽車制動室支架 課題的主要內(nèi)容如下 1 任務(wù)書 開題報告 2 正確設(shè)計被加工零件的零件圖 右主軸箱裝配圖 補(bǔ)充加工 圖 中間底座零件圖等 3 編寫說明書 4 翻譯約 5000 單詞量的相關(guān)外文文獻(xiàn) 研究方法 技術(shù)路線 一 對被加工零件進(jìn)行分析 畫零件圖 二 右主軸箱的設(shè)計 1 繪制多軸箱設(shè)計原始依據(jù)圖 2 確定主軸結(jié)構(gòu) 齒輪模數(shù) 3 擬定傳動路線 4 計算主軸 傳動軸坐標(biāo) 5 繪制右主軸箱總圖 零件圖及編制組件明細(xì)表 三 對中間底座進(jìn)行分析 畫中間底座零件圖 研究的總 體安排和 進(jìn)度計劃 在老師的指導(dǎo)和安排下 這次設(shè)計工作計劃及階段進(jìn)度如下 第 1 2 周 收集資料 查閱相關(guān)文獻(xiàn) 寫任務(wù)書 開題報告 第 3 4 周 分析被加工零件 并畫零件圖 第 5 6 周 對右主軸箱進(jìn)行分析 計算 確定主軸箱相關(guān)尺寸 第 7 8 周 右主軸箱傳動設(shè)計 確定各主軸的相關(guān)數(shù)據(jù) 第 9 10 周 右主軸箱總體圖的繪制 第 11 12 周 對中間底座進(jìn)行分析 中間底座零件圖的繪制 第 13 14 周 撰寫畢業(yè)設(shè)計說明書 第 15 16 周 翻譯約 5000 單詞量的相關(guān)英文文獻(xiàn) 完善所有圖和 說明書 并仔細(xì)檢查及時改正 主要參考 文獻(xiàn) 1 組合機(jī)床設(shè)計簡明手冊 2 組合機(jī)床圖冊 3 新編機(jī)械設(shè)計手冊 4 組合機(jī)床及其調(diào)整與使用 指導(dǎo)教師 意 見 指導(dǎo)教師簽名 年 月 日 教研室意見 學(xué)院意見 教研室主任簽名 年 月 日 教學(xué)院長簽名 年 月 日 徐 州 工 程 學(xué) 院 畢 業(yè) 設(shè) 計 論 文 I 摘要 組合機(jī)床是根據(jù)工件加工需要 以大量通用部件為基礎(chǔ) 配以少量專用部件組成的 工序集中的一種高效專用機(jī)床 而且其生產(chǎn)效率高 加工精度穩(wěn)定 自動化程度高 使 工人勞動強(qiáng)度降低 本次設(shè)計的是一臺加工 汽車制動室支架 的組合鉆床 主要用來一次性加工完成 汽車制動室支架的二個零件 共計 10 個孔 一次安裝兩個工件 左主軸箱鉆 4 孔 右主 軸箱鉆 6 孔 我負(fù)責(zé)設(shè)計的是右主軸箱和中間底座的設(shè)計 根據(jù)所加工孔的位置及速度要求 算出切削速度和主軸轉(zhuǎn)速 確定右主軸箱輪廓尺 寸 主軸的型式和直徑 再根據(jù)驅(qū)動軸位置和轉(zhuǎn)速 各主軸位置及其轉(zhuǎn)速要求 合理布 置傳動軸的位置 把驅(qū)動軸和各主軸連接起來 使各主軸獲得所需轉(zhuǎn)速和轉(zhuǎn)向 完成鉆 孔 中間底座的結(jié)構(gòu) 尺寸則需要根據(jù)工件的大小 形狀以及組合鉆床的配置形式等來 確定 由于組合鉆床能夠進(jìn)行多工位加工 提高自動化程度 縮短加工時間和輔助時間 而且組合鉆床大部分都是由通用部件組成 研制周期較短 便于設(shè)計 制造和使用維護(hù) 成本低 而且機(jī)床易于改造 產(chǎn)品和工藝變化時 通用部件還能重復(fù)利用 經(jīng)濟(jì)性較好 所以組合機(jī)床在大批量生產(chǎn)中的應(yīng)用十分廣泛 關(guān)鍵詞 組合鉆床 主軸箱 中間底座 徐 州 工 程 學(xué) 院 畢 業(yè) 設(shè) 計 論 文 II Abstract Combination machine is based on the workpiece processing needs take a large number of general part as the foundation with a few of dedicated part which composes the focus on process of a efficient special machine Moreover its production efficiency is high machining accuracy is stable degree of automation is high cause the workers labor intensity to reduce This design is a combination drilling machine of processing automobile brake room stent mainly uses for complete two parts of automobile brake room stent which processing a one time the total 10 holes one time installs two workpieces the left spindle box drills 4 the right spindle box drills 6 what I am responsible to the design of the right spindle box and the middle base According to processes the hole the position and the speed request calculated to cutting speed and the spindle speed determines the right spindle box outline of size the spindle type and the diameter Then according to drive shaft position and speed various spindle position and rotational speed request reasonable arrangement transmission shaft location connects the drive shaft and various spindle causes various spindle to obtains needs the rotational speed and change direction completes the drill hole The middle base s structure size has to be based on the workpiece size the shape as well as the combination drilling machine configuration form and so on to determined Due to the combination drilling machine carries on the multi location processing improves the degree of automation reduces processing time and auxiliary time Moreover the combination drilling machine majority is composed of general part the development cycle is short and is advantageous for the design the manufacture and use maintenance the cost is low Moreover the machine easy to transform when product and process changes the general part can also the reuse the efficiency be good So combination of machine tools is very widespread in production in enormous quantities application Keywords combination drilling machine spindle box middle base 徐 州 工 程 學(xué) 院 畢 業(yè) 設(shè) 計 論 文 1 目 錄 1 組合機(jī)床概述 1 1 1 引言 1 1 2 組合機(jī)床組成及特點 1 1 3 組合機(jī)床的工藝范圍及配置形式 2 1 3 1 組合機(jī)床的工藝范圍 2 1 3 2 組合機(jī)床的配置形式 3 1 4 組合機(jī)床的設(shè)計步驟 5 1 4 1 調(diào)查研究 5 1 4 2 總體方案設(shè)計 5 1 4 3 技術(shù)設(shè)計 6 1 4 4 工作設(shè)計 6 2 組合鉆床設(shè)計 7 2 1 零件分析 7 2 2 組合鉆床設(shè)計的組成及設(shè)計任務(wù) 7 2 2 1 組合鉆床設(shè)計的組成 7 2 2 2 本課題主要任務(wù) 7 2 3 工藝方案及基準(zhǔn)的選擇 8 2 3 1 確定組合鉆床工藝方案的機(jī)本原則 8 2 3 2 組合鉆床工藝方案的一般步驟 9 2 3 3 確定切削力 切削轉(zhuǎn)矩 切削功率及刀具耐用度 10 2 4 組合鉆床主軸箱概況 10 2 4 1 組成 10 2 4 2 主軸箱的通用零件 10 2 5 工序與計算 11 2 5 1 加工條件 11 2 5 2 計算切削速度 主軸轉(zhuǎn)速 11 3 多軸箱的設(shè)計 13 3 1 多軸箱的基本結(jié)構(gòu)和表達(dá)方法 13 3 1 1 多軸箱的簡介 13 3 1 2 多軸箱的組成 13 3 1 3 多軸箱總圖繪制方法 13 3 2 多軸箱通用零件 13 3 2 1 通用箱體類零件 14 徐 州 工 程 學(xué) 院 畢 業(yè) 設(shè) 計 論 文 2 3 2 2 通用主軸 14 3 2 3 通用傳動軸 14 3 2 4 通用齒輪和套 14 3 3 通用多軸箱的設(shè)計分析 15 3 3 1 繪制多軸箱設(shè)計原始依據(jù)圖 15 3 3 2 確定多軸箱輪廓尺寸 16 3 3 3 主軸型式和直徑的確定 16 3 3 4 主軸箱所需進(jìn)給力計算 18 3 3 5 主軸箱所需功率計算 18 3 3 6 動力部件 19 3 3 7 多軸箱傳動設(shè)計 19 3 3 8 計算傳動軸的坐標(biāo) 23 3 3 9 潤滑油泵和手柄軸的安置 24 4 中間底座的設(shè)計 26 4 1 引言 26 4 2 中間底座的作用及基本要求 26 4 2 1 中間底座的作用 26 4 2 2 對于中間底座的基本要求 26 4 3 中間底座的設(shè)計原則 27 4 3 1 合理選擇截面形狀和尺寸 27 4 3 2 合理布置加強(qiáng)筋 27 4 4 中間底座壁厚 加強(qiáng)筋厚度的選擇 27 4 5 如何提高連接處的局部剛度和接觸剛度 28 4 6 中間底座結(jié)構(gòu)工藝性 28 結(jié)論 29 參考文獻(xiàn) 30 致謝 31 附錄 32 徐 州 工 程 學(xué) 院 畢 業(yè) 設(shè) 計 論 文 1 附錄 英文原文 A GENERIC KINEMATIC ERROR MODEL FOR MACHINE TOOLS Yizhen Lin Yin Lin Shen Department of Mechanical and Aerospace Engineering The George Washington University Washington DC 20052 ABSTRACT A generic kinematic error model is proposed to characterize the geometric error of machine tools Firstly modeling was made on a moving bridge gantry machine a moving table machine and a horizontal spindle machine respectively by means of the conventional homogeneous coordinate transformation Then these models were generalized to derive the generic error model which is able to accommodate the different configurations and axis definitions in various kinds of 3 axis machine tools Finally the generic kinematic model is implemented in a virtual CNC computer program which has rigorous procedures to interpret machine tool metrology data into 21 parametric errors The effectiveness of the generic error model is tested by using the measurement data from a horizontal spindle machining center The result of the diagonal displacement test is presented and compared with the model prediction It is shown that the generic kinematic model is efficient and easy to implement which can substantially reduce the modeling and implementation efforts INTRODUCTION Global competition has imposed more and more stringent requirements on the levels of accuracy and productivity in the manufacturing industry 1 Since the accuracy of the manufactured workpieces is closely related to the accuracy of machine tools 2 a lot of research work has been carried out to enhance the machine tool accuracy and reduce the operational cost Machine tools performance evaluation and real time error compensation have provided an effective way to build up a highly precise manufacturing system 3 8 Currently extensive research has been conducted to model the geometric and thermal errors of machine tools 3 11 These research works have proposed effective approaches in modeling the 徐 州 工 程 學(xué) 院 畢 業(yè) 設(shè) 計 論 文 2 volumetric error of machine tools However these models are mostly developed for specific machines instead of generic machine tools They could not provide a universal and ready to implement model for various kinds of different machine tools Here the main challenge is how to develop a generic machine error model12 which could accommodate different machine configurations and axis definitions in the shop floor For example homogeneous coordinate transformation 13 the most extensively used technique in modeling the geometric error of machine tools only provides a general approach and proves to be less efficient for each new machine configuration and axis definition people have to go through the same modeling procedures To this aim we developed a generic error model for machine tools which can be used to characterize various kinds of 3 axis machine tools quickly and efficiently The generic error model has been implemented in a virtual CNC computer program The test results show that the generic model can predict the geometric error of machine tools well MACHINE ERRORS Among the errors attributed to machine tools in the manufacturing systems quasistatic errors including geometric and thermal errors are the major contributors to the positioning inaccuracies of machine tools These errors estimated to account for 70 percent of the errors of machines have been observed to be as high as 70 to 120 m for production class machine 11 For these errors a variety of machine tool performance test systems have been developed 14 Among them the parametric representation describes the machine error characteristics in a kinematic model that provides the position and orientation errors of the cutting tool in terms of the axis position tool length and machine axis characteristics positioning accuracy straightness axis rotations and squareness It is the most convenient format for characterizing the machine tool errors and has been shown to be very flexible and robust in the performance evaluation 15 The parametric errors are errors in the relative position and orientation between two successive axes in the kinematic chain from the workpiece to the tool It has been well known that 21 parametric errors are enough to represent all the geometric error sources of a generic 3 axis machine They are named as xTy zRx Sxy etc where R means rotation T means translation and S means squareness The left subscript means the moving slide and the right subscript means the error direction 15 The kinematic model relates errors in relative position and orientation of the tool to 21 parametric errors In deriving the kinematic error model we make the assumptions of rigid body kinematics and small error motions Donmez9 developed a general methodology to derive 徐 州 工 程 學(xué) 院 畢 業(yè) 設(shè) 計 論 文 3 the kinematic error model by using the homogeneous coordinate transformation which represent the error motion as9 13 1 101zyxzyxzRTTrams KINEMATIC MODELS By means of the homogeneous coordinate transformation we can derive kinematic error models for several specific machine types Figure 1 shows a bridge type moving gantry machine which can be classified as FXYZ system where F means the machine fixed base X axis is the first slide stacked on the fixed base Y axis is stacked on X axis and Z axis stacked on Y axis From Equation 1 we have 2 1 11000 xRzSyxzXxTxzSyRyH 3 1 100yRzyyTxzxSzYyxS 4 1100zRzTxyHzyxZ Here Hx Hy and Hz are the transformation matrices for each axis xRx xTx xRy Sxz are the 21 parametric errors The squareness error is interpreted as an angular error in the derivation 15 The positive direction of the squareness error is defined by the corresponding angular errors 徐 州 工 程 學(xué) 院 畢 業(yè) 設(shè) 計 論 文 4 Figure 1 Bridge type moving gantry machine Also we have the tool link offset vector 5 1TTXpYZ According to the machine kinematic chain 6 HsytemxyzA Apply Equations 2 5 to Equation 6 we have the kinematic equations for the FXYZ machine trueXpTxRzSxyYpxRySzZp AA 7 RZzYpZA trYyyzX 8 xSX truepzzxpxySpyxSzYpAA 9 XR AA We further derive the model for machines with a moving table A typical machine with a moving table X axis is shown in Figure 2 It can be classified into the XFYZ group For XFYZ machine type 10 1HsytemxyHzT A The homogenous coordinate transformation also holds true for each axis so that Equations 2 5 are still valid here Apply them to Equation 10 we have trueXpxyzxRSyYpxRySzZp AA 11 yRZYpZz AA 徐 州 工 程 學(xué) 院 畢 業(yè) 設(shè) 計 論 文 5 Figure 2 Machine with a moving table X axis Figure 3 Machine with moving tables X Y trueYpxTyzyxRZpxzSyXp AA 12 RSZpXRAtreZY 13 zYz For the machines with two moving tables X Y axis they can be classified into the XYFZ group as shown in Figure 3 For XYFZ machine type HyxstemzT AA Therefore we have 14 1HsytemxyzT A Apply Equations 2 5 to Equation 14 we have trueXpxRzSxyYpxRySzZp AA 15 yRZyzYpZz treYT X 16 xSXA truepzzxxySzp A 17 yyRpzYR A We have discussed the kinematic models of FXYZ XFYZ and XYFZ machines All of them are vertical spindle machines It is therefore of interest to study the case of the horizontal spindle machine By convention the spindle is defined as the Z axis 16 Figure 4 shows the kinematic chain of a FXZY type horizontal spindle machine Because Z axis the spindle is stacked on X slide now Equations 3 4 will become 18 1100yRzyTxYHyx 徐 州 工 程 學(xué) 院 畢 業(yè) 設(shè) 計 論 文 6 Figrue 4 Machine with horizontal spindle 19 1 100zRzyzTxzxSyHyxSZ Also by the kinematic chain 20 sytemxyHzTA Applying Equations 2 18 and 19 to Equation 20 we have trueXpxRzSxyYpxRySzZp AA 21 zRZzYpZ trYTyyzX 22 xSXA truepzzxxySpzxSyYpAAA 23 XRp GENERIC KINEMATIC ERROR MODEL Although the kinematic equations we have derived for different machines are different in mathematical forms they hold the same structure in formulation because they have the similar physical kinematic chains Therefore it is possible for us to generalize these specific models to develop a generic error model for 3 axis machine tools In general we have the following model 1231312123 trueIIpTRSIpRSIp AA 24 2 233 RIpI AA 徐 州 工 程 學(xué) 院 畢 業(yè) 設(shè) 計 論 文 7 231132 trueIIpTRIpRSIp AA 25 213231 RSI A1 13 tre I 26 213I I II and III are the first second and third physical axis of machine I is the first axis directly related to the workpiece III is the axis directly related to the tool link II is the axis in between 123 is a multiplier which will have 1 123 1 when I II III form a right hand coordinate system 2 123 1 when I II III cannot form a right hand coordinate system By simply assigning I II III to X Y Z and setting xyz 1 because XYZ form a right hand coordinate system in Figure 1 Equations 24 26 will change to Equations 7 9 Assigning I II III to X Z Y and setting xzy 1 because XZY form a left hand coordinate system in Figure 4 Equations 24 26 will change to Equations 21 23 For the other different axis naming conventions in the shop floor by assigning the generic axes I II III to their respectively named axes such as Y X Z the specific error model can be obtained easily It can be seen that the generic error model can handle different axis definitions well After assigning the axes to the generic model we need to make the relevant change for moving table machines As shown in Equations 27 29 we decompose the structure of the formulation in Equations 24 26 into three parts zone I zone II and zone III respectively Equations 27 29 are the model for machines without a moving table For machines with one moving table such as XFYZ YFXZ etc the following changes will be made 1 1 zone II and zone III stay the same 1 2 All the terms in zone I change signs 1 3 If Ip excluding the one inside Ip I where rule 1 4 applies appears in zone I Ip should be changed to Ip I 1 4 If Ip I appears in zone I Ip I should be changed to Ip I trueIp 1132123123 TRSIpRSIp AAzone 27 223 I 3 2 trueIp 121132123 TRIRSIp AAzone 28 2I 33 trueIIp 131123123 TRSIp AAzone 徐 州 工 程 學(xué) 院 畢 業(yè) 設(shè) 計 論 文 8 29 231232123 TRSIpI AAzone I On basis of this if one further considers machines with two moving tables XYFZ or YXFZ etc the rules will be 2 1 zone III remains the same 2 2 All terms in zone II change signs 2 3 For any IIp excluding the one inside II IIp where rule 2 4 applies appears in zone I or zone II IIp should be changed to IIp II 2 4 For any II IIp appears in zone I or zone II II IIp should be changed to IIp II These rules can be easily verified by comparing Equations 7 9 FXYZ machine with Equations 11 13 XFYZ machine then with Equations 15 17 XYFZ machine It can be seen that the generic error model also handles the moving table s machine well IMPLEMENTATION OF GENERIC ERROR MODEL A virtual CNC computer program is developed to implement the generic error model The program is capable of predicting the effects of machine error motions in the machine gauge point for the given XYZ nominal commanded movement of machines Figure 5 shows the inputs outputs and functionality of the virtual CNC computer program The program inputs include 1 Machine type and axis assignment 2 Machine tool metrology data which consist of laser measurement data of machine axes including positioning error straightness errors roll pitch yaw and the squareness measurement 3 The commanded XYZ motion of the gauge point and moving directions of axes to account for backlash The program outputs will predict the actual XYZ position of the machine gauge point and IJK orientation of the cutting tool In the virtual CNC program we use the machine tool metrology data to generate a lookup table for each of the 18 translation and angular errors for the 3 axis machine The program also keeps three squareness numbers The procedures to decode 21 parametric errors from the laser system measurement data are as follows 15 徐 州 工 程 學(xué) 院 畢 業(yè) 設(shè) 計 論 文 9 Figrue 5 Virtual CNC computer program implementing generic error model 1 Construct an error lookup table of 6 parametric errors linear displacement 2 straightness roll pitch and yaw for each axis Initialize all the entries in the lookup table to zero 2 Read in the measurement data 3 Compensate the thermal expansion for the positioning error If the metrology data have been compensated advance to STEP 4 4 Shift the coordinates from the measurement coordinate system to the machine coordinate system 5 Extrapolate the measurement data to cover the whole range of axis in the machine working zone 6 Abbe Offset compensation for translation errors Abbe Offset is the instantaneous value of the perpendicular distance between the displacement measuring system of a machine scales and the measurement line where displacement in that coordinate is being measured 14 Because of the Abbe Offset translation errors are often compounded by the effects of angular errors 7 For straightness data calculate the best fit line through the compensated data and store the residuals 8 Calculate the squareness errors using the best fit lines obtained in STEP 7 TEST ON A HORIZONTAL MACHINING CENTER AND DISCUSSION We use the measurement data obtained by a 5 D laser system17 from a horizontal spindle machining center to verify our generic model As shown in Figure 6 the horizontal spindle machine can be classified as the XFZY machine Because the first axis is a moving table applying the rule of the moving table to Equations 27 29 we have 徐 州 工 程 學(xué) 院 畢 業(yè) 設(shè) 計 論 文 10 1231312123 trueIpITRSIpRSIp AA 30 2 33 RIp AA2 tre 31 133112SIII 13 3 trueIpTpSIp AA 32 223213 RIpR A Figure 6 Kinematic china of a horizontal spindle machining center Finally we substitute the general axes with the defined axes In the XFZY machine I X II Z III Y 123 1 X Z Y form a right hand coordinate system Therefore the specific error model for the horizontal spindle machine center would be trueXpxTRySxzZpxRzSyYpzTx AA 33 zYTyZA treyXSyZA 34 z trueZpxzpxSpzA 35 RSRyyxYRXp A We also try to derive the specific error model by the homogeneous coordinate transformation 36 1HsytmyHzT Apply Equations 2 18 and 19 to Equation 36 we can verify that the specific model obtained from our generic model is exactly the same as that obtained by the homogeneous coordinate transformation It can also be seen that the generic model is more direct and needs less calculation and modeling efforts People without profound knowledge in the kinematics and the homogeneous coordinate transformation are still able to derive the machine error model from 徐 州 工 程 學(xué) 院 畢 業(yè) 設(shè) 計 論 文 11 the generic model To further test the effectiveness of the generic model and the virtual CNC program the diagonal measurement data from the machining center are used The diagonal measurement14 is a simple linear measurement occurring along a diagonal of the machine working volume which shows the combined effect of error motions of three axes Figure 7 shows the diagonal test for the horizontal machining center which measured the linear displacement errors at 11 evenly distributed diagonal points back and forth The prediction from the virtual CNC program was also shown It can be seen that the virtual CNC program predicts the errors in the diagonal test well within a few microns Figure 7 Diagonal test and model prediction CONCLUSION The generic kinematic error model can characterize the geometric errors of various kinds of the 3 axis machine tools It can handle different machine configurations and axis definitions Compared with the homogeneous coordinate transformation approach the generic kinematic model is more efficient easier to implement substantially reducing the modeling and implementation efforts The virtual CNC program can implement the generic model and simulate the geometric 徐 州 工 程 學(xué) 院 畢 業(yè) 設(shè) 計 論 文 12 errors of machine tools It has rigorous procedures to decode 21 parametric errors from the machine tool metrology data and uses them in the generic model to predict the machine error motion and the tool orientation The diagonal test result shows that the virtual CNC program can predict the machine errors and help reduce machine errors to a few microns The generic model will be tested with more data Further research work on the generic model for machines with more axes is being carried out ACKNOWLEDGEMENT This work was supported in part by the National Science Foundation under Grant No DMII 9624966 The support is greatly appreciated The authors would like to thank Dr Johannes Soons of the National Institute of Standards and Technology Mr Richard Yang of Automated Precision Inc and Mr Sungho Moon of the George Washington University for useful discussions REFERENCES 1 Mou J A Systematic Approach to Enhance Machine Tool Accuracy for Precision Manufacturing International Journal of Machine Tools Manufacture Vol 37 No 5 669 685 1995 2 Mou J and Liu C R An Adaptive Methodology for Machine Tool Error Correction Journal of Engineering for Industry Vol 117 389 399 1995 3 Zhang G Veale R Charlton T Borchardt B and Hocken R Error Compensation of Coordinate Measuring Machines Annals of the CIRP Vol 34 1 444 448 1985 4 Ni J CNC Machine Accuracy Enhancement Through Real time Error Compensation Journal of Manufacturing Science and Engineering Vol 119 717 725 1997 5 Chen J S and Ling C C Improving the Machine Accuracy Through Machine Tool Metrology and Error Correction International Journal of Advanced Manufacturing Technology Vol 11 198 205 1996 6 Chen J S Yuan J X Ni J and Wu S M Real time Compensation for Time variant Volumetric Errors on Machining Center Journal of Engineering for Industry Vol 115 472 479 1993 7 Ni J and Wu S M An On Line Measurement Technique for Machine Volumetric Error Compensation Journal of Engineering for Industry Vol 115 85 92 1993 8 Kiridena V S B and Ferreira P M Computational Approaches to Compensating Quasistatic Errors of Three Axis Machining Centers International Journal of Machine Tools 徐 州 工 程 學(xué) 院 畢 業(yè) 設(shè) 計 論 文 13 Manufacture Vol 34 No 1 127 145 1991 9 Donmez M A General Methodology for Machine Tool Accuracy Enhancement Theory Application and Implementation Ph D dissertation Purdue University West Lafayette IN USA 1985 10 Ferreira P M and Liu C R A Method for Estimating and Compensating Quasistatic Errors of Machine Tools Journal of Engineering for Industry Vol 115 149 159 1993 11 Kiridena V S B and Ferreira P M Kinematic Modeling of Quasistatic Errors of Three Axis Machining Centers International Journal of Machine Tools Manufacture Vol 34 No 1 85 100 1991 12 National Institute of Standards and Technology Web page of project Machine Tool Performance Models and Machine Data Repository Gaithersburg Maryland USA 1997 13 King M S Modeling and Compensation of Quasistatic Errors in Machine Tools Ph D dissertation University of Kansas Lawrence Kansas USA 1995 14 ASME B5 54 1992 Methods for Performance Evaluation of Computer Numerically Controlled Machining Centers 1992 15 Soons J Private Communication National Institute of Standards and Technology Gaithersburg Maryland USA 1998 16 ISO841 1994 E Industrial Automation Systems Physical Device Control Coordinate System and Motion Nomenclature 1994 17 Automated Precision Inc User Manual for the 5 6 D Laser Measurement System Gaithersburg Maryland USA 1998 徐 州 工 程 學(xué) 院 畢 業(yè) 設(shè) 計 論 文 14 中文譯文 一個通用的運(yùn)動誤差模型機(jī)床 Yizhen Lin Yin Lin Shen 機(jī)械和航空航天工程部 喬治華盛頓大學(xué) 華盛頓哥倫比亞特區(qū) 20052 摘要 一個通用的運(yùn)動誤差模型 提出了表征幾何誤差的機(jī)床 首先 建模方面取得了 移動橋門式機(jī) 移動表機(jī)和臥式機(jī)床主軸分別為手段的傳統(tǒng)的齊次坐標(biāo)變換 然后這些 模型被推斷獲得普通錯誤模型 在各種 3 軸機(jī)床上能容納不同的配置和軸定義 最后 通用運(yùn)動學(xué)模型在一臺虛擬數(shù)控電腦上被實施 已嚴(yán)格的程序來解釋機(jī)械工具計量數(shù)據(jù) 轉(zhuǎn)化為 21 參數(shù)錯誤 通過使用測量數(shù)據(jù)普通錯誤模型的有效率來測試一個臥式加工中心 對角位移測試的結(jié)果提出并且與式樣預(yù)言比較 顯示普通運(yùn)動學(xué)模型是高效率和容易實 施 可能極大減少建模和執(zhí)行工作 導(dǎo)言 在制造業(yè)中 水平精度和生產(chǎn)率在全球競爭中有了越來越嚴(yán)格的要求 1 由于精確的 制造工件是密切相關(guān)的準(zhǔn)確性機(jī)床 2 大量的研究工作被進(jìn)行以提高機(jī)床的準(zhǔn)確性和減少 運(yùn)作成本 為建立一個高度精確的制造系統(tǒng) 3 8 機(jī)床的性能評估和實時誤差補(bǔ)償提供了 一個有效的方法 目前 廣泛的研究開展模型的幾何和熱誤差的機(jī)床 這些研究工作在建模容積誤差 機(jī)床 3 11 上提出了有效的方法 然而 這些模式大多是用于專用機(jī)床而不是通用機(jī)床 他們無法提供一個普遍適用 并準(zhǔn)備到實施模型的各種不同的機(jī)床 在這里 主要的挑 戰(zhàn)是在車間如何發(fā)展一個可容納不同的機(jī)床配置和軸的定義的通用的機(jī)床誤差模型 12 舉 例來說 齊次坐標(biāo)變換 13 最廣泛使用的技術(shù)在建模的幾何誤差機(jī)床 不僅提供了一般方 法而且被證明是效率較低 為每一個新機(jī)的配置和軸的定義的 人們必須通過相同的建 模程序 為此目的 我們開發(fā)了一個通用的誤差模型 機(jī)床可以用來表征各種 3 軸機(jī)床的 迅速和高效率 通用誤差模型已在一個虛擬數(shù)控電腦程式上實施 測試結(jié)果表明 該通 用模型可以預(yù)測的機(jī)床的幾何誤差 機(jī)床誤差 徐 州 工 程 學(xué) 院 畢 業(yè) 設(shè) 計 論 文 15 其中的錯誤歸因于機(jī)床在制造業(yè)中的系統(tǒng) 準(zhǔn)靜態(tài)誤差 包括幾何和熱誤差 是機(jī) 床安置不確定性的主要貢獻(xiàn)者 這些錯誤 估計占機(jī)床誤差的 70 已觀察到高達(dá) 70 至 120 m 的生產(chǎn)一流的機(jī)床 11 對于這些錯誤