【溫馨提示】 dwg后綴的文件為CAD圖,可編輯,無水印,高清圖,,壓縮包內文檔可直接點開預覽,需要原稿請自助充值下載,請見壓縮包內的文件及預覽,所見才能所得,請細心查看有疑問可以咨詢QQ:414951605或1304139763
果蔬大棚電動卷簾機 摘 要 果蔬大棚卷簾機是今后大棚種植必需的機械裝備和發(fā)展方向,它改變了傳統(tǒng) 人工卷簾操作的方法,比人工操作提高效率十幾倍以上,解決了每天卷放草簾的 勞動強度,改善了嚴冬露天操作的環(huán)境,重要的是縮短了卷、放草簾所消耗的時 間,延長了光照時間.大大提高了勞動效率和經濟效益. 現(xiàn)今市場上主要供應的是一種是走動式卷簾機這種卷簾機利用卷簾機的動力上 下自由卷放草簾子,不必受大棚坡度大小的限制。但這種卷簾機結構復雜,穩(wěn)定 性差,壽命低,且不適合長度過大的大棚。 本課題所設計的是一種固定式卷簾機,它模擬人工操作,通過纏繞在繩上的繩 子的拉緊和放松,實現(xiàn)草簾的卷收和鋪放。 其主要機構包括電動機、減速機、卷簾裝置等。本課題著重對卷簾機的減速 機及卷簾裝置進行設計,使其在壓低成本的前提下滿足普通斜坡式大棚的要求。 關鍵詞:卷簾機,減速機,傳動比,抗彎強度 FRUITS AND VEGETABLES BIG AWNING ELECTRICALLY OPERATED VOLUME CURTAIN MACHINE Abstract:The fruits and vegetables big awning volume curtain machine will be the next big awning planter essential machinery equipment and the development direction, it changed the traditional artificial volume curtain operation method, will enhance above efficiency several times compared to the manual control, solved the daily volume to graze animals the curtain the labor intensity, improved the severe winter open-air operation environment, more importantly reduced the volume, has grazed animals the time which the curtain consumed,Lengthened the illumination time.Enhanced the labor efficiency and the economic efficiency greatly. Nowadays in the market the main supply is one kind is takes a walk about the type volume curtain machine this kind of volume curtain machine use volume curtain machine power the free volume to graze animals the curtain screen, does not need to receive the big awning slope size the limit. But this kind of volume curtain machine structure is complex, the stability is bad, the life is low, also does not suit the length oversized big awning. What this topic designs is one kind of stationary volume curtain machine, it simulates the manual control,Through winding on rope string tautness and relaxation,The realization grass curtain volume receives and sets. Its main organization including electric motor, speed reducer, volume curtain installment and so on. This topic emphatically carries on the design to the volume curtain machine speed reducer and the volume curtain installment, causes it in to reduce the cost under the premise to satisfy the ordinary pitch type big awning the request. Key word Volume curtain machine,Speed reducer,Velocity ratio,Bending strength. 第 I 頁 共 II 頁 目 錄 1 緒論 .1 1.1 本課題研究意義 .1 1.2 本課題的研究現(xiàn)狀 .1 1.3 設計任務與要求 .3 1.4 擬解決的關鍵問題 .3 1.5 擬采用的研究手段 .4 2 傳動裝置的總體設計 .4 2.1 確定傳動方案 .4 2.2 電動機的選擇 .4 2.3 計算總傳動比和分配各級傳動比 .5 2.4 計算傳動裝置的運動和動力參數(shù) .5 3 傳動機構及零件的設計計算 .6 3.1 帶傳動的設計計算 .6 3.2 減速器的設計計算 .7 3.2.1 蝸輪蝸桿的設計計算 .7 3.2.2 蝸桿的設計 10 3.2.3 齒輪的設計計算 17 3.2.4 傳動軸的設計 22 3.2.5 輸出軸的設計 29 3.2.6 箱體的設計 36 3.3 卷動機構的設計 38 3.3.1 卷繩管的設計計算 38 3.3.2 絞盤的設計計算 41 3.3.3 滑動軸承的設計 43 3.3.4 法蘭連接的設計 43 4 結論 46 參考文獻 .47 第 II 頁 共 II 頁 致謝 .49 外文文獻原文 譯文 第 1 頁 共 49 頁 1 緒論 1.1 本課題研究意義 隨著城鄉(xiāng)人民生活水平的提高,冬季栽培鮮菜、鮮果的溫室大棚蓬勃發(fā)展, 其規(guī)模越來越大。但是,在溫室大棚作業(yè)中,卷鋪草簾是最費時費工的主要作業(yè) 環(huán)節(jié)之一,尤其在嚴寒冬季的凌晨和傍晚,在寒風刺骨的惡劣條件下,農民站在 大棚頂上從事著艱苦笨重的草簾卷鋪勞動,情況可想而知。對于一個長 80 米大棚 來說,每天都要在早上拉啟、傍晚放下,各要用大約 40 分鐘左右。嚴格的來說, 冬天里的陽光和溫度是“ 果蔬大棚 ”中作物正常生長所依賴的珍貴資源。農民要爭 分奪秒,辛苦是可想而知的 [1]。但這仍然解決不了問題, 由于“果蔬大棚” 保溫簾 開啟和關閉時間相對集中,引起的勞力不足和耗用時間過長,已經嚴重制約了“果 蔬大棚”的產量效益和發(fā)展空間。 電動卷簾機的出現(xiàn)則徹底解決了人工卷鋪簾子帶來的一系列不便。使用電動 卷簾機,可隨時啟動,延長了光照時間,增加了光合作用,更重要的是節(jié)省勞動 時間,減輕了勞動強度。日光溫室在深冬生產過程中,每一千平方米溫室人工控 簾約需 1.5 小時,而卷簾機只需 5 分鐘左右,太陽落山前,人工放簾需用約 1 小 時左右,由此看來,每天若用卷簾機起放簾子,比人工節(jié)約近 2 小時的時間。同 時延長了室內寶貴的光照時間,增加了光合作用時間 。另外,使用電動卷簾機對 草簾、棉簾保護性好,延長了草簾、棉簾的使用壽命,既降低生產成本,同時因 其整體起放,其抗風能力也大大增強。總體上可使農民能比較輕松地用更多的精 力提高對蔬菜進行管理,提高品質、擴大規(guī)模 [2]。 因此,開發(fā)經濟、實用的電動卷簾機是一項很好的研究課題。 1.2 本課題的研究現(xiàn)狀 目前國內生產的卷簾機主要有兩種工作方式 [3]:一種是固定式,卷簾機固定 在大棚后墻的磚垛上,它模擬人工操作,通過纏繞在軸上的繩子的拉緊和放松。 利用機械動力把草簾子卷上去,利用大棚的坡度和草簾子的重量往下滾放草簾子。 該種型號的卷簾機造價較高,大棚要有一定的坡度,如果棚面坡度太平,草簾子 滾不下來,當風大時容易亂繩并影響工作,且安裝復雜。另一種是走動式,這種 卷簾機由懸臂桿、支撐桿、電機、減速機構和卷簾軸等組成。其工作方式是采用 第 2 頁 共 49 頁 機械手的原理,利用卷簾機的動力上下自由卷放草簾子,不必受大棚坡度大小的 限制。但存在以下不足,懸臂桿和支撐桿穩(wěn)定性差,對草簾整體彎度要求較高, 不易滿足長度較大的大棚,且其卷簾軸被焊接成整體構件,拆裝不方便。 對于較常見的 80 米長的果蔬大棚,通過文獻檢索,有一些滿足要求的卷簾機 械,現(xiàn)將代表性的結構特點分析如下。 圖 1[4]是一種卷簾機的使用狀態(tài)示意圖,該卷簾機采用固定式結構,主要由工 作電機及固定機構,減速機,卷繩管,卷簾繩,螺栓,軸承等組成。其工作原理 為電機通過減速箱減速,使輸出軸與卷繩管連接,帶動卷繩管轉動,卷繩管與卷 簾繩一端固定,電機工作,卷繩管帶動卷簾繩卷起,卷簾繩帶動草簾卷起,完成 卷的過程。電動反轉,卷簾在自身重力作用下沿繩放下,完成放的過程。其中卷 簾機的電機和減速機分別固定在一電機支桿上,電機支桿的下端固定在溫室的墻 上。大棚卷簾機包括多個卷繩管支承機構,卷繩管直接與減速箱的輸出軸相連。 卷繩管通過支架固定。支架通過螺栓固定在大棚的頂墻上。卷簾繩一端套在卷繩 軸上,另一端繞過卷軸大棚頂端。其中電機通過減速機予以減速,帶動整體。優(yōu) 點:結構簡單,以電機驅動,卷簾卷起速度快,省工省力,適合大面積作業(yè)。 圖 1.1 一種卷簾機的使用狀態(tài)示意圖 大棚頂端三角支架的結構圖如圖 2 所示,卷繩軸頂端支承機構的豎支桿的下 端固定在橫支板上,斜支桿的兩端分別與豎支桿和橫支桿連接,橫支桿可固定在 溫室大棚的墻體上,如此三個支板形成三角形支承,大大加強了支板的支承能力 和安全性。 第 3 頁 共 49 頁 圖 1.2 卷繩軸頂端三角支架的結構圖 經過上述分析,為了適應農業(yè)上的需要,本課題要設計一種操作簡單,經濟 實用的卷簾機。此款卷簾機結構要合理,維修要方便,能在北方惡劣的環(huán)境下長 期工作。此款卷簾機依靠電力采用電機驅動。經過減速機降速,將扭矩傳輸給卷 動機構。卷動通則帶動草簾完成卷簾,放簾作業(yè)。卷簾機通過控制電機正反轉, 完成卷簾,放簾作業(yè)。其操作方式為固定式,可降低對大棚結構的要求,適應絕 大多數(shù)農民的需要,具有廣闊的市場。 1.3 設計任務與要求 1)利用電機作動力,經減速機降速,通過控制電機正反轉,完成卷簾、放簾 作業(yè)。 2)用于長度在 80 米以內的常用形狀的溫室大棚。 3)需在 5 分鐘內完成卷、放簾作業(yè)。結構合理、成本較低。 4)電動機功率為 1.1KW,經減速機減速后降為 1.6e/min。 1.4 擬解決的關鍵問題 1.電機與減速箱的固定及穩(wěn)定性問題 由于卷簾機要在露天的狀態(tài)下作業(yè),因此電機和減速機一定要固定好。經過 分析可將電機和減速機分別固定在一個電機支桿上。電機支桿則固定在溫室的后 墻上。另外減速機的兩端輸出軸分別和一個與之相對應的卷繩管相連接。卷繩管 可通過多哥支架固定。支架則固定在溫室后墻的頂部。 2.減速箱內部結構及配合 根據(jù)課題需要采用的電動機功率為 1.1 千瓦,減速機降速后速度為 1.6r/min。要在五分鐘內完成作業(yè)??紤]到所需扭矩的大小,又要盡可能減小減 第 4 頁 共 49 頁 速機的尺寸和自重。所以本款卷簾機擬采用兩級傳動結構,第一級是蝸輪蝸桿傳 動結構,轉速高、受力小、效率損毫小,第二級是齒輪傳動結構。并且減速機有 二個輸出軸,二個輸出軸分別和與二個輸出軸相對應的卷繩管的一端連接。 3.卷繩管與支架之間的嵌套 支架上端固定有卷繩管支承環(huán),支架與支承環(huán)之間可通過螺栓連接或焊接。 另外支承環(huán)內嵌有軸承,卷繩管可嵌套在軸承內。通過螺栓可減少滾動摩擦。 1.5 擬采用的研究手段 首先通過查找和收集資料,對設計有一個初步的了解,然后運用力學,機械 原理,機械設計與數(shù)學等知識確定箱體的位置,計算出減速箱的傳動關系。根據(jù) 切削加工的知識及材料的力學性能確定卷繩管的長度直徑及機構的材料構成。通 過實際考察草簾的大小重量及尺寸,繩的長度及扭矩。用 CAD 制圖,并分析圖紙 總結出現(xiàn)的情況和結果。 第 5 頁 共 49 頁 2 傳動裝置的總體設計 2.1 確定傳動方案 卷簾機是在戶外作業(yè)根據(jù)課題需要采用的電動機功率為 1.1 千瓦,減速機降 速后速度為 1.6 轉/分。要在五分鐘內完成作業(yè)??紤]到所需扭矩的大小,又要盡 可能減小減速機的尺寸和自重。所以本款卷簾機擬采用兩級傳動結構,第一級是 蝸輪蝸桿傳動結構,轉速高、受力小、效率損毫小.第二級是齒輪傳動結構傳動平 穩(wěn),效率高.并且減速機有二個輸出軸,二個輸出軸分別和與二個輸出軸相對應的 卷繩管相連接,這樣可以減小負載,增大轉矩.卷簾機的傳動方案見下圖 2.1。 圖 2.1 卷簾機傳動方案簡圖 1—電動機 2—V 帶輪 3—減速機 4—卷繩管 2.2 電動機的選擇 卷簾機每天的工作時間是在早上和傍晚,且工作時間不到十分鐘,工作時間 相比較很短。因此不用考慮電動機的發(fā)熱與升溫。其負載是均勻增大的且轉速穩(wěn) 定,故可忽略電動機的震動與變速。 主要影響電動機壽命的因素是功率、轉速及環(huán)境因素。應技術要求電動機的 輸出功率為 1.1KW,減速機降速后速度為 1.6r/min.因此盡量選擇要具有較底轉速 的電動機.此外考慮到電動機式戶外作業(yè),它還要具有防雨,防塵等功能 [5]。 第 6 頁 共 49 頁 綜合考慮各種因素,所選擇的電動機為一款齒輪減速電動機型號 YCJ71 配用 電機 90SF1-4 輸出功率 1.1KW,輸出轉速 240r/min,輸出轉矩 42N/m ,極數(shù) 4,電 動機的安裝型式為 B3 基本安裝型 [5]. 2.3 計算總傳動比和分配各級傳動比 傳動裝置的總傳動比為 (2.1)1506. 24??wmni 分配結果為第一級蝸輪蝸桿傳動比為 30。第二級齒輪傳動比為 5。 2.4 計算傳動裝置的運動和動力參數(shù) 1.各軸轉速 (2.2)min/2401rnw? (2.3)i/8312i (2.4)in/6.523rin? 2.各軸功率 依次為電動機與蝸桿,蝸桿與傳動軸,傳動軸與輸出軸之間的傳動效12,w? 率。根據(jù)手冊取 [5] =0.97, =0.7, =0.99。 , , 依次為蝸桿,傳動w1?21P23 軸和輸出軸上的輸入功率 = =1.067KW (2.5)1Pw = =1.067×0.7=0.7469KW (2.6)2? = 0.7469×0.99=0.7394KW (2.7) 3w1?2 3.各軸轉矩 =9550000 =9550000× =43770 N·mm (2.8)1T1np.06742 =9550000× =9550000× N·mm=919187N·m (2.9)22P.9/3 第 7 頁 共 49 頁 =9550000 =9550000× =4549978 N·mm (3.0)3T3np0.739416 3 傳動機構及零件的設計計算 3.1 帶傳動的設計計算 已知電動機功率 1.1KW,轉速 240r/min,傳動比 i=1 1.確定計算功率 caP 查得工作情況系數(shù) =1.0,故 = =1.1KWAKcaAP 2.選取 V 帶帶型 [6] 根據(jù) ,n 確定選取 SPZ 型。caP 3.確定帶輪基準直徑 查表取主動輪直徑 mda631? 則從動輪直徑 =63 mm2i 驗算帶得速度 =0.79 (3.1)106??ndva?sm//35? 帶得速度合適 4.確定 V 帶的基準長度和傳動中心距根據(jù) (3.2))(2)(7.021021 aadd??? 初步確定中心距 ma? 計算帶所需要的基準長度 =2 (3.3)1DLmda598)(2210??? 圓整厚取帶的基準長度 d63? 計算實際中心距 (3.4)mLad2160?? 第 8 頁 共 49 頁 5.計算 V 帶的根數(shù) (3.5)LcaKPz?)(0??? 由 , .得 min/2401rn?mda6311iW35.0?0??P 查表得 , .則aK820?L =3.8 (3.6)LcaKPz?)(0?? 取 Z=4 根 6.計算預緊力 0F (3.7)NqvKvzPca261)5.2(0 ????? 7.計算作用在軸上的壓軸力 (3.8)ZFP208sin210??? 至此帶輪的計算設計已經完成,其具體結構見零件圖。 3.2 減速器的設計計算 3.2.1 蝸輪蝸桿的設計計算 1.選擇蝸桿傳動 根據(jù) GB/T 10085-1988 的推薦,采用漸開線蝸桿(ZI). 2.選擇材料 考慮到蝸桿傳動傳遞的功率不大,速度只是中等,故蝸桿采用 45 鋼;因希望 效率高些,耐磨性好些,故蝸桿螺旋齒面要求淬火,硬度為 45~55HRC。蝸輪用 鑄錫磷青銅 ZCuSn10P1,金屬模鑄造。為了節(jié)約貴重的有色金屬降低成本,僅齒 圈用青銅制造,而輪芯用灰鑄鐵 HT100 制造 [7]。 3.按齒面接觸疲勞強度進行設計 [8] 根據(jù)閉式蝸桿傳動的設計準則,先按齒面接觸疲勞強度進行設計,再校核齒 根彎曲疲勞強度。傳動中心距 第 9 頁 共 49 頁 (3.9)3 22)][(HE ZKT???? 1)確定作用在蝸輪上的轉矩 ,根據(jù)式 2.9 得2 =919187N·mm2T 2)確定載荷系數(shù) K 因工作載荷均勻增加,故取載荷分布不均系數(shù) =1.1,由手冊選取使用系?K 數(shù) =1.15;由于轉速不高,沖擊不大,可取動載荷 =1.05;則AK V = =1.1×1.05×1.15 1.32 (3.10)?KVA? 3)確定彈性影響系數(shù) EZ 因選用的是鑄錫磷青銅蝸輪和鋼蝸桿相配,故 =160MPaEZ2/1 4)確定接觸系數(shù) ? 先假設蝸桿分度圓直徑 和傳動中心距 的比值 / =0.35,可查得 =2.91d?1d?Z 5)確定許用接觸應力 ][H? 根據(jù)蝸輪的材料為鑄錫磷青銅,金屬模制造,蝸桿螺旋齒面硬度>45HRC,可 查的蝸輪的基本許用應力 1=268MPa][H 應力循環(huán)次數(shù) =60×1×5×365=109500 (3.11)hLjnN260? 壽命系數(shù) =1.75 (3.12)871095/HNK 則 = × 1=279MPa (3.13)][?N][H 6)計算中心距 mm=149.7mm (3.14)3 2)79.160(982.1???? 第 10 頁 共 49 頁 取中心距 =160mm,因 i=30,故查表取模數(shù) =8mm,蝸桿的分度圓直徑 =80mm.?m1d 這時 / =0.5 則可查得接觸系數(shù) =2.3,因為 ? 可知絞盤的扭轉強度是合理的。因為絞盤不受軸向力的作用,故略去強度校 核。至此絞盤的設計即將結束。 其具體機構設計見零件圖。 第 43 頁 共 49 頁 3.3.3 滑動軸承的設計 1.確定軸承的設計方案 卷簾機要長年在戶外作業(yè),外界環(huán)境對滑動軸承的影響巨大,為了方便安裝, 維護以及更換滑動軸承。故選擇無潤滑的對開式徑向滑動軸承。 2.選擇軸承寬徑比 根據(jù)無潤滑軸承的寬徑比范圍,取寬徑比為 0.5。 3.計算軸承寬度 45mm (3.68)(/)Bd?? 4.計算軸頸圓周速度 (3.69)smnv /0754.1609.??? 5.計算軸承工作壓力 (3.70)MPadBFp38.59.02? 6.選擇軸瓦材料 查手冊在保證 、 、 的條件下,選定][p?][v][pv? 軸承材料為適合無潤滑的碳—石墨。 7.主要參數(shù)設計 直徑間隙 , 取軸瓦壁厚為 。為了減小軸承md45.0.?? md910/? 的磨損率,軸瓦工作表面的粗糙度值盡量低些,取 。Ra?2. 3.3.4 法蘭連接的設計 1.選取法蘭的材料為 HT200,鑄造成型。 2.因為各個單元卷繩之間無軸向力作用,因此法蘭只起傳遞轉矩的左用。又 因為法蘭之間依靠螺栓連接,因此首先設計螺栓的連接。 1)螺栓組結構設計 取螺栓數(shù) Z=4。對稱布置。 2)螺栓受力分析 螺栓在靜止時只受橫向力的作用 NF62501? 螺栓在轉動時只受轉矩的作用 根據(jù)公式求螺栓所受的工作剪力 第 44 頁 共 49 頁 取 r=75mm , 則 7583N??ZiirTF122 由于 故取 進行計算,在橫向剪力的作用下,接合面可能產生滑移,12F?2 根據(jù)接合面不滑移的條件 (3.71)TKrfS zii?0 查手冊得接合面得摩擦系數(shù) =0.16,取防滑系數(shù) =1.2,則各螺栓所需要f SK 的預緊力為 56875N???ZIiSrfTF0 3)確定螺栓直徑 選擇螺栓材料為 Q235,性能等級為 4.6 的螺栓,查的材料屈服極限 =240MPa,安全系數(shù) S=1.5,故螺栓材料的許用應力 = /S=160MPa。S? ][?S 求的螺栓危險截面的直徑為 23.8mm (3.72)???][3.1421?Fd 為了增大安全系數(shù),按粗牙普通螺紋標準,選取螺紋公稱直徑 d=24mm 4)按擠壓及剪切進行校核 查手冊得 =100MPa , =60MPa][p?][? 擠壓強度條件為 =25.4 (3.73)min0ldFP?MPa][p? (3.74)29.140??][? 故螺栓滿足要求 5)確定法蘭的幾何參數(shù) 第 45 頁 共 49 頁 在已知螺栓直徑的基礎上取法蘭的直徑 D=184mm,厚度 B=30mm. 因為法蘭的材料強度與螺栓接近,而且材料用量遠大于螺栓,因此法蘭的強 度校核可以省略,則法蘭連接的設計已基本結束。 至此,卷動機構的設計已經全部完成,其具體參數(shù)及配合關系可見零件圖及 裝配圖所示。 第 46 頁 共 49 頁 4 結論 在三個多月的設計過程中,查閱了大量的資料,請教了不少的老師和同學, 并且對卷簾機在農業(yè)中的具體應用進行了實地的考察,進一步拉近了學校與社會 的距離。四年才有一次的畢業(yè)設計,是對所學專業(yè)知識的一次大的綜合運用,為 我們將來步入社會參加工作打下了基礎。通過設計,掌握了不少東西,進一步學 學會了對知識的融會貫通,提高了自己分析,設計的能力。在設計的時間里,甚 至覺得比自己在以前三年半的時間里所學的所有知識的總和還要多,畢業(yè)設計雖 然是大學生離開學校,步入社會的最后一課,但是,蘊涵在這最后一課里的東西 是巨大的,只要我們認真把握,認真對待了,我們一定會有很大的收獲。 由于能力有限,本設計中仍舊有許多不甚完善的地方,但經過這次設計,我的 基礎理論知識得到了很大的豐富和鞏固, 設計能力得到了鍛煉和提高,并熟練掌 握了 AutoCA 等繪圖軟件,最重要的是鍛煉了我的意志和完成較復雜任務的計劃思 維,使我懂得了如何在困難中繼續(xù)前進,這些東西都會對我在以后的人生道路中 繼續(xù)前進有很大的幫助。 第 47 頁 共 49 頁 參 考 文 獻 [1] 張福墁.農業(yè)現(xiàn)代化與我國設施園藝工程[J].農業(yè)工程學報,2002,18(增刊): 123 [2] 《寶鋼減速器圖冊》編委會編.寶鋼減速器圖冊.北京:機械工業(yè)出版社, 1995﹒76. [3] 潘文維,羅慶熙,李 軍.我國溫室產業(yè)現(xiàn)狀及發(fā)展建議[J].北京園藝,2002,(3): 425 [4] 周長吉. 日光溫室的結構優(yōu)化[J].農業(yè)工程學報,1996,12(增刊):27229 [5] 崔保苗,王占文,趙聰,慧張靜.JL250 型日光溫室卷簾機的設計研究.山西農 業(yè)大學學報,2003,23(3):261-264 [6] 李永春.溫室大棚卷簾機.中國專利:00210621.3,2000-10-7 [7] 樸義浩.蔬菜大棚卷簾機.中國專利:97205153.8,1998-4-22. [8] 杜根鎖.大棚卷簾機.中國專利:00258689.4,2001-8-22 [9] 黃彗春,沈永鶴.溫室草簾自爬式卷簾機構的運動和受力分析.機械制造, 2004, 42(481): 35~37 [10] 濮良貴,紀名剛.機械設計.北京:高等教育出版社,2001﹒235 [11] 葛中民,機械設計基礎.北京:高等教育出版社,1999.132 [12] 孟兆范,張秀彬.電動雙制式草簾卷放機的安裝.農機使用與維修,2002, (3): 3 [13] 梁光啟、林子為,工程材料學 , 上??茖W技術出版社,1987 [14] 吳宗澤、羅圣國主編,機械設計課程設計手冊,高等教育出版社,1992 [15] 機械工程手冊編輯委員會編機械,機械工程程手冊,第 1~6 卷機械工業(yè)出 版社,1982 [16] 周明衡,常德功主編.機械傳動基礎部件 標準聯(lián)軸器手冊.沈陽:遼寧科技 出版社,1995 [17] 王步瀛 機械零件強度計算的理論和方法.北京:高等教育出版社,1986 第 48 頁 共 49 頁 [18] 邱宣懷主編.機械設計.北京:高等教育出版社,1997 [19] 章日晉等編.機械零件的結構設計.北京:機械工業(yè)出版社,1987 [20] 齒輪手冊委員會.齒輪手冊.北京:高等教育出版社,1990 [21] 減速器實用技術手冊編委會編.減速器實用技術手冊.北京:機械工業(yè)出版 社,1992 [22] 齒輪國家標準匯編.北京:中國標準出版社,1992 [23] 洛陽軸承研究所編.滾動軸承產品樣品.1989 [24] 黃貴根,黃俞.鑲嵌自潤滑軸承的應用.潤滑與密封,1996 [25] 卜炎編.螺紋聯(lián)接設計與計算.北京:高等教育出版社,1987 [26] Andrzej.M.Trzynadlowski 著.李鶴軒,李揚譯.異步電動機.北京.機械工 業(yè)出版社,2002 [27] Jonathan Wickert 著. An introduction to mechanical engineerin . Xi'an Jiaotong University . 2003 [28] M.F Spotts, T.E. Shoup . Design of machine elements. 機械工業(yè)出版 社.2003 [29] Devdas Shetty, Richard A. olk. Mechatronics system design . China Machine Press . 2004 第 49 頁 共 49 頁 致 謝 本文是在導師武文革老師的親切關懷和悉心指導下完成的。我首先衷心地感 謝我的導師武文革老師。感謝武老師對我在學習、選題、收集資料以及論文寫作 上的指導;感謝武老師在百忙之中抽出寶貴的時間閱讀并修改本論文,并提出寶 貴的意見。使我在本次設計中學到了許多新的知識。他嚴謹?shù)闹螌W態(tài)度和忘我的 工作精神更是給我留下了深刻的印象,極大地開闊了我的視野,是我受益終身的 財富。在此,衷心感謝我的導師這學期對我的關心和培養(yǎng)! 此外,本論文在編寫的過程中參考了大量大師論著中的精華,均列于參考文 獻之中,在此謹向各位大師作者表示衷心的感謝。在這一學期學習過程中,也請 教了不少其他的老師,得到了學校各位老師和許多同學的熱心支持和幫助,也在 此向他們致以真誠的謝意! 中 北 大 學 2006 屆 本 科 畢 業(yè) 設 計 說 明 書 第 1 頁 共 12 頁 外文文獻原文 Helical,Worm and Bevel Gears In the force analysis of spur gars, the forces are assumed to act in a single plain. In this lesson we shall study gears in which the forces have three dimensions. The reason for this, in the case of helical gears, is that the teeth are not parallel to the axis of rotation. And in the case of bevel gears, the rotational axes are not parallel to each other. There are other reasons, as we shall learn. Helical gears are used to transmit motion between parallel shafts. The helix angle is the same on each gear, but one gear must have a right—hand helix and the other a left— hand helix. The shape of the tooth is an involute helicoids. If a piece of paper cut in the shape of a parallclogram is wrapped around a cylinder, the angular edge of the paper becomes a helix. If we unwind this paper, each point on the angular edge generates an involute curve. The surface obtained when every point on the edge generates an involute is called an involute helicoids. The initial contact of spur—gear teeth is a line extending all the way across the face of the tooth. The initial contact of helical gear teeth is a point,which changes into a line as the teeth come into more engagement. In spur gears the line of contact is parallel to the axis of the rotation; in helical gears, the line is diagonal across the face of the tooth.It is this gradual engagement of the teeth and the smooth transfer of load from one tooth to another ,which give helical gears the ability to transmit heavy loads at high speeds. Helical gears subject the shaft bearings to both radial and thrust loads. When the thrust loads become high or are objectionable for other reasons, it may be desirable to use double helical gears. A double helical gear(herringbone)is equivalent to two helical gears of opposite hand, mounted side by side on the same shaft. They develop opposite thrust reaction and thus cancel out the thrust load. When two or more single helical gears are mounted on the same shaft, the hand of the gears should be selected so as to produce the minimum thrust load. Crossed—helical, or spiral, gears are those in which the shaft centerlines are neither 中 北 大 學 2006 屆 本 科 畢 業(yè) 設 計 說 明 書 第 2 頁 共 12 頁 parallel nor intersecting. The teeth of crossed-helical gears have point contact with each other, which changes to line contact as the gears wear in. For this reason they will carry out very small loads and are mainly for instrumental applications, and are definitely not recommended for use in the transmission of power. There is no difference between a crossed helical gear and a helical gear until they are mounted in mesh with each other. They are manufactured in the same way. A pair of meshed crossed helical gears usually have the same hand; that is, a right-hand driver goes with a right hand driven. In the design of crossed-helical gears, the minimum sliding velocity is obtained when the helix angle are equal. However, when the helix angle are not equal, the gear with the larger helix angle should he used as the driver if both gears have the same hand. Worm gears are similar to crossed helical gears. The pinion or worm has a small number of teeth, usually one to four, and since they completely wrap around the pitch cylinder they are called threads. Its mating gear is called a worm gear, which is not a true helical gear. A worm and worm gear are used to provide a high angular-velocity reduction between nonintersecting shafts which are usually at right angle. The worm gear is not a helical gear because its face is made concave to fit the curvature, nature of the worm in order to provide line contact instead of point contact. However, a disadvantage of worm gearing is the high sliding velocities across the teeth, the same as with crossed helical gears. Worn gearing are either single or double enveloping. A single enveloping gearing is one in which the gear wraps around or partially encloses the worm, A gearing in which each element partially encloses the other is, of course, a double enveloping worm gearing. The important difference between the two is that area contact exists between the teeth of double enveloping gears while only line contact between those of single- enveloping gears. The worm and worm gear of a set have the same hand of helix as for crossed helical gears, but the helix angles are usually quite different. The helix angle on the worm is generally quite large, and that on the gear very small. Because of this, it is usual to specify the lead angle on the worm, which is the complement of the worm helix angle, and the helix angle on the gear; the two angles are equal for a 9O deg. shaft angle. 中 北 大 學 2006 屆 本 科 畢 業(yè) 設 計 說 明 書 第 3 頁 共 12 頁 When gears are to be used to transmit motion between intersecting shafts, some form of bevel gear is required. Although bevel gears are usually made for a shaft angle of 9O deg., they may be produced for almost any shaft angle. The teeth may be east, milled, or generated. Only the generated teeth may be classed as accurate. In a typical bevel gear mounting, one of the gear is often mounted outboard of the bearing. This means that shaft deflection can be more pronounced and have a greater effect on the contact of the teeth. Another difficulty, which occurs in predicting the stress in bevel gear teeth, is the fact that the teeth are tapered. Straight bevel gears are easy to design and simple to manufacture and give very good results in service if they are mounted accurately and positively. As in the case of spur gears, however, they become noisy at higher values of the pitch-line velocity. In these eases it is often good design practice to go to ~he spiral bevel gear, which is the bevel counterpart of the helical gear, as in the case of helical gears, spiral bevel gears give a much smoother tooth action than straight bevel gears, and hence are useful where high speed are encountered. It is frequently desirable, as in the case of automotive differential applications, to have gearing similar to bevel gears but with the shaft offset. Such gears are called hypoid gears because their pitch surfaces are hyperboloids of revolution. The tooth action between such gears is a combination of rolling and sliding along a straight line and has much in common with that of worm gears SAND CASTING Most metal casting are made by pouring molten metal into a prepared cavity and allowing it to solidify. The process dates from antiquity. The largest bronze statue in existence to-day is the great Sun Buddha in Nara, Japan. Cast in the eighth century, it weighs 551 tons(500 metric tons) and is more than 71 ft (21m) high. Artisans of the Shang Dynasty in China ( 1766 - 1222B. C. ) created art works of bronze with delicate filigree as sophisticated as anything that is designed and produced today. There are many casting processes available today, mid selecting the best one to produced particular part depends on several basic factors, such as cost, size. production rate. finish, tolerance, section thickness, physical-mechanical properties, intricacy of design mach inability, and weld ability. 中 北 大 學 2006 屆 本 科 畢 業(yè) 設 計 說 明 書 第 4 頁 共 12 頁 Sand casting. the oldest and still the most widely used casting process. will be presented in more detail than the other processes since many of the concepts carry over into those processes as well. Green Sand Green sand generally consists of silica sand and additives coated by rubbing the sand grains together with clay uniformly wetted with water. More stable and refractory sands have been developed, such as fused silica, zircon, and mullets, which replace lower-cost silica and have only 2% linear expansion at ferrous metal temperatures. Also, relatively un-stable water and clay bonds are being replaced with synthetic resins, which are much mores table at elevated temperatures. Green sand molding is used to produce a wide variety of castings in sizes of less than around to as large as several tons. This versatile process is applicable to both ferrous and nonferrous materials. Green sand can be used to produce intricate molds since it provides for rapid collapsibility: that is, the mold is much less resistant to the contraction of the casting as it solidifies than are other molding processes. This results in less stress and strain in the casting. The sand is rammed or compacted around the pattern high a variety