一種波浪能振蕩浮子發(fā)電裝置結(jié)構(gòu)設(shè)計(jì)
一種波浪能振蕩浮子發(fā)電裝置結(jié)構(gòu)設(shè)計(jì),一種,波浪,振蕩,浮子,發(fā)電,裝置,結(jié)構(gòu)設(shè)計(jì)
畢 業(yè) 設(shè) 計(jì)(論 文)外 文 參 考 資 料 及 譯 文
譯文題目: 一種波浪能振蕩浮子發(fā)電裝置結(jié)構(gòu)設(shè)計(jì)
學(xué)生姓名:
專(zhuān) 業(yè):
所在學(xué)院:
指導(dǎo)教師:
職 稱(chēng):
我所參閱的外文文獻(xiàn)是:
Generating electricity from the oceans(從海洋發(fā)電)
作者:ABS Bahaj
出版源: 《Renewable & Sustainable Energy Reviews》,?2011,?15(7):3399-3416
下面是我對(duì)這篇文獻(xiàn)的摘要和譯文。
Ocean?energy?has?many?forms,?encompassing?tides,?surface?waves,?ocean?circulation,?salinity?and?thermal?gradients.?This?paper?will?considers?two?of?these,?namely?those?found?in?the?kinetic?energy?resource?in?tidal?streams?or?marine?currents,?driven?by?gravitational?effects,?and?the?resources?in?wind-driven?waves,?derived?ultimately?from?solar?energy.?There?is?growing?interest?around?the?world?in?the?utilisation?of?wave?energy?and?marine?currents?(tidal?stream)?for?the?generation?of?electrical?power.?Marine?currents?are?predictable?and?could?be?utilised?without?the?need?for?barrages?and?the?impounding?of?water,?whilst?wave?energy?is?inherently?less?predictable,?being?a?consequence?of?wind?energy.?The?conversion?of?these?resources?into?sustainable?electrical?power?offers?immense?opportunities?to?nations?endowed?with?such?resources?and?this?work?is?partially?aimed?at?addressing?such?prospects.?The?research?presented?con-?veys?the?current?status?of?wave?and?marine?current?energy?conversion?technologies?addressing?issues?related?to?their?infancy?(only?a?handful?being?at?the?commercial?prototype?stage)?as?compared?to?others?such?offshore?wind.?The?work?establishes?a?step-by-step?approach?that?could?be?used?in?technology?and?project?development,?depicting?results?based?on?experimental?and?field?observations?on?device?funda-?mentals,?modelling?approaches,?project?development?issues.?It?includes?analysis?of?the?various?pathways?and?approaches?needed?for?technology?and?device?or?converter?deployment?issues.?As?most?technology?developments?are?currently?UK?based,?the?paper?also?discusses?the?UK’s?financial?mechanisms?available?to?support?this?area?of?renewable?energy,?highlighting?the?needed?economic?approaches?in?technol-?ogy?development?phases.?Examination?of?future?prospects?for?wave?and?marine?current?ocean?energy?technologies?are?also?discussed.
Energy?resources,?the?implications?of?their?depletion?and?price?fluctuations?are?currently?at?the?forefront?of?the?global?energy?debate.?Energy?needs,?their?associated?security?of?supply?coupled?with?environmental?issues?and?the?impact?of?climate?change?will?require?policies?to?exploit?non-polluting?natural?sources.?There?is?now?an?urgent?need?to?support?our?energy?generating?capacity?through?the?development?of?low?carbon?technologies,?especially?those?from?renewable?resources.?Fulfilment?of?such?needs?through?the?low?carbon?route?is?not?only?central?to?sustainable?development?but?also?necessary?for?emissions?reductions.?It?is?clear?that?the?pro-?motion?of?such?approaches?is?now?taking?pace?globally?and?that?the?current?economic?climate?offers?a?further?window?of?opportu-?nity?for?expanding?the?utilisation?of?renewable?energy?technologies?through?the?various?stimuli?packages?initiated?by?many?govern-?ments?around?the?world.
Ocean?energy?has?many?forms?–?tides,?surface?waves,?ocean?cir-?culation,?salinity?and?thermal?gradients.?The?focus?of?this?paper?is?dedicated?to?two?of?these.?Those?found?in?tidal?or?marine?currents,?driven?by?gravitational?effects,?and?wind-driven?waves,?derived?ultimately?from?solar?energy.
Globally,?tidal?dissipation?on?continental?shelves?has?been?estimated?at?2.5?TW?[1].?Considering?the?UK,?which?is?currently?con-?sidered?the?world’s?leader?in?the?technological?conversion?of?ocean?energy?resources;?the?waters?around?its?shoreline?are?estimated?to?dissipate?approximately?10%?(0.25TW)?of?the?tidal?resource.?If?one?tenth?of?this?figure?could?be?tapped?for?power?generation?(which?would?undoubtedly?require?a?very?large?capital?invest-?ment),?tidal?stream?or?marine?current?power?could?deliver?around?220?TWh/annum,?which?roughly?equates?to?half?of?the?UK’s?cur-?rent?electricity?consumption.?Whilst?most?incident?wave?energy?is?dissipated?in?deep?water,?where?economic?exploitation?is?yet?to?be?demonstrated,?there?is?nevertheless?a?significant?nearshore?resource?estimated?by?the?European?Thematic?Network?on?Wave?Energy?at?1.3?TW?globally,?with?a?technically?exploitable?resource?of?100–800?TWh/annum?[2].?The?UK?has?amongst?the?most?ener-?getic?of?wave?climates,?which?could?provide?up?to?50?TWh/annum
)
Ocean energy resources derived from wind, waves, tidal or marine currents can be utilised and converted to large scale sus- tainable electrical power. Conversion systems are easily adaptable and can be integrated within the current utility power supply infrastructure and networks. However, in the development of renewable energy technologies, many countries have embarked on policies that are highly reliant on the expansion of large-scale off- shore wind energy to electrical power, with only small attention being directed to other areas of renewable energy. This imbal- ance, although understandable, as wind technologies are far more mature, it is important not to marginalise the utilisation of other ocean resources by concentrating effort and diverting the available financial resources to off-shore wind only.
This work aims to convey the research and development aspects of the conversion of marine current and wave energy resources. In addition, this work establishes a step-by-step approach that could be used in technology and project development, depicting results based on experimental and field observations on device fundamentals, modelling approaches, project development issues as well as a discussion of the financial mechanisms available to
support this area of renewable energy. It further highlights the eco- nomic approaches needed in the development phases of devices and projects and provides a brief overview of future prospects of utilising the wave and marine current resources. The aim here is to provide an insight, linked to evidence into the various stages and prospects for wave and marine current technology develop- ment and delivers an overarching appraisal of the salient issues to people interested in this important area of renewable energy.
There are thriving research and development communities and device developers around the world undertaking both fundamen- tal, applied research and technology development of both wave and marine current energy conversion. However, at present most technological innovations aimed at exploiting such resources are currently at early stage of development, with only a handful of devices that can be classified to be at the commercial pilot demon- stration stage. Due to the characteristic of the resource and the infancy of the concepts currently employed for conversion, there is a plethora of conversion technologies with unconnected design philosophies that seem to dilute effort and compete for the scarcely available financial resources. This, in many cases, coupled with the fact that most developers are small enterprises with limited funds,has resulted in high inertia holding back a faster trajectory to accel- erate technology commercialisation.
In marine current energy conversion, to the author’s knowl- edge, there is currently no commercially operated capacity in the world. However, in terms of prototypes operating at anticipated future commercial device capacities, there are notable installations within the UK and elsewhere. In addition, the UK has a distinct lead which supports world leading academic communities and testing infrastructure that not only aids the world highest concentration of technology developers but also act a nucleus for overseas devel- opers.
A survey of publicly available information on commercial, pro- totype device development and deployment in the UK indicates buoyant but fund-limited activities. Tables 1 and 2 list the vari- ous developers and their projects, limited to the front runners in marine current and wave energy conversion respectively. Some of the highlights are bulleted below:
? Project SeaGen (Marine Current Turbines Ltd) at Strangford Lough, Northern Ireland, UK, was successfully deployed in 2008 . This is a second generation device consisting of a piled twin rotor two-bladed horizontal axis turbine converter of an installed capacity 1.2 MW . SeaGen reports that the systems are now working well, in spite of initial delays, re-design of the piling process and a blade failure encountered in the early stages of the deployment . This is the world’s first commercial scale tidal turbine prototype to generate electricity onto the grid inde-pendent from a test centre (see also Table 1 for details on future
projects).
? The Irish company OpenHydro has been testing their open cen-
tred, rim generator device, capacity 250kW, at the European Marine Energy Centre (EMEC) in the Orkneys for around three years . No news has been forthcoming on performance . The company seemed to be negotiating a project in France with EDF, but this has not been formally announced (see also Table 1 for details on future projects).
? The first grid connected 100 kW shallow-water tidal current device which uses oscillating hydrofoils that lie horizontally in the water and sweep up and down in the flow was installed in 2009 by Pulse Tidal Ltd in the Humber Estuary, UK . The device installed in 9 m of water depth is going through its testing phases and supplying electricity to a large chemical plant on the South bank of the estuary. The company indicated that their next phase will be a commercial deployment of their device within the Isle of Skye waters starting 2012.
? Atlantis Resources Corp, in August 2010 deployed a 1 MW device at EMEC, . But the device was subsequently removed due to blade failure. This is clearly a setback for the company and its plans for the future. However, the company indicated that the limited exercise provided ample experience in deployment of their device (see also Table 1 for details on future projects).Tidal Generation Limited, now owned by Rolls Royce Plc. is devel- oping a deep-water device to be deployed at EMEC in 2012. The initial phase of installing the tripod foundations of this 0.5 MW tidal turbine was accomplished early in 2010 .
? Pelamis Wave Power Ltd has a selection of projects that build on its P1 machines. As indicated earlier and shown in Table 2, Pelamis, was has the world’s first array of 3 P1 (750 kW capac- ity each, 135m long, 3.5m wide connected cylinders, ride and fall with the waves) machines in the ill-fated project established 5 km off the Atlantic coastline of northern Portugal in the Autumn of 2008. The company is now progression with new generation machines P2 of a similar capacity through a rigorous testing programme at EMEC.
? Aquamarine Power has now established itself with support from utilities within the UK as major player in wave energy conversion . Its wave energy converter, named the Oyster, encompasses a buoyant mechanical surface piercing flap hinged at the sea bed that sways with the waves driving hydraulic pistons to pressurise sea water onshore to drive a turbine. The flap is hinged to a base structure mounted on the seabed . It has installed its 350 kW first prototype at EMEC in 2009 and the company is now working on development of its second generation device .
? The other noteworthy wave energy device developers are Wave Dragon and Wavegen .
海洋能有多種形式,包括潮汐、面波、海洋環(huán)流、鹽度和熱梯度。本文認(rèn)為這兩個(gè),即那些在潮汐河流或海洋洋流的動(dòng)能資源發(fā)現(xiàn),引力效應(yīng)的帶動(dòng)下,和風(fēng)波的資源,最終來(lái)自太陽(yáng)的能量。有越來(lái)越大的興趣,在世界各地的波浪能和海流(潮汐流)發(fā)電的發(fā)電。海流是可預(yù)測(cè)和可利用無(wú)堰的需要和蓄水的水,而波能量本質(zhì)上是不可預(yù)測(cè)的,是風(fēng)能的后果。這些資源轉(zhuǎn)化為可持續(xù)的電力提供了巨大的機(jī)會(huì),這些資源的國(guó)家,這項(xiàng)工作是部分旨在解決這樣的前景。研究提出和韋斯現(xiàn)狀波浪和海流的能量轉(zhuǎn)換技術(shù)解決起步階段相關(guān)的問(wèn)題(只有極少數(shù)在商業(yè)原型階段)相比其他海上風(fēng)。工作一步一步的方法,建立了可用于技術(shù)和項(xiàng)目發(fā)展,描繪結(jié)果基于實(shí)驗(yàn)和觀測(cè)設(shè)備的基本原理、建模方法、項(xiàng)目開(kāi)發(fā)的問(wèn)題。它包括分析所需的各種途徑和方法,技術(shù)和設(shè)備或轉(zhuǎn)換器部署問(wèn)題。大多數(shù)的技術(shù)發(fā)展是目前英國(guó)為主,本文還討論了英國(guó)的金融機(jī)構(gòu)來(lái)支持該地區(qū)的可再生能源,強(qiáng)調(diào)經(jīng)濟(jì)所需的技術(shù)方法在技術(shù)發(fā)展階段。未來(lái)的波和海洋能源技術(shù)的未來(lái)前景進(jìn)行了討論。
能源資源,他們的消耗和價(jià)格波動(dòng)的影響是目前在全球能源辯論的最前沿。能源需求,他們與環(huán)境問(wèn)題的安全供應(yīng)和氣候變化的影響,將需要政策,利用無(wú)污染的天然來(lái)源。目前迫切需要通過(guò)低碳技術(shù),特別是可再生資源的開(kāi)發(fā),以支持我們的能源發(fā)電能力。通過(guò)低碳路線實(shí)現(xiàn)這樣的需求不僅是可持續(xù)發(fā)展的核心,也是減排的必要性。很顯然,支持這種方法的運(yùn)動(dòng)正在采取步伐,當(dāng)前的經(jīng)濟(jì)氣候提供了一個(gè)進(jìn)一步的窗口機(jī)會(huì)時(shí)通過(guò)各種刺激計(jì)劃,世界各地的許多政府開(kāi)始擴(kuò)大可再生能源技術(shù)的利用。
海洋能有多種形式–潮汐,面波,海洋循環(huán)計(jì)算,鹽度和溫度梯度。本文的重點(diǎn)是致力于這些。那些在潮汐和海流的影響,重力驅(qū)動(dòng),和風(fēng)生波,最終來(lái)自太陽(yáng)的能量。
在全球范圍內(nèi),潮汐耗散對(duì)大陸架大約有2.5 TW [ 1 ]。在英國(guó),這是目前CON內(nèi)世界領(lǐng)先的海洋能源技術(shù)轉(zhuǎn)換;圍繞其海岸線的海域估計(jì)消耗約10%(0.25tw)的潮汐資源。如果十分之一這個(gè)數(shù)字可以用于發(fā)電(這無(wú)疑需要非常大的資本投資方面),潮汐流或海流發(fā)電可以提供約220億千瓦時(shí)/年,大致相當(dāng)于英國(guó)的電流半租耗電。雖然大部分的入射波能量在深水消散,那里的經(jīng)濟(jì)開(kāi)發(fā)是尚未得到證實(shí),但有一個(gè)重要的近海資源估計(jì)對(duì)波能量的歐洲網(wǎng)絡(luò)專(zhuān)題在1.3 TW全球,以技術(shù)可開(kāi)發(fā)100–800億千瓦時(shí)/年[資源] 2。英國(guó)最有能量的磁波的氣候條件下,可提供高達(dá)50億千瓦時(shí)/年。
海洋能源來(lái)自風(fēng)、波浪、潮汐和海流可以利用并轉(zhuǎn)化為大型SUS可持續(xù)電力。轉(zhuǎn)換系統(tǒng)是很容易適應(yīng)的,可以集成在當(dāng)前公用事業(yè)電力供應(yīng)基礎(chǔ)設(shè)施和網(wǎng)絡(luò)。然而,在可再生能源技術(shù)的發(fā)展,許多國(guó)家已經(jīng)走上了政策,高度依賴(lài)于大規(guī)模的離岸風(fēng)能的擴(kuò)張,電力,只有小的關(guān)注,對(duì)其他領(lǐng)域的可再生能源。這種不平衡性,雖然可以理解,作為風(fēng)電技術(shù)更成熟,重要的是不要被邊緣化的集中努力和分流的可用財(cái)力,離岸風(fēng)只有其他海洋資源的利用。
這項(xiàng)工作的目的是傳達(dá)的研究和開(kāi)發(fā)方面的轉(zhuǎn)換的海洋電流和波浪能資源。此外,這項(xiàng)工作建立了一步一步的方法,可用于在技術(shù)和項(xiàng)目開(kāi)發(fā),描繪的基礎(chǔ)上實(shí)驗(yàn)和實(shí)地觀察設(shè)備的基本面,建模方法,項(xiàng)目開(kāi)發(fā)問(wèn)題,以及討論的金融機(jī)制,可用于
支持這一領(lǐng)域的可再生能源。它進(jìn)一步凸顯了生態(tài)經(jīng)濟(jì)方法在設(shè)備和項(xiàng)目發(fā)展階段的需要,提供了利用波浪和海流資源前景的簡(jiǎn)要概述。這里的目標(biāo)是提供一個(gè)洞察,鏈接到的各個(gè)階段和前景的波和海洋目前的技術(shù)發(fā)展,并提供了一個(gè)總體性的評(píng)估,在這一重要領(lǐng)域的可再生能源的人感興趣的重要問(wèn)題。
有蓬勃發(fā)展的研究和開(kāi)發(fā)社區(qū)和設(shè)備的開(kāi)發(fā),世界各地進(jìn)行的是基礎(chǔ)性、應(yīng)用研究、波浪和海流能發(fā)電技術(shù)的發(fā)展。然而,目前大多數(shù)的技術(shù)創(chuàng)新,旨在利用該資源目前處于發(fā)展的早期階段,只有少數(shù)的設(shè)備,可分為商業(yè)試點(diǎn)工作階段的惡魔。由于資源和目前采用的轉(zhuǎn)換的概念階段的特點(diǎn),有大量的無(wú)關(guān)的設(shè)計(jì)理念似乎稀的努力和競(jìng)爭(zhēng)幾乎沒(méi)有可用的財(cái)政資源轉(zhuǎn)化技術(shù)。這一點(diǎn),在許多情況下,再加上大多數(shù)開(kāi)發(fā)商都是小資金有限的企業(yè),導(dǎo)致了高慣性阻礙更快的軌跡加速高技術(shù)商業(yè)化。
在海流的能量轉(zhuǎn)換,對(duì)作者的知識(shí)優(yōu)勢(shì),目前還沒(méi)有商業(yè)化運(yùn)作的能力在世界上。然而,在預(yù)期未來(lái)商業(yè)設(shè)備能力的原型,有顯著的安裝在英國(guó)和其他地方。此外,英國(guó)有一個(gè)明顯的引導(dǎo)支持世界領(lǐng)先的學(xué)術(shù)社區(qū)和測(cè)試基礎(chǔ)設(shè)施,不僅有助于世界最高技術(shù)開(kāi)發(fā)商集中也扮演一個(gè)海外開(kāi)發(fā)人員核。
在商業(yè)公開(kāi)信息調(diào)查,親英國(guó)的原型裝置的開(kāi)發(fā)和部署表明浮力但基金有限公司活動(dòng)。表1和表2列出的各開(kāi)發(fā)商及其項(xiàng)目,限于跑在前面的海流和波浪能轉(zhuǎn)換為。一些亮點(diǎn)是符號(hào)下面:
?工程公司(洋流渦輪機(jī)有限公司)在斯特蘭福德灣,北愛(ài)爾蘭,英國(guó),在2008成功部署。這是第二代設(shè)備組成的一堆雙轉(zhuǎn)子葉片的水平軸風(fēng)力機(jī)器的裝機(jī)容量1.2兆瓦。公司報(bào)告,系統(tǒng)現(xiàn)在工作的很好,盡管在初始延誤,對(duì)打樁過(guò)程和葉片的失效在部署的早期階段遇到的重新設(shè)計(jì)。這是世界上第一個(gè)商業(yè)規(guī)模的潮汐發(fā)電機(jī)組樣機(jī)發(fā)電到電網(wǎng)的獨(dú)立的測(cè)試中心(參見(jiàn)表1詳細(xì)的未來(lái)
項(xiàng)目)。
?愛(ài)爾蘭OpenHydro公司一直在測(cè)試其打開(kāi)岑—
進(jìn)而,RIM發(fā)電裝置容量250kW,在歐洲海洋能源中心(EMEC)在奧克尼群島約三年。沒(méi)有消息就表現(xiàn)了。公司似乎與EDF談判在法國(guó)的一個(gè)項(xiàng)目,但尚未正式公布(見(jiàn)表1對(duì)未來(lái)計(jì)劃的細(xì)節(jié))。
?第一并網(wǎng)100千瓦的淺水潮流裝置采用振蕩水翼,平臥在水掃向上和向下的流動(dòng)是由在亨伯河口潮汐公司安裝脈沖2009,英國(guó)。該設(shè)備安裝在9米的水深,通過(guò)其測(cè)試階段,并提供電力的一個(gè)大型化工廠的南岸河口。公司表示,下一階段將商業(yè)部署的設(shè)備內(nèi)的水開(kāi)始2012斯凱島。
?亞特蘭蒂斯資源公司,于2010八月部署一個(gè)1兆瓦的設(shè)備在EMEC,。但該設(shè)備隨后被刪除,由于葉片故障。這顯然是一個(gè)挫折,為公司和它的未來(lái)計(jì)劃。然而,該公司表示,有限的演習(xí)提供了豐富的經(jīng)驗(yàn),在部署他們的設(shè)備(見(jiàn)表1,對(duì)未來(lái)項(xiàng)目的細(xì)節(jié))。潮汐發(fā)電有限公司,現(xiàn)在擁有的勞斯萊斯公司。開(kāi)發(fā)的深水設(shè)備將部署在EMEC 2012。兆瓦的潮汐渦輪機(jī)的安裝的初始階段,這0.5兆瓦的潮汐渦輪機(jī)是在2010年初完成的。
?Pelamis Wave Power公司有一個(gè)項(xiàng)目的選擇,建立在其P1機(jī)。如前面所指出的,如表2所示,海蛇,是世界上第一個(gè)3 P1陣列(750千瓦電容性,135m長(zhǎng)3.5m寬連接氣瓶,騎馬和下降波浪)在命運(yùn)多舛的工程機(jī)建立了5公里,2008年秋葡萄牙北部的大西洋海岸線。公司現(xiàn)擁有一個(gè)類(lèi)似的能力的新一代機(jī)器P2進(jìn)程通過(guò)嚴(yán)格的測(cè)試程序在EMEC。
?海藍(lán)電源現(xiàn)在本身支持公用事業(yè)在英國(guó)作為主要參與者建立波浪能轉(zhuǎn)換。它的波浪能量轉(zhuǎn)換器,命名為牡蠣,包括浮力機(jī)械表面甲瓣鉸接在海底隨波搖曳驅(qū)動(dòng)液壓活塞增壓海水陸上驅(qū)動(dòng)汽輪機(jī)。該皮瓣是鉸鏈的基礎(chǔ)結(jié)構(gòu)安裝在海底。它具有在EMEC 2009安裝350千瓦的第一個(gè)原型和現(xiàn)在工作的公司是在其第二代裝置的研制。
?其他值得注意的波能裝置的開(kāi)發(fā)是波龍WaveGen。
收藏